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Pulsed-field gel electrophoresis (PFGE) is a standard typing method for isolates from Salmonella outbreaks
and epidemiological investigations. Eight hundred sixty-six Salmonella enterica isolates from eight serotypes,
including Heidelberg (n � 323), Javiana (n � 200), Typhimurium (n � 163), Newport (n � 93), Enteritidis
(n � 45), Dublin (n � 25), Pullorum (n � 9), and Choleraesuis (n � 8), were subjected to PFGE, and their
profiles were analyzed by random forest classification and compared to conventional hierarchical cluster
analysis to determine potential predictive relationships between PFGE banding patterns and particular
serotypes. Cluster analysis displayed only the underlying similarities and relationships of the isolates from the
eight serotypes. However, for serotype prediction of a nonserotyped Salmonella isolate from its PFGE pattern,
random forest classification provided better accuracy than conventional cluster analysis. Discriminatory DNA
band class markers were identified for distinguishing Salmonella serotype Heidelberg, Javiana, Typhimurium,
and Newport isolates.

Salmonellosis is an important public health issue (18); ac-
cording to the Centers for Disease Control and Prevention
(CDC), 800,000 to 4,000,000 cases of nontyphoidal Salmonella-
related illnesses occur annually in the United States (20). Sal-
monellosis is most often attributed to the consumption of con-
taminated foods, such as poultry, beef, pork, eggs, and fresh
produce. Knowledge of how Salmonella is disseminated
through the food chain is important in understanding how food
animals and/or food processing procedures contribute to prod-
uct contamination and to subsequent human infection by this
pathogen.

Traditionally, phenotypic methods such as serotyping have
been used for identification of Salmonella isolates in outbreak
investigations. However, phenotypic methods have limited util-
ity for epidemiologic analysis of Salmonella transmission be-
cause of their poor discriminatory ability for closely related
isolates (8, 17). Standard serotyping methods, which rely on
the detection of somatic (O) and flagellar (H) antigens present
on the cell surface of Salmonella, are tedious and time-con-
suming (10, 12). Genotyping methods have been developed for
genetic discrimination of Salmonella isolates in outbreaks.
Pulsed-field gel electrophoresis (PFGE) is a standard typing
method used in Salmonella outbreak investigations (6, 13, 17).
While it is also labor-intensive, many laboratories have used
PFGE to determine strain relatedness and to confirm out-
breaks of a bacterial disease. Thus, the ability to deduce the
serotype of a Salmonella isolate based on its PFGE profile

would be highly attractive, in that it would limit the need for
both PFGE and traditional serotyping. Liebana et al. (13)
analyzed several methods for molecular typing of five selected
serovars of Salmonella and indicated that serotypes of isolates
could be deduced based on PFGE patterns. Gaul et al. (7)
presented an analysis of 674 isolates from 12 Salmonella sero-
types that separated into 66 different XbaI PFGE subtypes.
The 66 subtypes could be separated into groups of specific
serotypes by cluster analysis. Thus, PFGE fingerprint profiling
can potentially provide an alternative method for screening
and identifying Salmonella serotypes.

Hierarchical cluster analysis is commonly used to group bac-
terial isolates with similar PFGE patterns to understand their
similarities and differences and to find or characterize the
relationships among isolates. The hierarchical clustering algo-
rithms form clusters in a hierarchical fashion, resulting in a
tree-like dendrogram. Cluster analysis of PFGE patterns is
typically performed by using software such as BioNumerics
(Applied Maths, Inc., Austin, TX). Hierarchical clustering is
an unsupervised clustering algorithm which does not use sero-
type information in the analysis. Classification is a supervised
analysis (4) and can be used to distinguish the serotypes of
samples based on their PFGE profiles. Supervised classifica-
tion analysis is considered more appropriate and efficient than
unsupervised analysis (hierarchical clustering tree) for predic-
tion/classification purposes (19). A classification algorithm is
developed from the available sample data set, with the ultimate
goal to accurately predict the serotypes of future samples, such
as those encountered during an outbreak. Typically, the avail-
able data are partitioned into a training set and a test set. The
classification algorithm is built from the training samples, and
then its prediction rule is applied to the test samples. Devel-
opment of a classification (prediction) model involves two
phases: (i) building a classification model, including determin-
ing the classification algorithm, identifying the most relevant
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PFGE features (bands), and fitting the prediction model to
training data; and (ii) assessing the performance of the predic-
tion model.

A classification model is a mathematical function con-
structed based on the training samples from the selected clas-
sification algorithm and the selected features that can discrim-
inate the serotypes. The objective is to search for a prediction
function and feature subset that minimizes the probability of
misclassification error. In the development of a prediction
model, the most important issue is the ability of the model to
predict the type of a future sample. To ensure an unbiased
assessment of accuracy, the prediction model is developed with
one (training) data set; the model is then applied to another
(test) data set to estimate the predictive accuracy. Cross vali-
dation is typically used to evaluate the performance of a pre-
diction model. Cross validation involves repeatedly splitting
the data, creating a training set containing most of the samples,
and applying the prediction rule to the test set, made up of the
remaining samples.

Supervised classification is the most widely used method for
analyzing pharmacogenomic data for safety assessment, dis-
ease diagnostics and prognostics, and prediction of responses
for patient assignment (4). Random forest classification has
recently been applied widely in genomic research (1). The
random forest method has been shown to be superior to clas-
sical classification algorithms, such as the �-nearest-neighbor
method and linear discriminate analysis (11), which require
preselection of the potential predictors to optimize the perfor-
mance. In this study, a classification algorithm for use in pre-
dicting Salmonella serotypes was developed by random forest
supervised analysis by directly modeling the relationships be-
tween the serotypes and PFGE banding patterns for eight
Salmonella serotypes. Since both PFGE and serotyping are
labor-intensive and serotyping requires reagents that are often
cost prohibitive, the purpose of this study is to present an
approach, as a complement to cluster analysis, for rapidly pre-
dicting the serotypes of unknown Salmonella isolates based on
PFGE fingerprinting analysis.

MATERIALS AND METHODS

Bacterial isolates. A total of 866 Salmonella enterica isolates from eight sero-
types were collected from food-producing animals, production facilities, and
clinical diagnostic samples and genotyped by PFGE during previous studies (5, 9,
14–16). Of the 866 isolates, the first 784 isolates were used to develop the
classification model for comparison with cluster analysis. An additional 82 iso-
lates were then added only for validation of the classification model. The 784
isolates consisted of eight Salmonella serotypes: Heidelberg (n � 322), Javiana
(n � 150), Typhimurium (n � 135), Newport (n � 91), Enteritidis (n � 44),
Dublin (n � 25), Pullorum (n � 9), and Choleraesuis (n � 8). The additional 82
isolates consisted of five Salmonella serotypes: Heidelberg (n � 1), Javiana (n �
50), Typhimurium (n � 28), Newport (n � 2), and Enteritidis (n � 1). When
isolates were used as validation, their serotype information was hidden to avoid
any potential bias.

Cluster analysis. The bacterial isolates were fingerprinted by the XbaI-PFGE
method, using the PulseNet protocol developed by the CDC (22). The gel images
were processed and analyzed by BioNumerics software. The images were nor-
malized by use of standard molecular markers, and banding patterns were com-
pared. Similarity analysis was performed using Dice coefficients, with a 1.0%
band position tolerance and 1.56% optimization, and isolates were separated
into similarity clusters by the unweighted-pair group method using average
linkages.

Classification. The random forest classification algorithm was used to distin-
guish the serotypes of samples based on their PFGE profiles (3). The PFGE
profiles of the 784 isolates, with 71 band classes of various sizes, were generated

using BioNumerics software. The 71 band classes were coded as 1 and 0, repre-
senting the presence and absence of a band, respectively. In the classification
analysis, the 784 PFGE profiles were partitioned into a training set and a
separate test set. The model development involved two phases: (i) building of a
classification model, including determination of the classification algorithm,
identification of the most relevant PFGE features (band classes), and fitting of
the prediction model to training data; and (ii) assessment of the performance of
the prediction model. The leave-one-out cross-validation (LOOCV) approach
was used in the analysis and to evaluate the performance of the prediction model.
This approach used a single observation from the original sample as a test datum
and the remaining observations as the training data. This was repeated such that
each observation in the sample was used once as the test datum. The predictive
error was calculated as the proportion of misclassification.

The classification model, developed based on 784 isolates, was further vali-
dated using 110 Salmonella isolates as test samples. This set contained 28 isolates
from S. Heidelberg (n � 17) and S. Enteritidis (n � 11), randomly selected from
the isolates of these serovars present in the training set, and 82 isolates belonging
to five trained serotypes but not initially included in the training set. For the
testing, all 110 isolates were provided in a serotype-blinded format to minimize
the potential for bias.

Identification of discriminatory markers for four serotypes. Additional clas-
sification analysis was performed to identify those PFGE features associated with
the Salmonella serotypes Heidelberg, Javiana, Typhimurium, and Newport. Only
the four largest serotype groups were analyzed. Classification analysis of S.
Heidelberg isolates versus non-S. Heidelberg isolates was performed to identify
S. Heidelberg-specific markers. In LOOCV, the ranking of each band class was
recorded when the left-out sample was classified accurately. The five highest-
ranked band classes were the S. Heidelberg-specific markers. The S. Javiana-
specific, S. Typhimurium-specific, and S. Newport-specific markers were identi-
fied similarly.

For each band class identified, a measure of association between the band class
and the serotype was computed by comparing the observed number of bands (O)
to the expected number (E) under the (independent) model that the band class
was not associated with any serotypes. Specifically, if the band class was not
associated with any serotypes, then the number of bands observed for the sero-
type would be proportional to its sample size. The proportions of the sample
sizes for the four serotypes are as follows: Heidelberg, P � 322/784 � 0.411;
Javiana, P � 150/784 � 0.191; Typhimurium, P � 135/784 � 0.172; and Newport,
P � 91/784 � 0.116. If T is the total number of bands observed in a band class,
then the expected numbers of bands are as follows: Heidelberg, E � 0.411 � T;
Javiana, E � 0.191 � T; Typhimurium, E � 0.172 � T; and Newport, E �
0.116 � T. The ratio of the observed number of bands over the expected number
was computed as a measure of the association between serotype and band class.
An O/E ratio of 1 implies no association, while a ratio of �1 indicates overrep-
resentation and one of �1 indicates underrepresentation. For example, for the
188-kb band class, the total number of isolates observed was 518. The observed
number of bands of serotype Heidelberg was 319, and the expected number was
518 � 0.411 � 212.8; the O/E ratio was 1.50, indicating overrepresentation. The
O/E ratios of the five top-ranked band classes were computed for each of the four
serotypes.

RESULTS

Cluster analysis. Eight major clusters were identified at a
similarity level of 54%. Figure 1 shows a simplified dendro-
gram obtained with the results of cluster analysis for the 784
isolates. The eight clusters, A, B, C, D, E, F, G, and H, com-
prised mainly the isolates of Salmonella serotypes Enteritidis,
Heidelberg, Dublin, Pullorum, Newport, Newport, Javiana,
and Typhimurium, respectively. Both clusters E and F were
predominantly S. Newport isolates. Many minor tree nodes
with 1 to 3 isolates could not be grouped within a serotype
cluster, and also, many isolates were grouped incorrectly into a
different serotype cluster. To summarize, 32 isolates did not
fall into one of the predominant serotype clusters, including
isolates of S. Heidelberg (n � 3), S. Javiana (n � 5), S. Typhi-
murium (n � 9), S. Newport (n � 4), S. Enteritidis (n � 7), and
S. Dublin (n � 4). In addition, 8 isolates of S. Choleraesuis
were grouped in S. Heidelberg cluster B, 9 isolates of S. En-

VOL. 48, 2010 PFGE FOR IDENTIFICATION OF SALMONELLA SEROTYPES 3123



teritidis were grouped in S. Dublin cluster C, and 87 of 91
isolates of S. Newport were separated into clusters E and F.

Classification analysis. Table 1 shows the results of the
classification analysis using the random forest algorithm. The
numbers on the diagonal show the correct classification for

the eight serotypes. The overall accuracy rate was 96.3%. The
number of misclassified isolates for the eight serotypes was 29,
including isolates of Salmonella serotypes Heidelberg (n � 2),
Typhimurium (n � 5), Newport (n � 5), Enteritidis (n � 9),
Dublin (n � 5), Pullorum (n � 1), and Choleraesuis (n � 2).
The supervised classification approach was able to distinguish
six of the eight isolates of S. Choleraesuis from those of S.
Heidelberg, while the hierarchical cluster analysis grouped
these two serotypes together (cluster B) (Fig. 1). Classification
by the random forest approach correctly identified 86 of 91
isolates of S. Newport, with most of them grouped in clusters
E and F by hierarchical clustering.

The classification model developed with the 784 isolates was
applied to 110 Salmonella isolates for further validation. Of
these, the 28 resampled serotype-hidden isolates of S. Heidel-
berg and S. Enteritidis from the original 784 isolates were
classified accurately, as expected (see Table SA in the supple-
mental material). For the 82 additional isolates whose sero-
types were hidden, the prediction accuracy was 93.9% (77/82
isolates) (see Table SB in the supplemental material), which is
slightly lower than the 96.3% accuracy rate estimated from the
LOOCV analysis (details are given in Tables SB and SC in the
supplemental material).

Identification of discriminatory markers for four serotypes.
Table 2 lists the five top-ranked discriminatory PFGE band
classes identified for each of four serotypes. The prediction
accuracies were 99.5%, 99.0%, 98.6%, and 98.7% for S. Hei-
delberg, S. Javiana, S. Typhimurium, and S. Newport, respec-
tively. The O/E column shows the association measure of over-
representation or underrepresentation between the band class
and its corresponding serotype, with an O/E ratio of �1 indi-
cating overrepresentation of the bands for the serotype and a
ratio of �1 indicating underrepresentation. Because of inter-
dependent classes among the bands, the most discriminatory
band class does not necessarily have the largest (or smallest)
O/E ratio (see Discussion). All five top-ranked markers were
overrepresented for S. Heidelberg. For S. Typhimurium, S.
Newport, and S. Javiana, the five top-ranked markers con-
tained both overrepresented and underrepresented band
classes. The 188-kb and 181-kb marker bands were overrepre-
sented markers for S. Heidelberg and underrepresented mark-
ers for S. Typhimurium. In general, if a band class is a marker
for two serotypes, it will be an overrepresented marker in one
serotype and an underrepresented marker in another serotype.

DISCUSSION

Traditional Salmonella serotyping is time-consuming and re-
quires specialized skills and reagents. Wise et al. (21) devel-
oped a laboratory method utilizing repetitive sequence-based
PCR to predict Salmonella enterica serotypes, while several
others have reported a good correlation between PFGE pat-
terns and Salmonella serotypes (2, 7, 13). Gaul et al. (7) sug-
gested using hierarchical cluster analysis of PFGE with XbaI
restriction as a possible alternative method for screening and
identifying Salmonella serotypes. The current work shows that
supervised random forest classification analysis provides a
more efficient alternative method for determining Salmonella
serotypes than conventional hierarchical cluster analysis.

Hierarchical cluster analysis is generally considered to be

FIG. 1. Cluster analysis of XbaI-PFGE fragment patterns of 784
Salmonella isolates at a 54% similarity level. The dendrogram shows a
simplified tree structure for 784 isolates from eight serotypes. The
numbers in parentheses indicate the numbers of isolates in branches or
leaves. There are eight major clusters: S. Enteritidis (A), S. Heidelberg
(B), S. Dublin (C), S. Pullorum (D), S. Newport (E), S. Newport (F),
S. Javiana (G), and S. Typhimurium (H).
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unsupervised in the sense that the isolates are grouped based
only on the pairwise similarities among their PFGE profiles,
without using serotype information. The dendrogram itself
does not define a specific set of disjointed clusters that can be
correlated with serotype; typically, the cutting of the dendro-
gram to form clusters (Fig. 1) is based on subjective visual
analysis. Cluster analysis generally does not attempt to study
the correlation between PFGE profiles and serotypes. It only
arranges the isolates into subsets with similar PFGE profiles to
distinguish their underlying phylogenetic structures or to dis-
cover new subtypes. Figure 1 suggests that the isolates of S.
Newport consist of two subserotypes and that the isolates of S.
Choleraesuis have similar profiles to those of some isolates of
S. Heidelberg.

To predict serotypes from PFGE profiles, the supervised
classification approach uses serotype information to optimize

predictive accuracy. In developing the prediction model, a clas-
sification algorithm identified a subset of discriminatory bands
of various sizes (second column in Table 2). A discriminatory
marker set consists of those bands that are unique for charac-
terization of one serotype. Therefore, in cases where two vari-
able bands contribute equally to the same serotype, only one
would normally be selected if the inclusion of another band
does not increase the accuracy. The discriminatory ability of a
selected band marker for its corresponding serotype relies not
only on the percentage of this band found in all isolates with
the same serotype but also on the percentage of this band not
found in other serotype isolates. As described in Results, a
band with an O/E ratio of �1 indicates that this band is over-
represented for the serotype, which means that this band ap-
peared more often in the PFGE band profiles of this serotype
than in those of others, and vice versa. A discriminatory band
class usually has an O/E ratio of much more than 1 or much
less than 1 (last columns in Table 2). The discriminative ability
and O/E ratio are related but not equivalent. For example, as
shown in Table 2, the band at 188 kb is predicted to be a
marker for S. Heidelberg, but its O/E ratio of 1.5 is smaller
than that of the second-ranked band class, 621 kb, with an O/E
ratio of 2.0. This is probably because 518 of 784 (66%) isolates
from the eight serotypes had this band, while 99% (319 of 322
isolates) of S. Heidelberg isolates shared this band. Conversely,
only 90% (291 of 322 isolates) of S. Heidelberg isolates were
found to have the band of 621 kb in their PFGE profiles (Table
2). This work shows the results of marker prediction only for
Salmonella serotypes Heidelberg, Javiana, Typhimurium, and
Newport. The predictions for the remaining four serotypes
could not be validated because of the small sample sizes. Even
for the four marker sets presented, the underrepresented
markers identified may change when more samples are ana-
lyzed. Therefore, while the results in the current study are
promising, future prediction models will require more data
from additional Salmonella serotypes that are associated with
human infections.

This study involved 866 isolates from eight serotypes. The
classification model was developed from and the results are
applicable only to isolates from these eight serotypes, since the
model was trained only on them. Isolates which are not from
one of the eight serotypes will be misclassified. The random
forest algorithm can be expanded to include more serotypes in

TABLE 1. Classification analysis of XbaI-PFGE fragment patterns of 784 Salmonella isolates
by the random forest method, based on LOOCVa

Predicted serotype
True Serotype

Heidelberg Javiana Typhimurium Newport Enteritidis Dublin Pullorum Choleraesuis

Heidelberg 320 0 0 1 2 1 0 2
Javiana 1 150 1 1 1 0 0 0
Typhimurium 1 0 130 3 3 3 1 0
Newport 0 0 1 86 3 1 0 0
Enteritidis 0 0 3 0 35 0 0 0
Dublin 0 0 0 0 0 20 0 0
Pullorum 0 0 0 0 0 0 8 0
Choleraesuis 0 0 0 0 0 0 0 6

Total (n) 322 150 135 91 44 25 9 8

a LOOCV, leave-one-out cross-validation.

TABLE 2. Five top-ranked band classes for S. Heidelberg,
S. Javiana, S. Typhimurium, and S. Newport

Serotype (n) Band size
(kbp)

Total no.
of bands O E O/Ea

S. Heidelberg (322) 188 518 319 212.8 1.5
621 360 291 147.9 2.0
206 285 264 117.1 2.3
181 466 313 191.4 1.6
78 546 318 224.3 1.4

S. Javiana (150) 477 201 93 38.5 2.4
196 120 101 23.0 4.4
94 161 1 30.8 0.0

281 194 118 37.1 3.2
167 114 83 21.8 3.8

S. Typhimurium (135) 188 518 11 89.2 0.1
43 172 103 29.6 3.5

746 107 83 18.4 4.5
181 466 7 80.2 0.1
373 195 88 33.6 2.6

S. Newport (91) 104 123 71 14.3 5.0
305 185 70 21.5 3.3
999 45 33 5.2 6.3
36 150 59 17.4 3.4

266 415 2 48.2 0.0

a An O/E ratio of 1 implies no association, a ratio of �1 indicates overrepre-
sentation, and a ratio of �1 indicates underrepresentation.
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the training model, for example, isolates from the top 10 or top
20 most frequently reported Salmonella serotypes. However,
considering that there are more than 2,500 serotypes of Sal-
monella in the world, it is impossible to cover all serotypes due
to data limitation. One remedy is to create an “unknown”
group for isolates from minor serotypes. An additional 28 new
isolates, from Salmonella serotypes Agona, Albany, Branden-
burg, Bredeney, Derby, Infantis, London, Mbandaka, Montevi-
deo, Muenchen, Ohio, Worthington, and Anatum, with 1 to 3
isolates per serotype, were further evaluated. The isolates that
were not from one of the serotypes in the training set (Table 1)
were classified into a new, “unknown” group. Eleven of the 28
isolates with unknown serotypes were predicted correctly (see
Table SC in the supplemental material). The percentage of
misprediction of nontrained serotypes will decrease with in-
creasing data size for each serotype in the training group.

The purpose of this paper was to propose a classification
approach for more efficient and accurate prediction of sero-
type and identification of discriminatory markers. Although
the traditional serotyping method is still the fundamental so-
lution for serotype identification, the application of random
forest classification to PFGE data should provide a good tool
for predicting serotype. The classification approach should be
considered a complement to cluster analysis, which maintains
wide applicability for bacterial phylogenetics. Additionally,
based on the study results, unsupervised cluster analysis can
provide clues to serotype identity and supervised classification
analysis then complements these results to provide further
serotype confirmation. These conclusions concur with those of
Gaul et al. (7), who suggested that “when unable to serotype by
conventional methods, PFGE would be a possible alternative
in serotype determination or may be used to screen isolates for
possible serotypes before actual serotyping.” While the results
presented in this study include representatives of the top 5
Salmonella serovars associated with human disease in the
United States (http://www.cdc.gov/ncidod/dbmd/phlisdata
/salmtab/2006/SalmonellaTable1_2006.pdf), further predictive
models that may be developed based on a larger data set,
including more isolates representing various serotypes in-
volved in food-borne disease and outbreaks, should lead to
further refinement in both model development and validation.
The method potentially also has the ability to classify isolates
that are “untypeable” based on conventional serotyping. Since
random forest classification is based on the genotype rather
than on expression of surface antigens, the isolates could be
differentiated into unique groups for classification.
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