Elsevier Editorial System(tm) for The Veterinary Journal Manuscript Draft

Manuscript Number: YTVJL-D-10-00623R2

Title: Application of high-frequency ultrasound for the detection of surgical anatomy in the rodent abdomen

Article Type: Original Article

Keywords: Rat abdomen, High-frequency ultrasound, Anatomy, Living image

Corresponding Author: Professor Chuan-Mu Chen, Ph.D.

Corresponding Author's Institution: National Chung Hsing University

First Author: Jiun-Yu Chen, Ph.D.

Order of Authors: Jiun-Yu Chen, Ph.D.; Hsiao-Ling Chen, Ph.D.; Sheng-Hai Wu, Ph.D.; Tung-Chou Tsai, Ph.D.; Ming-Fong Lin, M.D.; Chih-Ching Yen, M.D., Ph.D.; Wu-Huei Hsu, M.D.; Wei Chen, M.D.; Chuan-Mu Chen, Ph.D.

Abstract: Rats are used extensively in abdominal disease research. To monitor disease progress in vivo, high-frequency ultrasound (HFU) can be a powerful tool for obtaining high-resolution images of biological tissues. However, there is a paucity of data regarding the correlation between rat anatomy and corresponding HFU images. Twenty-four adult male Sprague-Dawley (SD) rats underwent abdominal scans using high-frequency ultrasound (40-MHz) surgical procedures to identify abdominal organs and major vessels as well as in situ scanning to confirm the imaging results. The results were compared with those of human abdominal organs in ultrasonographic scans. The rat liver, paired kidneys, stomach, intestines, and major blood vessels were identified by HFU. The ultrasonic morphologies of the liver and kidneys showed differences between rats and humans. Clinically relevant anatomical structures were identified using HFU imaging of the rat abdomen, and these structures were compared with the corresponding structures in humans. Increased knowledge with regard to identifying the anatomy of rat abdominal organs by ultrasound allows scientists to conduct more detailed intra-abdominal research in rodents.

1	Original article
2	Application of high-frequency ultrasound for the detection of surgical anatomy
3	in the rodent abdomen
4	
5	J.Y. Chen ^{a,†} , H.L. Chen ^{b,†} , S.H. Wu ^a , T.C. Tsai ^a , M.F. Lin ^{a,c} , C.C. Yen ^{a,d} ,
6	W.H. Hsu ^d , W. Chen ^{a,e,*} , C.M. Chen ^{a,f,*}
7	
8	^a Department of Life Sciences, National Chung Hsing University, Taichung 402;
9	^b Department of Molecular Biotechnology, Da-Yeh University, Changhwa 515;
10	^c Taichung Hospital, Department of Health, Taichung 403;
11	^d Department of Internal Medicine, China Medical University Hospital, Taichung 404;
12	^e Department of Internal Medicine, Chia-Yi Christian Hospital, Chia-Yi 600;
13	^f School of Chinese Medicine, China Medical University, Taichung, 404; Taiwan
14	
15	[†] These authors contributed equally to this work
16	
17	* Corresponding authors: Tel.: +886 4 2285 6309; fax: +886 4 2285 1797.
18	E-mail address: chchen1@dragon.nchu.edu.tw (C.M. Chen) or
19	peteralfa2004@yahoo.com.tw (W. Chen)
20	

21 Abstract

22	Rats are used extensively in abdominal disease research. To monitor disease
23	progress in vivo, high-frequency ultrasound (HFU) can be a powerful tool for
24	obtaining high-resolution images of biological tissues. However, there is a paucity of
25	data regarding the correlation between rat anatomy and corresponding HFU images.
26	Twenty-four adult male Sprague-Dawley (SD) rats underwent abdominal scans using
27	high-frequency ultrasound (40-MHz) surgical procedures to identify abdominal
28	organs and major vessels as well as in situ scanning to confirm the imaging results.
29	The results were compared with those of human abdominal organs in ultrasonographic
30	scans. The rat liver, paired kidneys, stomach, intestines, and major blood vessels were
31	identified by HFU. The ultrasonic morphologies of the liver and kidneys showed
32	differences between rats and humans. Clinically relevant anatomical structures were
33	identified using HFU imaging of the rat abdomen, and these structures were compared
34	with the corresponding structures in humans. Increased knowledge with regard to
35	identifying the anatomy of rat abdominal organs by ultrasound allows scientists to
36	conduct more detailed intra-abdominal research in rodents.
37	
38	Keywords: Rat abdomen; High-frequency ultrasound; Anatomy; Living image

40 Introduction

57

as a powerful means of study in genomics research, disease research, pharmacological
research and molecular biology (Feldman and Brunner, 1994; Poltorak et al., 1998;
Van Rhijn et al., 2008). The ability to reproduce human disease using such models has
been proven, providing researchers with new diagnostic and therapeutic approaches.
Thus, the development of a non-invasive modality for small-animal imaging is
critically important because it may provide the possibility of longitudinal research on
the same animal, shortened observation times, and reduced requirements for animal
sacrifice (Grassi et al., 2009). Several non-invasive devices have been developed
recently for small-animal experiments, including ultrasound, magnetic resonance
(MR), computed tomography (CT), single photon emission computed tomography
(SPECT) and positron emission tomography (PET). Among these devices, ultrasound
has the advantages of low cost, rapid imaging speed, portability and high resolution
(Foster et al., 2002).
Ultrasound techniques have aided the diagnosis of human diseases for decades,

58 2008), gastroenterology (Nylund et al., 2009), pulmonology (Yang, 2000; Tsai and

especially with regard to hepatology (Robinson, 2008; Wieckowska and Feldstein,

59	Yang, 2003), cardiology (Kpodonu et al., 2008), gynaecology (Benacerraf et al., 2005),
60	and nephrology (Mostbeck et al., 2001). However, the applications of ultrasound in
61	small-animal research have been limited by its resolution because conventional
62	ultrasonic imaging systems for humans typically use a frequency range of 2 - 15 MHz.
63	To improve spatial resolution, one strategy would be to increase the ultrasound
64	frequency. Due to technical advances, high-frequency ultrasound (HFU), which refers
65	to frequencies above 20 MHz, has become more readily available (Foster et al., 2000;
66	Knspik et al., 2000; Goertz et al., 2003). HFU provides non-invasive, real-time
67	images with a spatial resolution of less than 100 μ m.
68	
69	Significant research efforts have been directed toward liver and kidney diseases
70	and have used rats as animal models. Such diseases include hepatocellular carcinoma
71	(Lu et al., 2009), liver cirrhosis (de Lima et al., 2008), obstructive uropathy (Chuang
72	et al., 2000), and nephritis (Jaimes et al., 2009). In these models, ultrasound could be
73	a useful tool for evaluating disease progression and pharmacological effects (Fleck et
74	al., 2002; Lee et al., 2005). However, there is a paucity of data regarding the
75	correlation between rat abdominal anatomy and the corresponding images obtained
76	using high-frequency ultrasound.

78	The aim of this study was to describe and identify rat abdominal organs
79	(including the liver, kidneys, stomach, and spleen) using HFU. To obtain these images,
80	a commercially available ultrasonic imaging system (Visual Sonics Vevo 770) was
81	used. The results of rat imaging were then correlated with human anatomical
82	structures.
83	
84	Materials and methods
85	Animals
86	Twenty-four male Sprague-Dawley (SD) rats weighing 250-300 g were used.
87	Animals were housed at a controlled temperature (23 °C) with a daily exposure to a
88	12-h: 12-h light-dark cycle (Yen et al., 2009). The animal use protocol in this study
89	has been reviewed and approved by the Institutional Animal Care and Use Committee
90	of the National Chung Hsing University (IACUC Approval number: 97-54).
91	
92	Study protocol
93	To thoroughly understand rat abdominal organ anatomy, we reviewed relevant
94	published studies (Corman et al., 1985; Morehouse et al., 1995; Kogure et al., 1999;
95	Madrahimov et al., 2006; Martins and Neuhaus, 2007). After completing our review
96	of rat abdominal anatomy, we performed ultrasound scanning and recorded images.

97	Thereafter, the rats were sacrificed, and the transducer was placed in direct contact
98	with the organs to confirm the results of the images obtained using ultrasound.
99	
100	HFU examination
101	During the surgical procedures, animals were lightly anesthetised with gas
102	consisting of 0.5-1 L/min of oxygen-enriched air mixed with 2.0-2.5% isoflurane
103	vapour. The animals were fasted for 3 h prior to high-frequency ultrasound (HFU)
104	scanning. The animals were placed in supine positions and were breathing
105	spontaneously. After being anesthetised, each rat abdomen was shaved and further
106	cleaned with a chemical hair remover to minimize ultrasound attenuation. Typical
107	diagnostic scanners emit ultrasound at frequencies ranging from 2-15 MHz. This
108	range of frequencies cannot provide sufficient resolution to the image axons.
109	Therefore, a commercially available HFU apparatus (Visual Sonics Vevo 770 with the
110	RMV 704) was used in this experiment. A transducer that was used for imaging rat
111	abdominal organs had a central frequency of 40 MHz and provided an axial resolution
112	of 40 μ m with a 14.6-mm field of view. Ultrasound gel was placed on the skin as a
113	coupling fluid before using the transducer.
114	

115 Areas of key importance to this study were those where the data provided by in

116	situ images corresponded with those obtained from the rat abdominal tissues. Thus,
117	for both control and experimental animals, abdominal tissues were imaged in situ
118	through the overlying musculature. This overlying musculature was then held apart
119	with surgical spreaders, and the animals were sacrificed. The exposed abdominal
120	tissues were then imaged by applying the ultrasound probe.
121	
122	Surgical procedure and identification of rat anatomy
123	After the ultrasound examination, each rat underwent a surgical procedure for
124	anatomy identification. In anesthetized rats, midlaparotomies were followed by lateral
125	transverse incisions. Then, the liver ligaments were incised. The intestinal loops were
126	dissected to show the liver, kidneys and inferior vena cava (Fig. 1). Euthanasia was
127	performed after anatomic dissection.
128	
129	Results
130	Anatomy and ultrasonographic presentations of rat kidneys
131	Anatomy: in rats, paired kidneys were located behind the intestinal loops, one on
132	each side of the spine. As shown in Fig. 1, the right kidney was situated just below the
133	inferior right lobe (IRL) of the liver, and the left kidney was situated below the left
134	lateral lobe (LLL) of the liver and posterior to the stomach. The asymmetry caused by

135	the liver within the abdominal cavity typically resulted in the left kidney being
136	slightly lower than the right. This arrangement was opposite that of human kidneys.
137	Each kidney weighed between 1.8 and 2.2 g and had a transverse diameter measuring
138	between 8 and 10 mm.

140 Ultrasound examination: in rats, the right kidney was a good landmark for the 141 initiation of ultrasonic scanning. The examination began just below the right lowest 142 rib in the transverse plane (Fig. 2a), and the transducer was moved slightly and slowly 143 around that region to locate the right kidney. On ultrasound, the kidney appeared as an 144 oval with a longitudinal diameter measuring between 11 and 14 mm and a transverse 145 diameter measuring between 7.5 and 8.0 mm. By tilting and moving the transducer 146 leftward slightly, it was possible to locate the portion of the liver that surrounded the 147 right kidney. This portion of the liver was the inferior right lobe (Fig. 2b and 2d). The 148 central potion (medulla) was relatively hyperechogenic due to the abundant interfaces 149 produced by the blood vessels and drainage system. In this portion, there were a few relatively hypoechoic pyramids that were surrounded by the cortical layer (Fig. 2c and 150 151 2e). The kidney was scanned in at least two planes to adequately visualize all of the 152 parenchyma and supplying blood vessels. Two main vessels passed through this 153 region from the medulla to the hilum; one was the renal artery, and the other was the

154	renal vein. We were able to identify the renal artery using Doppler ultrasound, which
155	demonstrated a frequency shift during systole with a gradual decrease in flow
156	throughout diastole. On the other hand, the renal vein flow was constant throughout
157	the cardiac cycle.
158	
159	Anatomy and ultrasonographic presentations of the rat liver
160	Anatomy: in rats, the liver was the largest internal organ, accounting for
161	approximately 5% of the total bodyweight (BW). It was a soft, pinkish-brown,
162	multilobed organ, located in the right and left upper quadrants of the abdominal cavity,
163	resting just below the diaphragm (Fig. 1). In rat liver weighting range from 9.6 to 13.5
164	g, the liver's mean weight was 12.5 g. Gross anatomy divided the liver into four major
165	lobes, the median lobe, the right lobe, the left lobe and the caudate lobe. These
166	divisions were based on surface features. In Fig. 1, the caudate lobe (CL) was not
167	visible because it was situated behind the left lateral lobe (LLL). The median lobe
168	(ML) was located just below the diaphragm and was sub-divided by a main fissure
169	into a right medial lobe (RML) and a left medial lobe (LML). The right lobe was
170	located to the right of the vena cava and was almost completely covered by the medial
171	lobe. The rat liver was further divided by a horizontal fissure into two lobules: the
172	superior right lobe (SRL) and the inferior right lobe (IRL).

174	Ultrasound examination: after scanning for the right kidney, the transducer was
175	moved leftward slightly in a transverse plane near the midline. It was possible to see
176	the relative position between the inferior vena cava (IVC) and the hepatic vasculature
177	(Fig. 3). The extrahepatic portal vein was located posterior and lateral to the hepatic
178	artery (HA) and the common bile duct (CBD). Then, by moving the transducer
179	upward near the xiphoid, the right part of the liver was visible (Fig. 4a). The margin
180	of the right liver was smooth and wedge-shaped, and the corresponding region was
181	the RML (Fig. 4b and 4e). The liver parenchyma had a uniform, sponge-like texture of
182	low-level echogenicity. Passing through it were the blood vessels, which were seen as
183	branching tubular structures that could be traced toward the porta (portal veins; PV) or
184	the hepatic veins (IVC). Portal veins were usually surrounded by reflective tissue,
185	whereas hepatic veins usually appeared as simple hypoechoic tubular structures (Fig.
186	4c and 4f). By moving the transducer slightly toward the midline, one could observe
187	that the SRL lay posterior to the RML near a fissure (Fig. 4d and 4g).
188	
189	By moving the transducer just across the midline (Fig. 5a), one could see that
190	the LML is near the left side of the RML. A vertical fissure, called the main fissure or
191	umbilical fissure, was located between the two lobes (Fig. 5b and 5d). At this location,

192	a compression manoeuvre was used to image the deeper part of the liver. Then, it was
193	possible to observe the pulsating aorta and portal triad in this section (Fig. 5c and 5e).
194	By moving the transducer to the left (Fig. 6a), a wedge-shaped border of the left liver
195	(LLL) could be seen (Fig. 6b and 6d). After tilting the transducer slightly and in a
196	hyperechoic curve line below the LLL, the stomach was visible (Fig. 6c and 6e).
197	
198	Anatomy and ultrasonographic presentations of the rat spleen
199	Anatomy: the spleen lay in the left upper quadrant of the abdomen, immediately
200	beneath the left hemi-diaphragm (Fig. 1). It was an approximately triangular organ
201	and was fixed by ligaments in a position between the left diaphragm and the stomach.
202	
203	Ultrasound examination: after scanning for the left portion of the liver, the
204	transducer was moved laterally and caudally to locate the spleen, which was observed
205	as a triangular organ with evenly distributed fine echoes (Fig. 7a). The best landmark
206	in this case was the left kidney, which lay caudal to the spleen and was readily
207	identified by its distinct sonographic pattern (Fig. 7b and 7c).
208	
209	Discussion
210	Micro-ultrasound has proven to be a useful tool for monitoring and assessing

211	abdominal diseases in small animals (Chuang et al., 2000; de Lima et al., 2008;
212	Jaimes et al., 2009; Lu et al., 2009; Sullivan et al., 2009). Thus, detailed scanning
213	techniques and a thorough description and identification of anatomy by ultrasound are
214	crucial when designing and performing experiments with regard to the rat abdomen.
215	To our knowledge, this is the first study investigating the correlation between
216	ultrasonic imaging and rat abdominal anatomy using high-frequency ultrasound
217	(40-MHz). In this study, we report our experiences with scanning technique to clearly
218	identify abdominal organs by HFU.
219	
220	Scanning abdominal organs in rats is much more difficult than scanning humans
221	because of the faster respiratory rates of rats (approximately 90 breaths / min). Thus,
222	the images on the screen swing constantly despite the rat being under anaesthesia. A
223	novice performing the ultrasound procedure must overcome this difficulty. Even using
224	a mini-transducer, scanning should be conducted very slowly and steadily; otherwise,
225	tiny organs could be missed.
226	
227	The best landmark in rat abdominal ultrasound examinations was probably the
228	right kidney, which lay inferior to the right diaphragm and could be identified easily
229	by its distinct ultrasonographic patterns (Fig. 2a and 2b). Relative to their

230	identification in humans, it was much easier to identify both kidneys by ultrasound in
231	rats when they are placed in the supine position. Because human kidneys are located
232	in the retroperitoneal cavity, obtaining optimal views sometimes requires subjects to
233	lie in a decubitus or prone position. The kidney also differs significantly in their
234	ultrasonographic demonstrations between rats and humans. The rat kidney did not
235	show an obvious border between the medulla and the cortex, whereas the human
236	kidney was strongly echogenic in the central portion and had hypoechoic
237	surroundings (Fig. 8a, right panel). In addition, it was easy to scan the main blood
238	vessels passing through the rat kidney (Fig. 2c), but it was rare to see these features
239	during human ultrasounds. Thus, future studies may include measurements of the
240	intra-renal artery resistance index by Doppler to evaluate the severity of kidney
241	injuries.
242	
243	Ultrasound has proven to be an effective tool for monitoring and assessing
244	hepatomas (Yang et al., 1993; Oh et al., 2002; Di Stefano et al., 2008) and liver
245	cirrhosis (Yan et al., 2007; de Lima et al., 2008; Dias et al., 2008) in small animal
246	experiments. However, it is difficult to scan the rat liver properly because it is easy to
247	flatten the liver by compression (Fig. 5b and 5c). Thus, we suggest first scanning the
248	liver lightly and gently and then applying pressure to the organ to examine deeper

areas.

251	The greatest difference between the hepatobiliary systems of rats and humans is
252	the fact that the rat has no gallbladder (Fig. 8a, left panel). In humans, Murphy's point
253	in the right upper quadrant refers to the gallbladder, and this is a useful landmark for
254	guidance to specific target organs (Taylor et al., 1976). In addition, human liver lobes
255	have no clear fissure lines or divisions under ultrasonographic depictions, whereas rat
256	livers show multiple lobes with clear fissures between them (Fig. 4d and 5b). The
257	differences in ultrasound imaging between rats and humans are summarised in Table
258	1.
259	
260	The ultrasonographic pattern of the rat spleen (Fig. 7b) was very similar to that
261	of the human spleen (Fig. 8b). Both are triangular in shape and exhibit evenly
262	distributed, fine echoes. The pancreas is not difficult to find during a human
263	ultrasound, but we could not identify the rat pancreas in our study.
264	
265	HFU technique has inherent limitations. The images have a limited depth of
266	field because of the short wavelength and the low fixed F-number of conventional
267	transducers (Mamou et al., 2009). However, in our investigation, we could still scan

268	most abdominal organs thoroughly using various scanning techniques, such as tilting,
269	compression, and rotation of the transducer.
270	
271	Conclusions
272	In conclusion, the rat is the most commonly used experimental model for
273	simulating abdominal diseases. The employment of high-frequency ultrasound
274	requires detailed knowledge of regional abdominal anatomy and optimal scanning
275	techniques. In this study, we identified the anatomy of the kidneys, liver, stomach, and
276	spleen in situ immediately. By the knowledge, we may observe the process of tissue
277	regeneration or severity of tissue injury of the abdominal organs more accurately in
278	the future. The data show that sonography, with a resolution of 40 μ m, permits
279	observation of hepatic repair and kidney regeneration processes in rats.
280	
281	Conflict of interest statement
282	None of the authors has any financial or personal relationships that could
283	inappropriately influence or bias the content of this paper.
284	
285	Acknowledgments
286	This research was supported in part by grant NSC-98-2313-B-005-012 from the

- 287 National Science Council, grant COA-97-6.2.1-U1(9) from the Council of Agriculture,
- and the Ministry of Education, Taiwan, Republic of China, under the ATU plan.
- 289

290 **References**

291	Benacerraf, B.R., Benson, C.B., Abuhamad, A.Z., Copel, J.A., Abramowicz, J.S.,
292	Devore, G.R., Doubilet, P.M., Lee, W., Lev-Toaff, A.S., Merz, E., Nelson, T.R.,
293	O'Neill, M.J., Parsons, A.K., Platt, L.D., Pretorius, D.H., Timor-Tritsch, I.E.,
294	2005. Three- and 4-dimensional ultrasound in obstetrics and gynecology:
295	proceedings of the American Institute of Ultrasound in Medicine Consensus
296	Conference. Journal of Ultrasound in Medicine 24, 1587-1597.
297	
298	Chuang, Y.H., Chuang, W.L., Chen, S.S., Huang, C.H., 2000. Expression of
299	transforming growth factor-beta1 and its receptors related to the ureteric fibrosis
300	in a rat model of obstructive uropathy. The Journal of Urology 163, 1298-1303.
301	
302	Corman, B., Pratz, J., Poujeol, P., 1985. Changes in anatomy, glomerular filtration,
303	and solute excretion in aging rat kidney. The American Journal of Physiology
304	248, R282-287.
305	
306	de Lima, V.M., Oliveira, C.P., Alves, V.A., Chammas, M.C., Oliveira, E.P., Stefano,
307	J.T., de Mello, E.S., Cerri, G.G., Carrilho, F.J., Caldwell, S.H., 2008. A rodent
308	model of NASH with cirrhosis, oval cell proliferation and hepatocellular
309	carcinoma. Journal of Hepatology 49, 1055-1061.
310	
311	Di Stefano, G., Fiume, L., Baglioni, M., Bolondi, L., Chieco, P., Kratz, F., Pariali, M.,
312	Rubini, G., 2008. Efficacy of doxorubicin coupled to lactosaminated albumin on
313	rat hepatocellular carcinomas evaluated by ultrasound imaging. Digestive and
314	Liver Disease 40, 278-284.
315	
316	Dias, J.V., Paredes, B.D., Mesquita, L.F., Carvalho, A.B., Kozlowski, E.O., Lessa,
317	A.S., Takiya, C.M., Resende, C.M., Coelho, H.S., Campos-de-Carvalho, A.C.,
318	Rezende, G.F., Goldenberg, R.C., 2008. An ultrasound and histomorphological
319	analysis of experimental liver cirrhosis in rats. Brazilian Journal of Medical and
320	Biological Research 41, 992-999.

321	
322	Feldman, S., Brunner, L.J., 1994. Small animal model of weightlessness for
323	pharmacokinetic evaluation. Journal of Clinical Pharmacology 34, 677-683.
324	
325	Fleck, M., Appenroth, D., Malich, A., Stein, G., Fleck, C., 2002. Renal interstitial
326	fibrosis (RIF): II. Ultrasound follow up study of single uranyl nitrate
327	administration causing renal dysfunction in ratscomparison with histologic and
328	functional renal parameters. Experimental and Toxicologic Pathology 54, 15-23.
329	
330	Foster, F.S., Pavlin, C.J., Harasiewicz, K.A., Christopher, D.A., Turnbull, D.H., 2000.
331	Advances in ultrasound biomicroscopy. Ultrasound in Medicine and Biology 26,
332	1-27.
333	
334	Foster, F.S., Zhang, M.Y., Zhou, Y.Q., Liu, G., Mehi, J., Cherin, E., Harasiewicz, K.A.,
335	Starkoski, B.G., Zan, L., Knapik, D.A., Adamson, S.L., 2002. A new ultrasound
336	instrument for in vivo microimaging of mice. Ultrasound in Medicine and
337	Biology 28, 1165-1172.
338	
339	Goertz, D.E., Yu, J.L., Kerbel, R.S., Burns, P.N., Foster, F.S., 2003. High-frequency
340	3-D color-flow imaging of the microcirculation. Ultrasound in Medicine and
341	Biology 29, 39-51.
342	
343	Grassi, R., Cavaliere, C., Cozzolino, S., Mansi, L., Cirillo, S., Tedeschi, G., Franchi,
344	R., Russo, P., Cornacchia, S., Rotondo, A., 2009. Small animal imaging facility:
345	new perspectives for the radiologist. La Radiologia Medica 114, 152-167.
346	
347	Jaimes, E.A., Tian, R.X., Joshi, M.S., Raij, L., 2009. Nicotine augments glomerular
348	injury in a rat model of acute nephritis. American Journal of Nephrology 29,
349	319-326.
350	
351	Knspik, D.A., Starkoski, B., Pavlin, C.J., Foster, F.S., 2000. A 100-200 MHz
352	ultrasound biomicroscope. IEEE Transactions on Ultrasonics, Ferroelectrics, and
353	Frequency Control 47, 1540-1549.
354	
355	Kogure, K., Ishizaki, M., Nemoto, M., Kuwano, H., Makuuchi, M., 1999. A
356	comparative study of the anatomy of rat and human livers. Journal of
357	Hepato-Biliary-Pancreatic Surgery 6, 171-175.
358	

359	Kpodonu, J., Ramaiah, V.G., Diethrich, E.B., 2008. Intravascular ultrasound imaging
360	as applied to the aorta: a new tool for the cardiovascular surgeon. The Annals of
361	Thoracic Surgery 86, 1391-1398.
362	
363	Lee, G.P., Jeong, W.I., Jeong, D.H., Do, S.H., Kim, T.H., Jeong, K.S., 2005.
364	Diagnostic evaluation of carbon tetrachloride-induced rat hepatic cirrhosis
365	model. Anticancer Research 25, 1029-1038.
366	
367	Lu, S.C., Ramani, K., Ou, X., Lin, M., Yu, V., Ko, K., Park, R., Bottiglieri, T.,
368	Tsukamoto, H., Kanel, G., French, S.W., Mato, J.M., Moats, R., Grant, E., 2009.
369	S-adenosylmethionine in the chemoprevention and treatment of hepatocellular
370	carcinoma in a rat model. Hepatology 50, 462-471.
371	
372	Madrahimov, N., Dirsch, O., Broelsch, C., Dahmen, U., 2006. Marginal hepatectomy
373	in the rat: from anatomy to surgery. Annals of Surgery 244, 89-98.
374	
375	Mamou, J., Aristizabal, O., Silverman, R.H., Ketterling, J.A., Turnbull, D.H., 2009.
376	High-frequency chirp ultrasound imaging with an annular array for
377	ophthalmologic and small-animal imaging. Ultrasound in Medicine and Biology
378	35, 1198-1208.
379	
380	Martins, P.N., Neuhaus, P., 2007. Surgical anatomy of the liver, hepatic vasculature
381	and bile ducts in the rat. Liver International 27, 384-392.
382	
383	Morehouse, H.T., Levee, E., States, L., Zimmerman, J., Newhouse, J.H., Amis, E.S.,
384	Jr., 1995. MRI anatomy of the rat kidney at 1.5 T in different states of hydration.
385	Magnetic Resonance Imaging 13, 81-88.
386	
387	Mostbeck, G.H., Zontsich, T., Turetschek, K., 2001. Ultrasound of the kidney:
388	obstruction and medical diseases. European Radiology 11, 1878-1889.
389	
390	Nylund, K., Odegaard, S., Hausken, T., Folvik, G., Lied, G.A., Viola, I., Hauser, H.,
391	Gilja, O.H., 2009. Sonography of the small intestine. World Journal of
392	Gastroenterology 15, 1319-1330.
393	
394	Oh, J.Y., Jeong, J.S., Kim, Y.J., Nam, K.J., Park, B.H., Kwon, E.Y., Kim, Y.H., Hwang,
395	T.H., 2002. Ultrasonographic evidence of phenotypic instability during
396	hepatocarcinogenesis in N-nitrosomorpholine-treated rats. Experimental and

397	Molecular Pathology 73, 67-73.
398	
399	Poltorak, A., He, X., Smirnova, I., Liu, M.Y., Van Huffel, C., Du, X., Birdwell, D.,
400	Alejos, E., Silva, M., Galanos, C., Freudenberg, M., Ricciardi-Castagnoli, P.,
401	Layton, B., Beutler, B., 1998. Defective LPS signaling in C3H/HeJ and
402	C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085-2088.
403	
404	Robinson, P., 2008. Hepatocellular carcinoma: development and early detection.
405	Cancer Imaging 8 Suppl A, S128-131.
406	
407	Sullivan, J.C., Wang, B., Boesen, E.I., D'Angelo, G., Pollock, J.S., Pollock, D.M.,
408	2009. Novel use of ultrasound to examine regional blood flow in the mouse
409	kidney. American Journal of Physiology. Renal Physiology 297, F228-235.
410	
411	Taylor, K.J., Carpenter, D.A., Hill, C.R., McCready, V.R., 1976. Gray scale ultrasound
412	imaging. The anatomy and pathology of the liver. Radiology 119, 415-423.
413	
414	Tsai, T.H., Yang, P.C., 2003. Ultrasound in the diagnosis and management of pleural
415	disease. Current Opinion in Pulmonary Medicine 9, 282-290.
416	
417	Van Rhijn, I., Godfroid, J., Michel, A., Rutten, V., 2008. Bovine tuberculosis as a
418	model for human tuberculosis: advantages over small animal models. Microbes
419	and Infection 10, 711-715.
420	
421	Wieckowska, A., Feldstein, A.E., 2008. Diagnosis of nonalcoholic fatty liver disease:
422	invasive versus noninvasive. Seminars in Liver Disease 28, 386-395.
423	
424	Yan, G., Duan, Y., Ruan, L., Yang, Y., Cao, T., 2007. Experimental study on the
425	relation between the noninvasive ultrasonography quantitative scoring system
426	and the degree of the hepatic fibrosis. Hepato-Gastroenterology 54, 1908-1914.
427	
428	Yang, P.C., 2000. Ultrasound-guided transthoracic biopsy of the chest. Radiologic
429	Clinics of North America 38, 323-343.
430	
431	Yang, R., Kopecky, K.K., Rescorla, F.J., Galliani, C.A., Grosfeld, J.L., 1993. Changes
432	of hepatoma echo patterns with tumor growth. A study of the microanatomic
433	basis in a rat model. Investigative Radiology 28, 507-512.
434	

Yen, C.C., Lin, C.Y., Chong, K.Y., Tsai, T.C., Shen, C.J., Lin, M.F., Su, C.Y., Chen,
H.L., Chen, C.M., 2009. Lactoferrin as a natural regimen for selective
decontamination of the digestive tract: recombinant porcine lactoferrin
expressed in the milk of transgenic mice protects neonates from pathogenic
challenge in the gastrointestinal tract. The Journal of Infectious Diseases 199,
590-598.

Table 1.

443 Sonographic comparison of rat and human abdominal organs

Rat	Human
Kidneys	
Right kidney is superior to left kidney	Left kidney is superior to right kidney
Easy to scan in supine position	Relatively difficult to obtain ideal view, sometimes need decubitus position from the flanks
Lack of obvious border between the medulla and the cortex	Strongly echogenic (medulla) in central portion with hypoechoic
Easy to view supplying blood vessels	surroundings (cortex) Hard to view supplying blood vessels
Liver	passing through the kidneys
Gallbladder absent	Gallbladder present
Multilobed liver with clear fissures	Liver lobes have no clear fissure lines or divisions
Right liver border is shaped like a C-curve	Right liver border is wedge-shaped
Easy to deform by compression	Shape unchanged by compression

446 Figure legends

462

Fig. 1. Anatomy of rat abdominal organs after removal of stomach and intestines. 447 448 RML, right medial lobe; LML, left medial lobe; LLL, left lateral lobe; SRL, superior 449 right lobe; IRL, inferior right lobe; RK, right kidney; LK, left kidney; IVC, inferior 450 vena cava. 451 452 Fig. 2. Ultrasonographic demonstration of the right kidney in longitudinal section by 453 different angles of 40-MHz transducer sweeps through a sonic window. (a) Cartoon 454 diagram of stereo location of right kidney detected by different scanning angles (shown as arrow b and arrow c) of transducer sweeps. (b) Right kidney (RK) sits 455 456 just below the inferior right lobe (IRL) of the liver. (c) The parenchyma comprises the 457 relatively hypoechoic medullary pyramids, which lie centrally. (d) A schematic 458 diagram of (b). IRL, inferior right lobe; RK, right kidney. (e) A schematic diagram of 459 (c). SL, skin layer; ML, muscle layer; RRA, right renal artery; RRV, right renal vein; RC, renal capsule. 460 461

463 transverse section. (a) Cartoon diagram of space distribution of celiac artery round as

Fig. 3. Ultrasonographic demonstration (40-MHz) of the vessels below the liver in

464 shown with an arrow. (b) The ultrasound of hepatic portal area and celiac artery round.

465	(c) A schematic diagram of (b). CBD, common bile duct; HA, hepatic artery; PV,
466	portal vein; IRL, inferior right lobe of the liver; IVC, inferior vena cava.
467	
468	Fig. 4. Ultrasonographic demonstration (40-MHz) of the right part of the liver in
469	transverse section. (a) Cartoon diagram of space distribution of liver and celiac artery
470	round. Images (b) and (c) were produced using different angles of transducer sweeps
471	through a sonic window. Image (d) was a slightly left-shifted scan. (e) A schematic
472	diagram of (b). RML, right medial lobe; M, margin of the right liver. (f) A schematic
473	diagram of (c). HV, hepatic vein; PV, portal vein. (g) A schematic diagram of (d).
474	RML, right medial lobe; F, fissure; SRL, superior right lobe.
475	
476	Fig. 5. Ultrasonographic demonstration (40-MHz) of the middle part of the liver in
477	transverse section. (a) Cartoon diagram of space distribution of the middle liver. (b)
478	Superficial view. (c) Deep view of the same transverse section after transducer
479	compression. (d) A schematic diagram of (b). LML, left medial lobe; RML, right
480	medial lobe; F, fissure between LML and RML. (e) A schematic diagram of (c). LLL,
481	left lateral lobe; PT, portal triad; A, aorta.
482	

483 Fig. 6. Ultrasonographic demonstration of the left part of the liver in transverse

484	section using different angles of 40-MHz transducer sweeps through a sonic window.
485	(a) Cartoon diagram of space distribution of the left liver and stomach. (b) Superior
486	view. (c) Inferior view. (d) A schematic diagram of (b). LLL, left lateral lobe; M,
487	margin of the LLL. (e) A schematic diagram of (c). LLL, left lateral lobe; S, stomach.
488	
489	Fig. 7. Ultrasonographic demonstration (40-MHz) of the spleen in longitudinal section.
490	(a) Cartoon diagram of space distribution of spleen and celiac round. (b) Inferior part
491	of the left spleen. (c) A schematic diagram of (b). Sp, spleen.
492	

493 Fig. 8. Ultrasonographic demonstration (5-MHz) of human liver, gallbladder, spleen,

494 and right kidney. L: liver; GB: gallbladder; K: kidney; Sp: spleen.

Figure 2 Click here to download high resolution image

Figure 5 Click here to download high resolution image

a <u>RML ILMI</u> Stomoch Spleen

Modifications and revisions

Thank you very much for Reviewers' valuable opinions. The paper was revised based upon your constructive suggestions. And the followings are the point-by-point response to your comments:

For reviewer #1:

Q1. What RMV scan head was used for the ultrasound analysis?

Answer: The mode of RMV scan head is "RMV-704". The information has been added in the description in the Materials and methods section (Lines 107-108) as followed: "Therefore, a commercially available HFU apparatus (Visual Sonics Vevo 770 with the RMV 704) was used in this experiment".

Q2. Were the animals fasted prior to scanning to limit intestinal motions during the imaging? **Answer:** Yes, the animals were fasted for 3 h prior to high-frequency ultrasound (HFU) scanning. This description has been added in the HFU examination paragraph of Materials and Methods section (Lines 101-102).

Q3. Why not use the aorta as a structural landmark?

Answer: In gray scale, it is not easy to differentiate the aorta from other vascular system, such as inferior vena cava, portal vein or hepatic artery because all of them appear as simple hypoechoic tubular structures under transverse view. In our experience, the right kidney is a good landmark for the initiation of ultrasonic scanning because of its particular structure (oval-shape with relatively hyperechogenic central portion) and easy approach.

Q4. Is the imaging done free hand or using the rail system?

Answer: The HFU imaging was done by free hand operation as the same situation of clinical ultrasound scanning. In this study, Two HFU operators were applied, one is a well-trained HFU expertise (Mr. Jiun-Yu Chen) and the other is a clinical medical doctor (Dr. Wei Chen). All of the HFU images were double check between these two operators.

Q5. Is the gating feature used?

Answer: No gating feature was used in this study.

Q6. For ALL images I would suggest including a panels for each figure with I of the panels showing a clear outline of the structure of interest. Even for people accustomed to looking at ultrasound images it is difficult to "find" what the authors are trying to highlight.

Answer: According to reviewer's suggestion, all the HFU images of figures 2-7 were added the panels showing a clear outline of the structures of interest. The abbreviation labels in the interpretive diagrams were also described in the figure legends.

Q7. Line 161, I believe there is a problem with the weight of the rats as stated. The liver's weigh 12.5 g but the rats weigh 9.6-13.5 g.

Answer: The meaning is a range of liver weights between 9.6 and 13.5 g, but our description was unclear. The sentence has been revised as followed: "In rat liver weighting range from 9.6 to 13.5 g, the liver's mean weight was 12.5 g".

For reviewer #2:

Q1. Abstract - Change "in vitro scanning" to "in situ scanning".

Answer: According to reviewer's suggestion, the term of "in vitro scanning" has been changed to "in situ scanning" (Line 27 in the Abstract section).

Q2. Typographical error on line 87: "12-sh"

Answer: The typographical error of "12-sh" has been corrected as "12-h".

Q3. Line 136 - change measurement units to mm to be consistent with the diameters given below.

Answer: The measurement units have been changed as "....between 8 and 10 mm".

Q4. Line 161 - the sentence regarding rat weights doesn't quite make sense. Please check this.

Answer: The meaning is a range of liver weights between 9.6 and 13.5 g, but our description was unclear. The sentence has been revised as followed: "In rat liver weighting range from 9.6 to 13.5 g, the liver's mean weight was 12.5 g".

Q5. Line 271 - consider changing the word "development" to "employment" or similar. **Answer:** The word of "development" has been changed to "employment".

Q6. Line 274-5 - this study did not examine liver regeneration or the ability of ultrasound to

detect progress in liver regeneration. The authors should re-word this sentence accordingly.

Answer: The sentence has been revised as followed: "By the knowledge, we may observe the process of tissue regeneration or severity of tissue injury of the abdominal organs more accurately in the future."

Q7. Figure labeling: Would it be possible to avoid using the same numbers for different anatomical features within the same figure? For example, in Figure 5, the number 2 indicates the right medial lobe in Fig. 5a but the portal triad in Fig 5b. This is a little confusing. Using the abbreviations (e.g. LML) rather than numbers on the figures might be easier to understand at a glance.

Answer: To avoid the confusing of the numbers labeling, all of the labels have been revised using the abbreviations as shown in Figures 1 to 8 and their figure legends.

Q8. Table 1: Consider changing "Unobvious" to "Lack of obvious"

Answer: According to reviewer's suggestion, the word of "Unobvious" has been revised as "Lack of obvious ".

Dr. Andrew Higgins Editor-in-Chief The Veterinary Journal Nov. 17, 2010

Dear Editor Higgins:

Thank you and the referees for your careful consideration of our manuscript entitled *"Application of high-frequency ultrasound for the detection of surgical anatomy in the rodent abdomen"* coded YTVJL-D-10-00623R1. Following your helpful comments, we have enumerated our responses to the reviewers' comments and modified our manuscript accordingly.

Please find two attached files including a list of the modifications to the original manuscript and our replies to the comments, and a full-text of the revised manuscript. We are confident that this revised paper is now suitable for publication in the *Veterinary Journal*.

We are looking forward to hearing from you and deeply appreciate your kindly help!

Yours sincerely,

AunAMu Clerr

Chuan-Mu Chen, Ph.D. Professor / Dean Department of Life Sciences National Chung Hsing University 250 Kuo Kuang Road, Taichung 402, Taiwan TEL: 886-4-2285-6309 FAX: 886-4-2287-4740 E-mail: chchen1@dragon.nchu.edu.tw