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ABSTRACT 

The groundwater level represents a critical factor to evaluate hillside landslides. A monitoring system upon 

the real-time prediction platform with online analytical functions is important to forecast the groundwater level 

due to instantaneously monitored data when the heavy precipitation raises the groundwater level under the 

hillslope and causes instability. This study is to design the backend of an environmental monitoring system with 

efficient algorithms for machine learning and knowledge bank for the groundwater level fluctuation prediction. A 

Web-based platform upon the MVC-based (model-view-controller) architecture is established with technology of 

Web services and engineering data warehouse to support online analytical process and feedback risk assessment 

parameters for real-time prediction. The proposed system incorporates models of hydrological computation, 

machine learning, Web services, and online prediction to satisfy varieties of risk assessment requirements and 

approaches of hazard prevention. The rainfall data monitored from the potential landslide area at Lu-Shan, 

Nantou and Li-Shan, Taichung, in Taiwan, are applied to examine the system design. 
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1. Introduction 

Prediction of the groundwater level under hillslope after a precipitation is an important risk assessment 

factor for landslide hazard prevention. An automatic and efficient assessment procedure for landslide detection 

includes monitoring, transporting, collecting, analyzing rainfall data as well as forecasting groundwater level in 

order to save time, property and life of residents before the landslide occurs (Ahmadi and Sedghamiz, 2007). 

Therefore, it is quite helpful to design a rainfall data analysis mechanism at the backend of an environmental 

monitoring system which can instantly predict the groundwater level under the hillslope for decision support. 

The groundwater level is a significant factor to predict the possibility of landslide (Mantovani et al., 2000). 

Thus the rainfall intensity is an important element to affect the level of groundwater. Caris and van Asch (1991) 

conducted the geotechnical and hydrological surveys on a small landslide in black marl material to reveal the 

critical threshold of landslide when the groundwater level is 4m below the ground surface. It was measured that 

deeper landslides (5–20m depth) are the most cases triggered by pore pressures on the slip plane due to a rising 

groundwater level (van Asch et al., 1999). The slope with potential landslide requires a realistic estimation of 

groundwater levels according to a variety of parameters such as infiltration, shear strength, groundwater and 

steepness. These parameters could be driven into the modeling algorithms for accurate slope-stability analyses of 

pre-existing landslides (Neaupane and Achet, 2004; Trigo et al., 2005). Hence, a precise and real-time prediction 

of groundwater level may help forecasting occurrence of the landslide. The prediction model can be simulated by 

learning correlations of monitoring data and historical records. It is straightforward to recognize the relationship 

between groundwater level and precipitation by field measurement. McDonald and Harbaugh (2003) developed 

the governing equations to simulate the groundwater flow and estimate its level by using MODFLOW, which is 

the well-known groundwater flow model based on the finite difference equation (Rushton and Redshaw, 1979). 

Within the MODFLOW, if the parameters such as hydraulic conductivity and specific storage were accurately 

measured, then the groundwater level could be forecasted (Hunt et al., 2008). Unfortunately, some parameters of 

the necessary analysis are usually absent to cause difficulties for iterative procedures in the application software. 

Accordingly, many studies designed the Web-based information system with interoperability between disparate 

sources and visualized interface to interpret the interaction among the various water cycle components by using 

feedback loops in a dynamics environment, and then created a model to simulate responses of different irrigation 

management scenarios (Googal et al., 2008; Khan et al., 2009). 

In the mountain area, landslides usually occur just a few hours after the torrential precipitation. It is 

expected to predict groundwater levels hourly and suggest appropriate value of influence variables by learning 

historical on-site monitored data. To manipulate the data, the backend of monitoring system responds in driving 

the hydraulic data into the knowledge bank for efficient computation and risk assessment. Hence, the Web-based 

platform with extendible real-time functions is quite eligible to provide online risk information management for 

decision support and hazard alert. Many approaches of integrated system were developed with computation tools 

to simulate the hydrological models and analyses for environmental monitoring (Foran et al., 2000; Causapé, 

2009; Horsburgh et al., 2009; Xing et al., 2009; Worm et al., 2010). Furthermore, a flexible and expandable 

framework with Web interface would be more competitive to incorporate heterogeneous data. Thus, most of the 

commercial packages provide full application but they still require customization. Stewart and Mohamed (2004) 
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had investigated several built-in frameworks for validating the interrelationship between the perspectives and 

indicators, and suggested that the system upon a fundamental of expandable framework can be practiced to 

customize the functionalities. To access instantaneous rainfall data and historical precipitation records by 

considering integrity and transparency of the system, the MVC (model-view-controller) design pattern is eligible 

to contribute a solid architecture for incorporating various computation models with centralized administration. 

In addition, the Web platform enables users carry out manipulations in distributed sites. Therefore, a number of 

emerging technologies including distributed objects, intelligent agents, internet and Web-based technologies 

have been proposed to implement collaborative product design systems (Shen et al., 2003). Technology of Java 

and extensible markup language (XML) can support cross-platform design and distributed-data integration for 

Web services. Furthermore, metadata with XML schema can be serialized within the document and be parsed by 

the application programming interface (API) of Java to match requirements of data transformation and online 

computation (Hagemann, 1999). Instead of stand-alone software, many Web-based products were developed to 

integrate distributed, heterogeneous resources into an open system (Xiao et al., 2001). 

In this study, we proposed a forecasting model of groundwater level fluctuation at the backend of the 

real-time monitoring system. Rainfall data due to torrential precipitation are involved in the database of the 

system to yield a knowledge bank beyond the simulation. The hybrid nonlinear algorithm based on Darcy’s law 

is employed to calculate the groundwater flux rate. The historical rainfall data are contributed for the machine 

learning by the efficient iteration procedures to calibrate prediction parameters of groundwater level. Finally, the 

MVC-based architecture is implemented for the Web-based platform to process the monitored data. The data 

acquired from the hillslopes of Lu-Shan and Li-Shan in Taiwan were practiced for risk assessment. 

 

2. Technology and Methodology 

This study emphasizes the backend design of the environmental monitoring system which contains the 

frontend devices with wireless sensor network (WSN) and the backend platform for real-time online analysis. In 

order to access the monitored rainfall data and forecast the groundwater level beyond precipitation on the 

hillslope, the methodology involves the hydrological analysis model to enable the machine learning process to 

support the functionalities of real-time decision and online prediction. Herein, the proposed system consists of 

four units: 1) the hydrological continuity algorithm, 2) the risk assessment index by machine learning, 3) the 

Web platform upon MVC-based architecture, and 4) the online decision support for real-time prediction. The 

Java technology with open source APIs is employed to construct the necessary Web-based system. 

 

2.1 Hydrological Continuity Algorithm 

When the precipitation occurs, it falls into the ground and infiltrates into the soil; then, water reaches the 

aquifer region and flows into the downstream along the impervious layer. The hydrological process with 

infiltration steps can be illustrated in Figure 1 and the well-known hydrological continuity equation (Chow et al., 

1988) can be recruited to simulate the process as follows:  

 OI
dt
dS

−=  (1) 
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In which, S is the groundwater storage of control volume, I is the inflow rate that includes the infiltration 

recharge rate and the groundwater inflow rate, O is the groundwater outflow rate. Equation (1) denotes the 

groundwater storage in an aquifer region of unit area required for a unit rise of the water table (Sophocleous, 

1991; Maréchal et al., 2006; Park and Parker, 2008; Hong, 2008). It is also affected by the porosity: 

 
dt
dhpL

dt
dS

=  (2) 

where p is the fillable porosity for volume of water per unit area L. The equation implies a numerical process that 

the groundwater can flow into the identical linear unit reservoirs stepwise. The inflow rate can be written as: 
 gp III +=   (3) 

where Ip and Ig represents the infiltration recharge rate and the groundwater inflow rate, respectively. Based on 

Eq. (4), the infiltration recharge rate is formed by multiplying the unit area L with parameters: the precipitation 

rate Pr, the evapotranspiration rate Er, the overland flow Or, and the soil keeping water rate Sr. 
 ( )[ ]LSOEPI rrrrp ++−=   (4) 

Herein, the infiltration rate and extra inflow may gradually decrease when the precipitation stops. 

Furthermore, the extra groundwater inflow is from the infiltration recharge of upstream watershed and can 

be estimated with the linear reservoirs method below (Hong and Wan, 2010): 
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Giving the corresponding parameters: K is a transportable parameter of groundwater, A is a constant depending 

on the groundwater watershed area, α represents the infiltration ratio of precipitation, Pm is the depth of 

precipitation during the time interval between (m-1)Δt and mΔt, H is the function of time t in Eq. (6) to represent 

a unit pulse of infiltration recharge rate with the storage constant β and the number n of unit reservoirs. 
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It implies that the parameter β and n may result in long time duration and a low peak pulse of infiltration 

recharge rate. Thus, the peak pulse of infiltration recharge rate Hp and the peak time tp can be obtained as tp = 

β(n-1) by differentiating H(t). The symbol N is denotes as the influence range of infiltration pulse recharge rate 

depending on the parameters β and n for simplifying the equation denotations. 

Substituting Equations (2), (4) and (5) into (1), then dividing the equation by pL, it yields 
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=
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N

m
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1
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Where, the positive parameter I (=α(A+1)/p) is defined as the “Rise Number” while the negative parameter K is 

defined as the “Sink Number”. Thus, the first term Kh at the right side of the equation represents the head loss of 

groundwater level and the second term is the infiltration recharge and extra groundwater inflow. Herein, Eq. (7) 

yields the first-order linear differential equation and is a function of variables t and h. This equation involves the 

constant recharge rate Wt between time t and t+Δt, i.e., ( )[ ]∑
=

Δ+−=
N

m
m

t tmNHPW
1

1 , and can be written as 
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Where, h=ht is the initial condition of groundwater level and the approximate ht+Δt due to ht can be derived from 

Eq.(8). Hence, the theoretical solution can be applied for this study. 

 

2.2 Risk Assessment Indexes for Machine Learning 

As monitoring, the rainfall data were collected by the frontend devices and transported to the backend 

server as the base of the engineering data warehouse. The data warehouse is known as an integral database for 

historical data repository behind systematic arrangement by information technique (Inmon, 1996). Bill Inmon 

defined it as an integrated, subject-oriented, time-variant and non-volatile database that provides support for 

decision making (Inmon and Kelley, 1994). The fact table and correspondent cube dimensions are the essential 

components to generate the schema of data warehouse. The fact table contains facts that link with their 

dimensions, thus the cube dimensions provide metadata of the facts through their attributes. Moreover, the raw 

data in various formats can be rigorously unified by the extract-transform-load (ETL) procedure into database 

through extraction, consolidation, filtering, transformation, cleansing, conversion and aggregation (Rob and 

Cornel, 2005). The critical factor leading to the use of data warehouse can perform complex queries and analyses 

without slowing down the operating system. The engineering data warehouse in this study accumulates the 

hydrological data with respect to computation of groundwater level and precipitation for machine learning. 

Based on Equation (5), we can obtain the necessary forecast parameters K, β, n and I through training the 

historical precipitation data and practicing the newly monitored data. Meanwhile, these parameters are eligible 

for the attributes of relations within database to yield the fact tables. The historical precipitation data are 

requested for the training process to feedback the optimal parameters as the risk assessment indexes for the 

predictive groundwater level and become the knowledge bank. 

As follows, we review the literatures and estimate the factors to determine the important groundwater 

parameters for machine learning. 

(1) Period of infiltration recharge rate (n, β) – the parameters control the travel time period of infiltration 

recharge rate according to Eq. (6). In the other word, the time lag of groundwater travel period can be a function 

of the thickness of unsaturated zone, rainy seasons and precipitation intensity. Some monitored data showed that 

the time lag for the peak precipitation and the peak groundwater level may bring into half day to twenty days 

(van Asch et al., 1999; Lee et al., 2006; Park & Parker, 2008). 

 (2) Rise number (I) – the number stands for the rising level of groundwater level under precipitation and 

is an artificial variable determined by fillable porosity (p) and infiltration ratio of precipitation (α), which are 

given in Eq.(2) and (5), respectively. Both of p and α can be studied from rainfall events (Sophocleous, 1991; Li 

et al., 2005; Bhark & Small, 2003). The ratio α/p was suggested by nonlinear regression to minimize the root 

mean square (RMS) deviation between observed and predicted water levels for the calibration period (Park & 

Parker, 2008). 

(3) Sink number (K) – the number is another artificial variable, similarly, to determine the sinking level of 

groundwater level. In this study, we refer the groundwater parameters in Table 1 determined by the previous 
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study and create the risk assessment indexes to execute the machine learning loops. 

Table 1 Groundwater parameters used in machine learning (Hong and Wan, 2010) 
Parameter Minimum value Increment Iteration counts Maximum value 

K -0.02225 0.00075 30 -0.0005 
β 1 1 4 4 
n 2 1 4 5 
I 2 2 25 48 

Herein, we implement the risk assessment indexes above with training data for the machine learning 

mechanism. As incorporating the diverse engineering data, we propose the control modules by considering three 

primary database components, dynamic view, stored procedure and trigger, to generate dimensional cubes 

through PL/SQL (Procedural Language/Structured Query Language) scripts. These scripts are executed by the 

functions developed in the database server for data access. Then the transaction progress in the web server can 

automatically retrieve analytical results by triggering these functions for advanced computation. 

 

2.3 Web Platform upon MVC-based Architecture 

To construct the Web platform for real-time prediction, a concept of MVC-based architecture would be 

implemented at the backend of system to progress the online analysis by acquiring rainfall data of precipitation 

from the monitoring facilities at the frontend. The architecture reflects the model-view-controller (MVC) design 

pattern that includes several design patterns, which was initially discovered from Smalltalk-80 in 1970’, to 

describe proven strategies for building reliable object-oriented software system (Krasner and Pope, 1988). The 

public of design patterns was first made available by Gamma et al. (1994) to introduce twenty-three patterns 

related to creational, structural and behavioral models for software design to progress recurrent elements. The 

MVC theoretically hybrids three of them, the strategy, observer, and composite patterns, and divides system 

responsibilities into three parts: the model, which maintains program data and logic; the view, which provides a 

visual presentation of the model; the controller, which processes user input and makes modifications to the 

model. The framework with MVC paradigm controls the consuming computation resources when the user is not 

interacting with the interface and avoids unnecessary performance loss (Shan, 1989).  

Figure 2 illustrates the conceptual infrastructure in three main blocks containing the components of model, 

view and controller, which provide individual modules with mutual supports based on system requirements. The 

models of precipitation evaluation, hydraulic continuity computation, and groundwater level analysis work with 

monitored rainfall data and previous algorithms to conduct the machine learning model. Furthermore, they feed 

back the forecast parameters for showing prediction diagrams with the model of graphical prediction display. 

According to this architecture, we apply the open source framework to build the system prototype for online data 

process of precipitation. This framework can customize more reusable supports than enterprise commercial 

modules because plenty of free APIs reduce complexity in Web application software development. The system 

employs prediction components with flexible functionality and user-friendly interface. 

 

2.4 Online Decision Support for Real-time Prediction 

Online analytical processing (OLAP) has been embedded on the decision support system since early period 
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of network boom-up era (Chaudhuri and Dayal, 1997). It provides efficient functionalities with computation 

algorithm on the backbone of data warehouse to explore historical data. In this study, we propose the OLAP 

function as the online computation model to bridge the web and database servers for analyzing the precipitation 

data and risk assessment indexes beyond the real-time prediction. The risk indexes of the groundwater 

parameters for OLAP can be accessed with the database server while the monitored rainfall data are queried 

from the data warehouse. The procedure remains complex queries behind machine learning but presents simple 

data transactions through dynamic views in the data warehouse. The design implies the load balancing algorithm 

that spreads the load across multi-node Web servers and receives all requests from the frontends to achieve the 

scalability (Colajanni and Yu, 1997; Brendel et al., 1998). Bartra and Li (2007) recently configured of clustered 

Web services nodes for accessing a common database by implementing a data virtualization layer at each node to 

abstract instances and balance loads of the database from Web service applications. Herein, the proposed OLAP 

upon the MVC-based architecture design follows the similar concept: the Web server and database server would 

be independent but communicated with Web services and help optimizing the load balance between both servers 

to improve system integration and performance. 

Due to this approach, the system requests information diagrams for online decision support and prediction 

through light-weight data process to avoid laggardly accessing heavy data. The light-weight data such as risk 

criteria are transformed as Web services documents with XML standards while the heavy historical precipitation 

data are analyzed by the hydrological algorithm for machine learning. Hence, simple data transaction is remained 

in the Web server while necessary dynamic views or dimensional cubes are created in the data warehouse of the 

database server for complex data query. Hence the requirements for real-time efficiency and loading balance at 

the backend of system can be ensured on the Web and database servers. 

 

3. System Analysis and Design 

In order to approve the system design with the given methodology for the practical problems, we simulated 

rainfall data monitored by either the traditional equipments or WSN facilities settled in the landslide areas at 

Li-Shan, Taichung and Lu-Shan, Nantou, in Taiwan, for training historical precipitation data. 

 

3.1 Requirement Analysis 

Two stages are considered for training precipitation data: (A.) Execute machine learning with the daemon 

computation in server based on hydrological algorithms to feedback optimal parameters into database; (B.) 

process client data through OLAP by accessing the knowledge bank for decision support. The stage a presides 

over calculation in variety of historical records by simulation and analysis tools, and the stage B presents instant 

prediction results from dynamic view. 

In this study, the platform is designed at the backend of the monitoring system to receive surveillance data 

prior to database and conduct machine learning with the hydrologic analysis modules beyond the groundwater 

level prediction. Following approaches are considered: (1) Acquire monitored data from the surveillance stations 

with automatic control; (2) Administrate the data flow with integrity and transparency; (3) Practice online 

analysis with real-time computation; (4) Collaborate historical precipitation records with machine learning for 
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decision support; and (5) Customize management functions upon the expandable framework for further study. 

The proposed system requires to aggregate diverse precipitation data and a model of decision support is 

grouped by object-oriented modules. Based on MVC design, this functional model can be expanded due to 

advanced requirements and the controller can manage data interaction between client and server sites. In addition, 

the Web services provide mechanism of data transformation to integrate heterogeneous database. 

 

3.2 Infrastructure Design 

The collaboration diagram of the MVC-based architecture herein is controlled with four modules: “data 

access,” “computation,” “ETL,” and “risk analysis” to organize the knowledge bank model. The infrastructure is 

illustrated in Figure 3 that is implementing the objects shown in Figure 2. In the figure, the system design 

paradigm consists of MVC components with symbols of model, view and controller which are presented by the 

blocks of hexagon, rectangle and eclipse, respectively. Mutual supports for individual objects are activated by 

solid lines while analytical modules and Web services documents are correlated by dashed lines for accessing 

light-weight data. Behind this architecture, each component supplies unique functionality but works together to 

build a flexible and expandable web-based platform. The model library will be generated with the data 

warehouse of historical precipitation data for online computation. For example regarding Fig. 2 and Fig. 3, the 

“data access module” controls the models of “database connection,” “session data accessing,” and “Web services 

document conversion”; the “ETL module” manage “data warehouse accessing” and “data mining software 

adapting” models; the “computation module” conducts the models of “machine learning,” “groundwater level 

analysis,” and “hydraulic continuity computation”; the “risk analysis module” executes “precipitation 

evaluation” and “graphic prediction display” models as well as communicates with Web services log. All models 

will achieve integration of machine learning, data conversion, decision support, and online diagram below. 

 

3.2.1 Machine Learning 

The machine learning model provides hydrologic computation for training historical precipitation data. 

Based on the derived hydrological continuity formulation, we can simply to develop a computation module for 

solving the differential equations. Figure 4 depicts the algorithm with four major stages of data collection, raw 

data reduction, groundwater parameter calibration, and groundwater level forecasting to obtain feedback of the 

prediction parameters and complete risk analysis of the groundwater level. 

(1) Data collection – the precipitation and the groundwater level are recorded with the sampling interval of 

one or two hours. Geographic information including topography, location and depth of well, and location of 

rainfall station can be rendered to determine the groundwater datum. The suitable wells will offer obvious 

response when precipitation occurs. For this manner, we chose one well from the traditional monitoring station 

installed in Li-Shan area and one well from the WSN facilities installed in Lu-Shan area. 

(2) Raw data reduction – the raw data contain historical records. The storm with maximum cumulative 

precipitation volume will be the candidate sample for training. The proper groundwater level records of wells 

compared with each well are selected to present the relationship between groundwater level and precipitation. 

Finally, a series of training samples are obtained according to the chosen storm records. Herein, we selected the 
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precipitation data of the strong typhoon Haitang and Tailim during July and August in 2005 for study. 

(3) Groundwater parameter calibration – the calibration of a flow model refers to models with capability of 

producing field-measured heads and flows. In the proposed system, the groundwater level at the (i+1)th time step, 

say hi+1, is carried out by the computation module due to the derived differential equations, and the iteration is 

converged by the root mean square error (RMSE), Ep, as following equation: 
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where n is the number of records in a storm; hp
i+1 and hm

i+1 are the predicted groundwater level and the measured 

groundwater level at the (i+1) time step, respectively. The optimal approach will occur when the groundwater 

parameters yields the minimum RMSE. In this study, the selected precipitation data of typhoons were trained and 

the groundwater parameters were calibrated for simulation. 

(4) Groundwater level forecasting – the representative values of groundwater parameters are plugged into 

the iteration. The real-time groundwater level at the next time step can be estimated according to the 

precipitation depth and the groundwater level at the current time step till the RMSE reaches the convergent 

criteria. We used rainfall data of other typhoons, Matsa and Longwang, during August and September in 2005 to 

simulate real-time data and predict the groundwater level by using the parameters due to machine learning. 

Once the machine learning flow is completed, we can estimate the stability of hillslope by parameters of 

soil property such as friction angle, soil density, condensation force and consider the popular formula of factor of 

safety (FS) given below for the landslide criterion of risk analysis (Skempton and DeLory, 1957). 

 ( )
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where, hw is groundwater level (m), C is effective condensation force (N/m2), g is gravity (=9.81m/s2), φ is 

friction angle, θ is slope angle, D is thickness of soil layer (m), ρs and ρw are the saturation soil density and the 

water density (kg/m3), respectively. 

 

3.2.2 Web Services 

Due to the infrastructure, the functions of data conversion, decision support and online diagram are 

required to support Web services for presenting the prediction interface. 

A. Data Conversion 

The model loads instantaneously monitored data or historical precipitation data with ETL process into the 

data warehouse as well as supports uniform standard of data logs for machine learning or feedback of threshold 

tables. It follows several ways for data transaction: 1.) create connections to different database for routine data 

query; 2.) convert data files with compatible format for assistant software; 3.) transform reporting data as typical 

XML document through web services. For example, as considering surveillance data of Lu-Shan and Li-Shan 

areas, the historical precipitation records were imported into the data warehouse. The trained data were 

converted as unified format in the data logs and uploaded to the server. As activating the machine learning, the 

computation process was executed in daemon mode. A set of coefficients was created and saved in the criteria 
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log when the learning was completed. Then, the risk index table of groundwater level was updated by criteria 

and real-time rainfall data could be simulated by corresponding coefficients for online prediction process. Herein, 

these simulation results will be discussed in the next section. 

B. Decision Support 

We design the decision support model with efficient database algorithm to manipulate environmental 

assessment indexes and feedback for the knowledge bank. The database functions such as dynamic views or 

stored procedures, which allow triggering automatic data processing for data mining, can immediately respond 

assessment factors for decision making. Figure 5 shows the pseudo codes of model that queries hydrological data 

and categories them into various dimensions within the data warehouse. Meanwhile, the model supports the 

prediction formula to request the groundwater parameters from knowledge bank after the system is trained by 

historical precipitation records. Herein, the expected groundwater level can be estimated by several hours before 

the real-time rainfall data cause the level to reach the threshold. In this study, the criteria of groundwater level for 

Lu-Shan and Li-Shan were learned after precipitation data of typhoons were imported into database. Similarly, 

the newly monitored data can be loaded into the knowledge bank for next forecasting. 

C. Online Diagram 

The design of online diagram function for Web services implements free Java APIs, “jfreechart,” into the 

library of models for better performance for browsing decision support information on the Web-based system. 

The graphical chart of rainfall and groundwater level is created by either querying data source through database 

or parsing criteria from XML documents. With adaptive array data arrangement embedded within this model, the 

output chart controlled by Java Servlet is transformed as image data stream based on JPEG format through I/O 

interface. According to the system management, for instance, the result data and curves associated with decision 

diagram can be referred to the specified hillslope if the groundwater level reaches the critical index. 

In general, the machine learning model trains the historical precipitation data to attain the groundwater 

parameters. These coefficients can be adopted through Web services to simulate new rainfall data. The automatic 

transformation procedure is designed to process the schema of Web services efficiently while incorporating 

machine leaning results and real-time monitored data. 

 

4. Results and Discussions 

In the past years, typhoons often brought heavy precipitation to cause landslides in areas of Lu-Shan and 

Li-Shan, and lots of wells were mounted for different types of facilities to monitor the groundwater level. The 

topographies of Lu-Shan and Li-Shan are shown in Figure 6(a) and (b), respectively, in which the monitored data 

from the wells B03 (Lu-Shan) and B-9 (Li-Shan) are selected for this study. A suitable elevation was chosen as 

the virtual datum according to the records of groundwater level. The average depth is about 7.75m (B03) and 

19.52m (B-9) above virtual datum, thus, the similar groundwater depth condition is expected for all of the wells. 

In this practice, we loaded historical precipitation records of typhoons at hillslope of these areas into data 

warehouse for machine learning. Then, the real-time monitored rainfall datasets caused by new coming typhoons 

were used to examine the system design. In both areas, precipitation more than 100mm per day could happen 

about 7~8 times from May to September. Precipitation information of chosen landslide areas is described below. 
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(1) Lu-Shan: The precipitation with depth 486.5mm caused by typhoon Haitang during 18-31th July 2005 was 

selected for machine learning; then the rainfall data monitored from typhoon Matsa during 4-9th August in the 

same year were simulated for prediction. (2) Li-Shan: The precipitation with depth 287.5mm caused by typhoon 

Tailim from 26th August to 6th September in 2005 was adopted for training system; one month later, the rainfall 

data collected from typhoon Longwang between 26th September and 7th October were simulated for prediction. 

Table 2 Groundwater parameters and RMSE of wells 

RMSE(cm) 
Location Well no. K β n I 

Training Simulated (Ep) 
Max. Difference 

of G.W. Level 

Lu-Shan B03 -0.00601 2 3 34 13.82 18.68 10.68m 
Li-Shan B-9 -0.00076 3 5 16 6.53 49.4 3.35m 

The proposed system trains the historical precipitation data and restores the representative coefficients of 

groundwater with RMSE in the log files at Web server. Then, they can readily support for online simulation via 

Web services when new rainfalls happen. Table 2 displays the rise number I, the sink number K and other 

parameters for both wells in which the maximum difference of groundwater level (MDGL) is 10.68m (B03) and 

3.35m (B-9).  In general, the large rise number implies that the storm quickly raise the groundwater level under 

hillslopes while the small sink number induces the slow recession rate of groundwater level. Therefore, the large 

MDGL at Lu-Shan results from a fast rise speed with the large I as well as a fast sink speed with large -K, and 

vice versa for simulation at Li-Shan. With these parameters, the online diagram model allows the predictive 

curve of groundwater level at various time steps. The screen shots shown on Figure 7(a) and (b) display the plots 

of real-time rainfall distribution (bar) corresponding to comparison of the prediction (dash line) and monitored 

groundwater level (solid line) with similar approach. The diagrams of both hillslope areas explain that the 

groundwater level climbed up after the storm became strong; and then it reached the peak when the rainfall 

tended to be easy. Besides of real-time rainfall information, the decision support model forecasts the tendency of 

groundwater level a few hours before the monitored data reaches the threshold. 

We can simply substitute the predictive groundwater level into the formula given in Eq. (10) to estimate 

the factor of safety of landslide as the threshold. When the precipitation occurs, the arising rate of groundwater 

level is quite important for predicting how long to reach the threshold. In this study, the machine learning model 

trains historical precipitation to create proper rise number I and sink number K, and then the mechanism of Web 

services allows real-time data simulation for online prediction. Furthermore, these parameters can result in 

diverse criteria by training more types of rainfall data such as considering characteristics of local precipitation, 

duration of rain season, soil water potential of hillslope, or initial groundwater level. Therefore, the design of 

monitoring system is capable of real-time prediction for online hazard alert. 

 

5. Conclusion Remark 

This study accomplishes the backend design of an environmental monitoring system with MVC-based 

architecture which incorporates on-site monitored data and historical precipitation records for engineering data 

warehouse as well as implements online analytical processes for predicting the groundwater level under hillslope. 

The primary components of the platform backend involve reusable models of machine learning and Web services 

to approve capability of real-time prediction for risk assessment and decision support. With practical field tests, 
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the objectives are reached as follows: 1) predict the groundwater level by simulating rainfall data with machine 

learning; 2) employ Web services for processing real-time risk assessment information; 3) generate the 

infrastructure of engineering data warehouse upon MVC-based architecture for dispersed data resource; 4) 

administrate the monitoring system with remote control mechanism for virtual centralized management. In the 

future, the developed real-time functions for predicting groundwater level fluctuation can help enhance analysis 

of stability of hillslope. 

 

Acknowledgement 

The author would like to thank the research support from China Medical University (project number 

CMU95-199 and CMU96-153) and the National Science Council of the Republic of China (project number 

98-2625-M-451-001). 

 

References 

1. Ahmadi, S.H., & Sedghamiz, A. (2007). Geostatistical Analysis of Spatial and Temporal Variations of 

Groundwater Level. Environmental Monitoring and Assessment, 129, 277-294 

2. van Asch, Th.W.J., Buma, J., & Van Beek, L.P.H. (1999). A view on some hydrological triggering systems 

in landslides. Geomorphology, 30, 25-32. 

3. Batra, V.S., & Li, W.S. (2007). Web services database cluster architecture. U.S. Patent Publication, US 

0203944 A1. 

4. Bhark, E.W., Small E.E. (2003). Association between plant canopies and the spatial patterns of infiltration 

in shrubland and grassland of the Chihuahuan Desert, New Mexico. Ecosystems 6, 185–196. 

5. Brendel, J., Kring, C.J., Liu, Z., & Marino, C.C. (1998). World-wide-web server with delayed 

resource-binding for resource-based load balancing on a distributed resource multi-node network. United 

States Patent 5774660. 

6. Caris, J.P.T., & van Asch, T.W.J. (1991). Geophysical, geotechnical and hydrological investigations of a 

small landslide in the French Alps. Engineering Geology, 31 (3-4), 249-276. 

7. Chaudhuri, S., Dayal, U. (1997). An Overview of Data Warehousing and OLAP Technology. ACM 

SIGMOD Record, 26(1), 65-74. 

8. Chow, V. T., Maidment, D.R., & Mays, L.W. (1988). Applied hydrology, McGraw-Hill, Singapore, 

242-264. 

9. Colajanni, M., & Yu, P.S. (1997). Adaptive TTL schemes for load balancing of distributed Web servers. 

ACM SIGMETRICS Performance Evaluation Review, 25(2), 36-42. 

10. Foran, J., Brosnan, T., Connor, M., Delfino, J., DePinto, J., Dickson, K., Humphrey, H., Novotny, V., Smith, 

R., Sobsey, M., & Stehman, S. (2000). A Framework for Comprehensive, Integrated, Watershed 

Monitoring in New York City. Environmental Monitoring and Assessment, 24, 147-167. 

11. Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design Patterns: Elements of Reusable 

Object-Oriented Software. Addison-Wesley. 

12. Goodall, J.L., Horsburgh, J.S., Whiteaker, T.L., Maidment, D.R., & Zaslavsky, I. (2008). A first approach 



 13

to web services for the National Water Information System. Environmental Modelling and Software, 23, 

404-411. 

13. Hagemann, D. (1999). XML and JAVA: Engineering Software Development Meets Internet Technologies. 

Proceedings of the ASME Design Technical Conferences, Las Vegas, Nevada, 12-15. 

14. Hong, Y. M. (2008). Graphical estimation of detention pond volume for rainfall of short duration. Journal 

of Hydro-environment Research, 2, 109-117. 

15. Hong, Y. M. & Wan, S. (2010), Forecasting groundwater level fluctuations for rainfall-induced landslide, 

Natural Hazards, DOI: 10.1007/s11069-010-9603-9 

16. Hunt, R.J., Prudic, D.E., Walker, J.F., & Anderson, M.P. (2008). Importance of unsaturated zone flow for 

simulating recharge in a humid climate. Ground Water, 46(4), 551-560. 

17. Inmon, B., & Kelley, C. (1994). The Twelve Rules of Data Warehouse for a Client/Server World. Data 

Management Review, 4(5), 6-16. 

18. Inmon, W.H. (1996). Building the Data Warehouse, 3rd Ed. Wiley & Sons. 

19. Khan, S., Luo, Y., & Ahmad, A. (2009). Analysing complex behaviour of hydrological systems through a 

system dynamics approach. Environmental Modelling and Software, 24, 1363-1372. 

20. Causapé, J. (2009). A computer-based program for the assessment of water-induced contamination in 

irrigated lands. Environmental Monitoring and Assessment, 158, 307-314. 

21. Krasner, G.E., & Pope, S.T. (1988). A cookbook for using the model-view-controller user interface 

paradigm in Smalltalk-80. Journal of Object-Oriented Programming, 1(3), 26-49. 

22. Lee, L.J.E., Lawrence, D.S.L., & Price, M. (2006). Analysis of water-level response to rainfall and 

implications for recharge pathways in the Chalk aquifer, SE England, Journal of Hydrology, 330, 604-620. 

23. Li, W.D. (2005). A Web-based Service for Distributed Process Planning Optimization. Journal of 

Computers in Industry, 56 (3), 272-288. 

24. Mantovani, F., Pasuto, A., Silvano, S., & Zannoni, A. (2000). Collecting data to define future hazard 

scenarios of the Tessina landslide. Int’l J. Applied Earth Observation and Geoinformation, 2(1), 33-40. 

25. Maréchal, J.C., Dewandel, B., Ahmed, S., Galeazzi, L., & Zaidi, F.K. (2006). Combined estimation of 

specific yield and natural recharge in a semi-arid groundwater basin with irrigated agriculture. Journal of 

Hydrology, 329, 281-293. 

26. McDonald, M.G., & Harbaugh, A.W. (2003). The history of MODFLOW. Ground Water, 41, 280-283. 

27. Neaupane, K.M., & Achet, S.H. (2004). Use of backpropagation neural network for landslide monitoring: a 

case study in the higher Himalaya. Engineering Geology, 74, 213-226. 

28. Park, E., & Parker, J.C. (2008). A simple model for water table fluctuations in response to precipitation. 

Journal of Hydrology, 356, 344-349. 

29. Xing, L.T., Wu, Q., Ye, C.H., & Ye, N. (2009). Groundwater environmental capacity and its evaluation 

index. Environmental Monitoring and Assessment, DOI 10.1007/s10661-009-1163-7. 

30. Rob, P., & Cornel, C. (2005). Database Systems: Design, Implementation and Management, Ch12. Tomson 

Course Technology, 6th ed. 

31. Rushton, K. R., & Redshaw, S. C., (1979). Seepage and Groundwater Flow, 339. Wiley, Chichester, West 



 14

Sussex, UK. 

32. Shan, Y.P. (1989). An event-driven model-view-controller framework for Smalltalk. Conference 

Proceedings on Object-oriented Programming Systems, Languages and Applications. New Orleans, 

Louisiana, United States, 347–352. 

33. Shen, W., & Wang, L. (2003). Web-based and agent-based approaches for collaborative product design: an 

overview. International Journal of Computer Applications in Technology, 16 (2-3), 103-112. 

34. Skemptom, A. W., and Delory, F.A., (1957), Stability of natural slopes in London Clay, ASCE journal, 2, 

378-381 

35. Sophocleous, M. (1991). Combining the soil water balance and water level fluctuation method to estimate 

natural groundwater recharge: practical aspects. Journal of Hydrology, 124, 229-241. 

36. Stewart, R.A., & Mohamed, S. (2004). Evaluating web-based project information management in 

construction: capturing the long-term value creation process. J. Automation in Construction, 13 (4), 

469-479. 

37. Trigo, R.M., Zêzere, J.L., Rodrigues, M.L., & Trigo, I.F. (2005). The influence of the North Atlantic 

Oscillation on rainfall triggering of landslides near Lisbon. Natural Hazards 36, 331–354. 

38. Worm, G.I.M., van der Helm, A.W.C., Lapikas, T., van Schagen, K.M., & Rietveld, L.C. (2010). 

Integration of models, data management, interfaces and training support in a drinking water treatment plant 

simulator. Environmental Modelling and Software, 25, 677-683. 

39. Xiao, A., Choi, H.J., Kulkani, R., Allen, K.J., Rosen, D., & Mistree, F. (2001). A Web-based Distributed 

Product Realization Environment. Proceedings of ASME 2001 Design Engineering Technical Conferences, 

Pittsburgh, PA, USA, DETC00/ CIE-14624. 

 



 15

Figures 

overland flow

precipitation

evapotranspiration
infiltration

impervious layer

groundwater level
evaporation

 

Figure 1 Groundwater travel process from precipitation to stream 

 

Figure 2 – A model-view-controller components of the system 
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Figure 4 – The analysis procedure of machine learning algorithm 
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Figure 5 – Pseudo code for creating dimensions of hydrological data 

 

 

Figure 6(a) – Topographic map of landslide at Lu-Shan, Nantou, Taiwan 
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Figure 6(b) – Topographic map of landslide at Li-Shan, Taichung, Taiwan 
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Figure 7(a) – The online prediction approach of groundwater level at Lu-Shan 

 

 

Figure 7(b) – The online prediction approach of groundwater level at Li-Shan 

 


