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Predator—prey model with disease infection in both populations
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A predator—prey model with disease infection in both populations is proposed to account for the possi-
bility of a contagious disease crossing species barrier from prey to predator. We obtain several threshold
parameters from local analysis of various equilibria of the proposed system as well as coupled conditions
on these threshold parameters which determine the stability of these equilibria. One of the coupled condi-
tions, in the form of an ecological threshold number for the predator—prey ecosystem, always determines
the coexistence of predators and prey. The other condition, in the form of a disease basic reproduction
number, dictates whether the disease will become endemic in the ecosystem. Under one combination of
these coupled conditions, a highly infectious disease could drive the predators to extinction when preda-
tors and prey would have coexisted without the disease. For another combination of the conditions, the
predation of the more vulnerable infected prey could cause the disease to be eradicated in the ecosystem,
in some case even approaching a disease-free periodic solution, when the disease would have otherwise
remained endemic in the prey population in the absence of predation. This indicates that the presence
of disease in both predators and prey could either promote or impair coexistence, and its precise impact
needs to be explored specifically in each particular situation. By considering disease infection in both
populations, our model also yields more complex dynamics, allowing for the possibility of bistability and
periodic oscillation, in either disease-free or endemic states, in the ecosystem for which the conditions
are obtained analytically and with the help of numerical simulations.

Keywords species barrier; predator—prey coexistence; ecological threshold parameter; disease basic
reproduction number; positive equilibrium; periodic oscillation.

1. Introduction

Infectious diseases have been known to be an important regulating factor for human and animal popu-
lation sizes. In particular, for predator—prey ecosystems, infectious diseases coupled with predator—prey
interaction to produce a complex combined effect as regulators of predator and prey sizes. In many
ecological studies of predator—prey systems with disease, it is reported that the predators take a dispro-
portionately high number of parasite-infected prey (&an Dobben 1952 Vaughn & Coble 1975
Temple 1987. Some studies have even shown that parasite could change the external features or
behaviour of the prey so that infected prey are more vulnerable to predation (sedeely.1970Q
Holmes & Bethel 1972 Schalley 1972 Krebs 1978 Dobson 1988 Peterson & Pagel 988 Moore
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2002. For a concise and lucid discussion on this subject, the readers are refetiethtmteet al.
(2004.

Previous modelling studies of predator—prey system with infected prey include, among others,
Anderson & May(1986, Hadeler & Freedma(1989, Venturino(1994 1995, Chattopadhyay & Arino
(1999, Hanet al. (2007 andHethcoteet al. (2004). In particular,Hethcoteet al. (2004 proposed a
predator—prey model with logistic growth in prey to include a susceptible-infective-susceptible (SIS)
infection with standard incidence in prey population with the infected prey being more vulnerable to
predation. They discovered several interesting cases where the disease infection in prey could promote
coexistence. For example, under certain parameter values, the greater vulnerability of the infected prey
allows the predator population to persist when it would otherwise become extinct. Moreover, there is a
case where predation on the more vulnerable prey can cause the disease to die out when it would remain
endemic without the predators.

Most of these previous studies focussed mainly on parasite infection and in prey only, although some
studies did consider infection of predator through eating prey fmderson & May 1986 Hadeler &
Freedman1989 Venturing 1994 or spread of disease in the predatdver(turing 2002. Venturino
(2007 also studied the dynamics of two competing species when one of them is subject to a disease,
but the disease cannot cross the species barrier. However, the recent outbreaks of severe acute respi-
ratory syndrome (SARS) and animal-to-human transmission of avian influenza (H5N1) demonstrated
the possibility of infectious disease caused by a microorganism crossing the species barrier between
different species by enlarging its host rangfdefnpner & Shapirp2004), including that of between
prey and predator populatiortslempner & Shapird2004 made further distinction between what they
termed as ‘small step to man’ and ‘giant leap to mankind’. The former describes a minor alteration
in the microorganism’s host range resulting in intermittent human infections without human-to-human
transmission as in the 1997 H5N1 avian influenza outbreak that occurred in Hong Kong that results in
six fatal cases including young infantgl¢slin et al, 2001), while the latter describes the dreaded sce-
nario of pandemic spread of the disease among humans (e.g. the feared human-to-human transmissible
mutation of H5N1 leading to a global avian influenza pandemic). The recent SARS coronavirus presents
a ‘middle ground’ of the two extremes crossing from animals to human host with limited (or inefficient)
human-to-human transmission. The potential threat of an influenza pandemic also led to recent inter-
est in scientific research to understand how and why some pathogens become capable of crossing host
species barrierKiken et al,, 2009.

Hadeler & Freedmafil989 had previously studied a predator—prey model with parasite infection
where the disease is allowed to cross the species barrier. Moreover, assuming that the predators could get
infected by eating prey and the prey could obtain the disease from parasites spread into the environment
by predators, they obtained a threshold condition above which an endemic equilibrium or an endemic
periodic solution could arise in the case where there is coexistence of the predator with the uninfected
prey. Furthermore, they also showed that in the case where the predator cannot survive only on the
prey in a disease-free environment, the parasitization could lead to persistence of the predator since the
predators could only survive on the prey if some of the prey were more easily captured due to being
diseased, provided a certain threshold for disease transmission is surpassed.

In this present work, our aim is to study the scenario where a small step is taken from prey to preda-
tor, to paraphrasklempner & Shapirq2004), where the predators can be infected upon contact with or
being in the close vicinity of an infected prey during the process of predation, but the predators cannot
infect each other. To further explore this hypothetical scenario of disease spreading among predators
during the process of predation, we introduce a predator—prey model with logistic growth, SI mass ac-
tion disease incidence in prey and infection of predators from infected prey. The predation is modelled
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by Holling type-Il functional response with saturation of the infected predators. A similar idea was also
exploited inVenturino(2006 on disease in interacting species models.

The paper is organized in the following manner. The proposed ‘small-step’ model is given in
Section2. In Section3, we briefly discuss the disease-free model, including a case where a unique
globally orbitally stable limit cycle exists. Analysis of the full model will be given in SectloSection
5is devoted to discussion on two disease basic reproduction numbers and three ecological threshold pa-
rameters which we had obtained analytically and on how these threshold parameters combined to give
biologically meaningful conditions for the various ecologically plausible scenarios. Finally in Section
6, we provide numerical simulations to discuss some biologically interesting cases our model is able to
exhibit.

2. The model

Let S(t), I (t), P1(t) andP.(t) be the total sizes of susceptible prey population, infected prey popula-
tion, susceptible predator population and infected predator population, respectivelytgtre time
variable. We list the key assumptions of our model as follows:

(A1) The susceptible prey follows logistic growth. Infected prey does not reproduce, but uses re-
sources and so contributes to self-regulation in the predator—prey dynamics.

(A2) The disease is not transmitted horizontally or vertically in predators. The infected prey do not
recover or become immune.

(A3) The incidence of prey is given by simple mass action law.

(A4) The predator functional response obeys the Holling type-Il curve.

(A5) Growth rate of predatorB; is proportional to their predation of healthy prey.

(AB) The infection of predators occurs during the process of predation, i.e. either during capturing,
handling, consumption or by simply being in close vicinity of an infected prey, and hence is
proportional to the predation of infected prey.

(A7) ‘No recovery or immunity for infected predators’.

(A8) Thereis noreward for a predator to handle or catch an infected prey, other than getting infected.

(A9) The infected prey is more likely to be caught than the healthy ones, and the infected predators
are more likely to die than the healthy ones.

For our model, the infected predatoPs do not reproduce. Moreover, they arise only from the
susceptible predator cla8s through infection while in the process of predation that occurs at apate
proportional to the rate of predation of susceptible predators on infected prey. Thus, infected predators
could conceivably arise even if that subpopulation cRswas initially zero as it is bound to occur when
a disease initially crosses the species barrier. The form of incidence of infection of predators is the same
as the form of the functional response describing the predation rate since the infection is transmitted
only by contact with infected prey during the process of predation.

Under the above assumptions, we have the following model equations, with the model flow diagram
given in Fig.1:

S+1 1S
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FiG. 1. The flow diagram of the model.
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Here,"”’ stands ford—dt, and the model parameters are given as follawdenotes the growth rate
of the prey,K denotes the carrying capacity, denotes the death rate bf 111S is the incidence of
infection of prey andlz(lJr'T) Py is the incidence of infection of predators, respectively. Moreaser,
anday are the respective half saturation ratesSaind | , y1 andy, are the respective death rates of
P1 and P2, a1 anda> are the respective search rates of the susceptible and infective pref/ands
the conversion coefficient d?;’. For the sake of simplicity, we have not included a term for natural
death of susceptible prey in the first equation since the death r&eai be easily incorporated in the
growth rater of S, with an appropriate adjustment for the definition of carrying capaityNote that
all model parameters are positive. Moreover, to be consistent with the biological assumption (A9), we
know a1 < a2 since the infected prey is more likely to be caught than the healthy oneg aqdy,

since the infected predators are more likely to die than the healthy ones.

3. The disease-free case

We first consider the disease-free case. That is, we consider sy&Bmwith | = P> = 0 which is

given as follows:
S S
S=rS|1-—) - P
(%)= (7as) ™

Pi=s

Analytical results for this system are described below, with the proofs given in the appendix. The first
equation is well known (e.dMay, 1973 p. 190). Considered together with the second equation, system
(3.2 has at most three equilibria. We first consider the local stability of each equilibrium. The Jacobian

—— ) P1 — y1P1. 3.1
1+a15) 1= P (3.1)



DISEASE INFECTION IN PREDATORS AND PREY 251

matrix of (3.1) is given by

of1 of1 2S a1 P1 1S
2ls Py (P 1-=2)r - -
A as > P o5 (S Py (1-) (1+a19)?2 1+aS
(SPy) = =
ofo ofo pP1 pS
225 Py —2(sP s =
68( , P1) aPl( , P1) 1+ aS? 1+ a.s 71

The equilibria of the system are discussed below.

(1) Trivial equilibrium: Eg = (O, 0).
Since the eigenvalues of the JacobiarEgtr and—y, are both positive,Eg is a saddle point
with stable manifold given by(0, P1): P, > 0}.

(2) Boundary equilibriumEg = (K, 0).
It is easy to show that if we leR; = then Ep is locally asymptotically stable if

and only if Ry < 1. We have the foIIowmg gﬁobal result regarding the stability of the boundary
equilibrium Eg.

LEMMA 3.1
() If Ry < 1, thenEg is globally asymptotically stable foB(1).

(i) If Ry > 1, thenEg is unstable for3.1) and the positive equilibriunk* exists.
(i) If Ry =1, Eg is globally asymptotically stable foB(1).

(3) Interior equilibrium:E* = (S*, P}), with (S, P}) = (ﬁ e (1= )1+ a1 S).
We have the following stability result whery > 1.

LEMMA 3.2
O fl<R<1+ m thenE* is locally asymptotically stable foB(1).
(i) If Ry > 1+ a10TaK) thenE* is unstable for3.1).
i) f Rp=1+ a10TaK) thenE* may be either a centre or a spiral point f8rl).
We now give two theorems pertaining to the global stability of the positive interior equilib-
rium E*.

THEOREM3.3 If1 < Ry <1+ thenE* is globally asymptotically stable foB(1).

B
a1y1(IH+a1K)?

THEOREM34 If Ry > 1+ %K) thenE* is unstable for3.1) and the systenB(1) has a
unique limit cycle which is gjlolbally orbitally stable.

In particular, the case where an orbitally stable limit cycle existS Rrplane will be important in
the later discussion of the full model. We summarize our results in TatNete thatEg is unstable for
all cases and hence omitted from Table

4. The model with disease

We now proceed to consider the full 4D model in systéni)( which has as many as five equilibria,
depending on the parameter values. We can divide these five equilibria into three types: trivial, boundary
and positive interior equilibria. First, we consider the local stability of the trivial equilibrium and the
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TABLE 1 Asymptotic states for disease-free predator—pneylel

Case Eg = (K, 0) E* = (S, Pl*)

R <1 GAS —

1< R <1+ p/a1y1(1+ 1K) unstable GAS

Ry > 1+ B/a1y1(1+ a1K) unstable unstable)

Note: ‘GAS’ denotes that equilibrium is globally asymptotically stable; ‘—' denotes

that equilibrium does not exist and)( denotes that there is a unique limit cycle that is
globally orbitally stable.

boundary equilibria. Note that all equilibria in the 4D system are boldfaced to distinguish them from the
equilibria of 2D disease-free model. The Jacobian matri2di) (s given by

[ _ 2S5+ _ _ 0!1(P1+P2! _(r _ a1S _ a1S ]
r(1 ) — Al (1892 (& +41)S T+a;S T+a;S
_ap(Pi+Py) _ ool __azl
A 2l 7S = Ty T H Ttapl Ttapl
(S,1,P1,P2) = 5P APy BS _ _Z2l 0
(1+a19)? (It+agl)2 T+a;Ss — 717 Ttayl
JoPy ol _
L 0 (tagl)2 Tragl 72 |

We then have the following results on the equilibria of syst2r)(

(1) Trivial equilibrium:Eg = (0, 0, 0, 0).
It is trivial to show thatEg = (0, 0, 0, 0) always exists but is unstable fdt.().
(2) Three boundary equilibria.

Subcase (iEg = (K, 0,0, 0) is the axial equilibrium orB-axis with healthy prey only, which
always exists.

LEMMA 4.1 LetRy = %

() If Rp <1andR; < 1, thenEg is locally asymptotically stable fo2(2).
(i) If Rp > 1orRy > 1, thenEg is unstable forZ.1).
(iii) In all other situation, we need to investigate further.

Subcaséii) Eg = (S, 1, 0, 0) is the boundary equilibrium o8 I-plane with endemic prey pop-
ulation only.

LEMMA 4.2 LetRy > 1andR; = TIPSR

. = Jol = . .
) FRL <1+ i thenEg is locally asymptotically stable fo2(1).

.. = Jol = .
(i) f R >1+ y1(1+a2T)’thenEB is unstable forZ2.1).

(iii) In all other cases, we need to investigate further.

Subcase (ii)Eg = (S, 0, Py, 0) is the boundary equilibrium o R-plane with disease-free
coexistence of predators and pr&y.and P} are as defined in Sectidh
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LEMMA 4.3 LetR} = %
1

() fRy<landl< Ry <1+
(2.2).
(i) If Ry>1orRy > 1+ m thenEg is unstable forZ.1).
(i) In all other situations, we need to investigate further.

Wﬁra%K)' thenEg is locally asymptotically stable for

The proofs of Lemmag.1-4.3are given in the appendix.

Positive interior equilibriun = (S, T, Py, P2) with endemic coexistence.

We have the following result on the existencemfalso proved in the appendix.

LEMMA 4.4 Letﬁl (1—+§ If SsatisfiesS < SandS+1 < K andifl < R1 <1+ aiil

S(B—a1y1) -1

= (S 1, P, Py existsandis a pOSItIl/e equmbrlum df. (1) with T _N/Iz(l+a18)—a2[3(/ﬁ’—a1y1)—y]]’
andP, = 2 (s L ) Pr.

= ZaS- WA+ aD[1+ 2(50)] Tragi

Note that whern(f —ayy1) — 42 = O, the positive equiIibrlum is unique, otherwise the uniqueness
of E is determined by the sign of — 4acwhich is difficult to determine. Moreover, the stability

of E, when it exists, is difficult to analyse. We will make use of numerical simulations to discuss
the possible cases.

5. Ecological and disease threshold parameters

We first discuss the biological significance of the five threshold parameters obtained, each of which has
clear and distinct biological meaning.

@)

(b)

(©)

Ry = m determines the local stability &g = (K, 0), the axial equilibrium ors-axis,

in the disease-free systerd.J). Here,ﬁ is the birth rate of predator d&g and + is the

mean lifespan of a predator. Subsequently, their product gives the mean number of hewborn
predators by a predator, which can be interpreted as the ‘ecological’ basic reproduction number
of a predator—prey system without disease. We note also that this term, first formulated and
explained byPielou (1969, is the average number of prey converted to predator biomass in a
course of the predator’s life spaHéthcoteet al., 2004).

Ry = LYy together withR;, determines the local stability &g = (K, 0,0, 0), the axial
equilibrium onS-axis, in the 4D systen®(1). Here,K 11 is the infection rate of a new infective

prey appearing in a totally susceptible prey population énsl the duration of infectivity of an
infective prey, the product of which is the disease baS|c reproduction number of disease in the
prey populationR; < 1 implies that the predators will become extinct, whitg < 1 implies

that the disease will be eradicated in the prey population. Hence, the combination of these two
conditions results ifcg being locally asymptotically stable for systeghl).

Ry = yl(l’f; 5 together withRy, determines the local stabilitygf Eg = (S, 1,0, 0), the

boundary equilibrium at which disease persists in the prey population while the predator pop-

ulation becomes extinct. Her: fss is the growth rate of a newborn predatirEg andy; is

the removal rate of predators without disedsenceR; gives the ecological basic reproduction
number of the predator population when disease is endemic in the prey population. Moreover,
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R <1+ ; (i'fjazn implies that the predators will become extinct in an environment when dis-
1

ease is prevalent in the prey population which, together Rith- 1 guaranteeing the endemicity
of disease in prey, gives the condition for the locally asymptotic statufitys. Note also that

sincef (x) = :L+a < Is an increasing functioandS < K, it follows thatR; < Rj.
(d) Ry = a;ﬁl’fsw , together withR;, determines the local stability &f; = (S*, 0, Py, 0), the bound-

ary equilibrium at which the predator and prey populations coexist with no disease.hi8te,

is the infection rate of an infective prey Bt andazP* + u is the removal rate of infective prey
atEg, subsequentlyr; is the disease basic reproduction number of an infected prey when enter-
ing a disease-free environment where predators and prey coexist. It followRitligtermines

the (disease-free) coexistence of predator—prey populations, ®hile 1 ensures low level of
infection from infected prey to predators, combining the two yields the local asymptotic stability
of Eg. WhenRj > 1, clearly the disease will become endemic. However, wRgn< 1, the

situation is more complicated. We have shown thatf Ry < 1+ m Ej is asymptot-
ically stable. Moreover, iRy > 1+ m Eg is unstable. Numerical simulations showed

that in this case there is a unique periodic solutio8Ha-plane, the disease-free region, which is
orbitally stable, although we have no formal proof for this to hold. Note thigi it 1, E; exists
andK > S*, which implies thatRy > Rj. That is, the condition for endemicity at coexistence
(Ry > 1) is stronger than the endemicity condition for prey population al&ex( 1).

S
(e) Ry = PEETASE together withRj, determines the existence Bf= (S, T, P1, P2), the endemic

positive equilibrium at which predators and prey coexist. Here, aBaiis the ecological basic
reproduction number of the predator—prey systera athen both populations coexist and with
disease being endemic. 4 R; < 1+ agl implies the coexistence of predator—prey system
nearE, while Ry > 1 ensures the disease becoming endemic, together of the two yields the
local asymptotic stability oE. Moreover, it is easy to sebatR; < Ry < Ry. Biologically, the
inequality indicates that the persistence condition for prey population at endemitRtatel)

is stronger than that of the coexistence at endemic site-(1), which in turn is stronger than

that of disease-free coexistend® (> 1).

Note that case (d) above with the disease-free periodic soluti®Pirplane is interesting biolog-
ically. WhenRj < 1 andRy > 1, the populations could sustain but without maintaining an endemic
steady stateH either does not exist or is unstable). That is, if the reproduction level of the prey is high

enough(i.e. Ry > 1+ m) the infective populations could persist, albeit fluctuating and appro-

aching an orbitally stable limit cycle. Moreove®; > 1 by itself no longer guarantees the coexistence

of prey and predator when in the presence of disease. More precisely, the basic reproduction number
of prey population must be sufficiently larger than 1 to insure persistence of predators. Similarly for
(e), whereﬁl > 1 does not guarantee the coexistence of prey and predator at the positive (endemic)
equilibriumE, requiring the stronger condition &% > 1 + =22 L2

agy1’
Of the five parameter®, andR;) are disease basic reproduction numbers which determine the local

stability of the two disease-free equilibfia andEZ, respectively; whileRy, Ry andR; are the average
numbers of prey converted to predator biomass in a course of the predator’s life span. Note that if we
define a functiorRy(S) = % then it follows thatR; = R1(K), Ry = R.(S) and R = Rl(S)

which are the respective threshold parameters or ecological basic reproduction numbers for the predator—
prey system aEg, Eg andE that determine the coexistence of prey and predators at these equilibria.
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It is interesting to note that in all cases involving the 4D syst@m)(i.e. cases (b)—(e), coupled
conditions are needed for the local stability of the equilibria under consideration. One of the condition
always determine the coexistence of the predator—prey system, the other condition dictates whether the
disease will be eradicated. This phenomenon of dual threshold parameters has previously been observed
in Hanet al. (2001 andHethcoteet al. (2004).

6. Numerical examples and discussions

Due to the difficulty in fully analysing the stability of the equilibria for the full 4D syste2ril), we

discuss the possible cases with the aid of the threshold parameters and numerical examples. We first
note that, from Sectiod, the trivial equilibriumEg always exists and is unstable, and hence need not

be considered here. The boundary equilibriimalways exists and if it is asymptotically stable (i.e.

Ro < 1 andR; < 1), thenEg andE}; will not exist. MoreoverwhenEg or E; do not exist (i.e.

Rop < 1 or Ry < 1), there is no positive interior equilibriurWhenEB andEj exist,Ep is unstable.

Furthermoreif Eg existswith Ry > 1+ #Tazﬁ sinceRy < Ry, we have thaR; > 1 andE} exist.
1

On the other hand, Eg does exist withRj > 1, we have thaRp > 1 andEg exist. In Table2, we list
the conditions for nine cases.

We now give 3D figures of simulated examplesSihP -space for some of the more interesting cases.
For all examplesP; is omitted since its value at all equilibria is 0 except at the positive equilibrium

TABLE 2 Asymptotic states for the futhodel

Case (simulation figure) Es Es Eg E
1 Ry<l,Ri<1 AS — — —
2 Ry>1,Ri«<1 unstable AS — —
B
3 R() < 1, 1< Rl < 1+ m . unstable —_— AS —_—
4 Ry<Ro< 1,51 > 14 _Law%(lljalK) (Fig.2) unstable — unstableg) —
* _tal —
5 R>Ry>1R <1+ yl(lJ_razT)’ unstable AS unstable
1<R <1+ _Lalyl(nalK)_(F'g's) -
5 _ ‘ol —
6 1+ aaTaK Ri>R1>1+ el unstable unstable AS
Ro > 1> Rj (Fig. 4)
* D Aol .
7 Ro>1>Rj, I;l > 1+'—y1(1+a2|’)’ unstable unstable unstabtlg (
Ry > 1+ i ak) (F|g5)7
* D Aol
8 Ro>1>Rj R <ﬁ1+ el rarD)’ unstable AS AS *)
1< Rl < 1+ m (|j|gT6)
* D 2
9 R>1>Rj,Ri<1+ e unstable AS unstablg)X (*)

B .
Ry > 1+W (F|g7)

Note: ‘AS’ denotes that the equilibrium is asymptotically stable; ‘—' denotes that the equilibrium does not gXist; ‘(
denotes that numerical simulation showed that in this case there is a unique periodic sol&tRrplane which is
orbitally stable and ‘(*)'denotes that numerical simulations showed that in this case the unique positive interior
equilibrium is unstable.
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(cases 7 and 8), where all elements are positive. Case 1 in Zabkgraightforward with the disease-

free boundary equilibriunkEg (globally) asymptotically stablendEg, Eg andE do not exist. Here,

the predators become extinct and the prey gods, tiss disease-free carrying capacity, and hence we do
not provide the simulation result. Case 2, with the predators becoming extinct and the prey population
becoming endemic with population size below its carrying capa€ityand case 3, with all solutions
starting inS going to the disease-free coexistence of predators andgjgegre also straightforward

and hence no simulations are given.

For the numerical simulations, for which we used the Phaser 2.1 scientific software for simulating
dynamical systems, the following parameters values in Talle the same for all simulations:= 2,

2 = 01,84 = 001,58 = 0015,y1 = 1, y2 = 05 anday = 0.1. There are three trajectories
symbolized by blue, green and grey in these figures and starti@typlane,S R -plane,l P1-plane and

the interior regionS = {(S, 1, P1) € R3|S> 0,1 > 0, P; > 0}, respectively. We are able to disregard
the variableP; in our figures becausB; goes to 0 if the variablé goes to 0, hence we only need to
make a distinction wheh does not go to 0. Note also that the equilibrium at the origjralways exists

but is unstable with a stable region of theaxis. Moreover, the ranges on the axes were omitted from
each figure for the sake of brevity.

For case 4 (see Fig@), we letK = 600, = 0.9, 11 = 0.0014,a; = 0.5 anda, = 0.5. Eg andEg
areunstableEg andE do not exist. The blue trajectory approacligs The green and grey trajectories
approach the unique and orbitally stable limit cycle. Similar to case 3, all solutions starthgarto
disease-free coexistence of predators and prey, but in an oscillatory manner.

For case 5 (see Fig), we letK =490, = 0.9, 11 = 0.002,a; = 0.5 anda, = 0.01.Eg andEg
are unstableE does not exisandEg is asymptotically stable. The blue and grey trajectoaiegroach
Eg. The green trajectory approaches. Here, unless the trajectory starts from the disease-free region
S R-plane, the predators become extinct and the prey population goes to endemic steady state. This case
indicates the important role which a highly infectious dised&g ¥ Rj > 1) can play in driving the
predators to extinction when the predators and prey would have coexisted without the digeast)(

It is interesting that this seems to be the exact opposite of cas¢i8thrcoteet al. (2004, where the
greater vulnerability of infected prey allows the predators to persist when they would have become
extinct without the disease.

For case 6 (see Fig), we letK = 490,u = 0.9, 11 = 0.002,a; = 0.5andaz = 0.5.Ep andEg are
unstableE is asymptotically stable arfeldoes not exist. The blue trajectaapproachekg. The green

]

FIG. 2. Simulation for case 4 of Tab® The dashed (-) trajectory approacligs The crossed (x) and boxed trajectories approach
the unique and orbitally stable limit cycle.
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o

FiG. 3. Simulation for case 5 of Tab& The dashed (-) and boxed trajectoraproactEg. The crossed (x) trajectory approaches
EX.
B

o

FiG. 4. Simulation for case 6 of Tab® The dashed (-) trajectogpproacheEg. The crossed (x) and boxed trajectories approach
EL.
B

and grey trajectories approafli. That is, all solutions starting i§ go to disease-free coexistence of
predators and prey. This interesting case is similar to caskl8timcoteet al. (2004, where the predation
of the more vulnerable infected prey causes the disease to be eradicated in the ecd&ystel) when

it would have remained endemic in prey in the absence of predad®gn (1).

For case 7 (see Fi®), we letK = 600, = 0.9, 11 = 0.002,a; = 0.5 anda, = 0.5. Eg, =
andEp are all unstable ani does not exist. The blue trajectoapproache&g. The green and grey
trajectories approach the unique limit cycle which is orbitally stable. Here again, the predation of the
more vulnerable infected prey causes the disease to be eradicated in the ecoRystett),(albeit in an
oscillatory manner, when it would have remained endemic in prey in the absence of preRatiori}.

For case 8 (see Fi@), we letK = 490, = 0.4, A1 = 0.002,a2 = 0.402 ande> = 0.5.Eg is
unstableEg and Eg are asymptotically stable and we have bistability. Note also that there is a unique
positive interior equilibriumE which is unstable from our simulations. Thus, we have another purple
trajectory which starts near the positive interior equilibrium. The blue trajecippyoache&g and the
green, grey and purple trajectories appro&gh The bistability means that there is a stable manifold
of E which separates the regions of stability Eg and Eg. Biologically, it indicates that trajectories
starting in different regions will approach either the disease-free coexistence or the endemic steady
state of prey alone. Note also that this case differs from case 6 oslpatierRy, the ecological basic
reproduction number for prey population at endemic state.
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]

FiG. 5. Simulation for case 7 of Tab® The dashed (-) trajectogpproacheEg. The crossed (x) and boxed trajectories approach
the unique limit cycle which is orbitally stable.

]

FiG. 6. Simulation for case 8 of Tabk There is another vertical dashed trajectory that starts near the positive interior equilibrium.
The dashed (-) trajectogpproachegg, and the crossed (x), boxed and vertical dashed trajectories apfEgach

)

FiG. 7. Simulation for case 9 of TabR The vertical dashed trajectory starts near the positive interior equilibrium. The dashed (-)
trajectoryapproache&p. The crossed (x), boxed and vertical dashed trajectories approach the limit cycle.
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For case 9 (see Fi@), we letK = 600, = 0.4, 11 = 0.002,a2 = 0.402 anda» = 0.5. Eg and
Eg are unstablandEg is asymptotically stable. The system has a unique positive interior equilifitium
which is again unstable from the simulations we made. Moreover, there is a unique limit cgR-in
plane which is orbitally stable. Again, we have a purple trajectory which starts near the positive interior
equilibrium. The blue trajectorgpproache&g. The green, grey and purple trajectories approach the
orbitally stable limit cycle. Interestingly, this is the only case we could find where, asymptotically, the
predators and prey coexist in endemic state, albeit in an oscillatory manner.

Comparing to the model dflethcoteet al. (2004 with disease in prey only, the absence of the
case where the vulnerability of infected prey allows the predators to persist when they would not have
survived otherwise without the disease clearly exhibits the importance of a disease which could also
infect the predators that leads to changes in the basic dynamics of the system. On the contrary, the
present model includes the possibility (case 5) of a highly infectious dis&gse K; > 1) driving the
predators to extinction when the predators and prey would have coexisted without the digeast)(
which further highlights the possibly damaging role played by a disease that infects both predators and
prey. On the other hand, under a different range of parameters (as demonstrated by cases 6 and 7), the
predation of more vulnerable infected prey could cause the disease to be eradicated in the ecosystem
(Ry < 1), albeit perhaps in an oscillatory manner, when it would have remained endemic in prey in
the absence of predatiofRf > 1). Hence, the presence of disease in both predators and prey could
be either promote or impair coexistence, and needs to be explored further in each particular relevant
situation.

Our model with disease in both predator and prey populations provides complex dynamics, allowing
for the possibility of bistability and periodic oscillation in the ecosystem. The existence of an interior
equilibrium with predators and prey coexisting and both endemic is also interesting biologically, al-
though we are not able to fully analyse it, and hence is an appealing open problem for future studies.
Moreover, the analysis on interior equilibrium in Sectibindicates that, under a complicated set of
conditions, it is possible theoretically for multiple interior equilibria to exist. However, we have not
been able to find a numerical example for this case.

The parameters relating t&, namelyl, andy,, does not appear in any of the threshold parame-
ters we obtained in Sectidh However,1, does appear in the range of values Ririn cases 5-9. For
example, by comparing cases 7 (F&).and 9 (Fig.7), we note thatl, plays a role in determining
whether trajectories starting in th®l-plane approactEg (as in Fig.7) or the limit cycle. Hence,

P, plays only a minor and indirect role in the spread of disease when compared to the other subpopula-
tions mainly due to the assumption that the infected predators are unable to infect other members of the
population.

A problem of modelling interest is when one assumes that once the predators are infected, they can
infect other predators—a current issue of interest considering the speculation regarding the potential
threat of HSN1 mutating to human-to-human transmissible strain. There has been some documentation
of the possible human-to-human infection of HSNUngchusalet al., 2005. Mathematically, it would
further complicate the dynamics by adding at least one more boundary equilititiuea, (S, 0, Py, Py),
where disease-free prey coexists with endemic predator population yielding a corresponding additional
disease basic reproduction number for this scenario. For our present study, we have not included ei-
ther infection between predators or even infection by a third migratory population (e.g. wild migratory
waterfowl).

Furthermore, we had assumed no vertical transmission. However, a recent report on pathology of
SARS indicates that there is some evidence of viral replication in the circulating mononuclear cells of
the fetus, which supports the possibility of vertical transmission for SARB& To, 2007). In order
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to account for this remote possibility of vertical transmission of disease in either predators or prey,
however, major modification in our model would be required to include the growth in infectediprey (
due to birth as well as the growth in infected predatdg @ue to predation of (susceptible and sick)
prey by infected predators, and hence is not pursued in this work.

Another related issue is that of disease control to eliminate disease in either prey or predator pop-
ulation. For control of avian influenza epidemic in birds, vaccination has been suggested as an option
for the prevention of bird infectiond_ée & Suarez20095 and is being used by some countries like
China on a historically massive scale in an attempt to prevent a potentially massive influenza pandemic
(Cyranoskj 2005. However, the present difficulty in implementation, risks and delays involved in a
massive bird vaccination program made it considerably less efficient and effective as an option for pre-
vention (Normile, 2004. It has even been suggested that a possible source of the continuing H5N1
pandemic threat may be that the pathogenicity of HSN1 viruses is masked by bad agricultural vaccines
(Websteret al., 2006. Vaccination and culling had both been modelled in recent years for the control
of foot-and-mouth disease (FMD) epidemics (&\polhouseet al,, 1996 Woolhouse 2003 Chowell
et al, 2006 Hutberet al,, 2006. Culling has traditionally been used in the prevention of animal disease
outbreaks, sometimes in combination with other measures and mixed sucoeste(ayet al., 2002).

Many of the above-mentioned studies on impact of control measures for FMD include culling as a ma-
jor component, which has been found to be especially effective and remains to be the method of choice
for disease control of FMD. Interestingladeler & Freedmaii1989 showed, under their modelling
assumptions, culling the predator to lead to extinction of both predator and prey populations, perhaps
indicating the complexity involved in modelling control measures in a predator—prey system.

These features could conceivably be added to the model in subsequent studies, given the possibility
that these events may indeed occur in the future. However, we note that modelling transmission of
H5N1, which might include both animal-to-human and possibly human-to-human infections, essentially
amounts to modelling a ‘giant leap to mankind’ (as described lgmpner & Shapirp2004 which
can be very difficult to quantify. Moreover, this interaction between humans and birds might not be
best represented as a predator—prey interaction with Holling type-Il functional response, which would
require substantial modification in our model that is beyond the scope of this study.
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Appendix

Proof of Lemma&.1 For (i), if Ry < 1, thenEg is asymptotically stable for3(1). Moreover, since
Eg is the unique asymptotically stable equilibrium &t1) and on the boundary of the first quadrant
which is the feasible region foB(1), Eg must be globally asymptotically stable f&.{). Part (ii) of the
lemma follows trivially from Jacobian dEg.

For (iii), we proceed to show thdg is globally asymptotically stable foB(1) as follows. First,
suppose thatp (1), #2(t)) is a solution of the systenB(1) which starts at a poirt = (x1, X2) with
K < X1 <00,0< X2 < 00. Also

d1(f —agy1) — V1)¢2

dpa _ ( 1+ agn — 0 as¢1 —> K.

depy r¢1(KK— $1) _ a1

1+a1p1

Thus, the solution cannot become infinite betwgeand the lineL: S = K, and must crost at
a pointy = (K, y2) with X2 < y» < oco. Now, letU be the region bounded bly; = y», P = 0,
S = x3 andS > 0 and the line sgmentXy. From the analysis of flow direction on the boundaryJof
we can see that is an invariant set with respect to the systei). Since there is no positive interior
equilibrium, the system has no any periodic solutions. Thus for any solution startihgiis positive
limit set is Eg. Furthermore, since the regidh is arbitrary, it follows fromBrauer & Nohel(1969
(Lemma 5.4, p. 212) thdEp is globally asymptotically stable foB(2). O
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Proof of Lemm&.2 First, we haveP] = 0= S* = = a o providedf —a;y1 > 0, which is satisfied
as long asR; > 0. Also fromS' = 0, one obtain®y = - (1 — gzlh=r) (1 + ﬁal“ ) provided

— - * ¥y (21 L _ 71 aiy1 .
0 < S = 70— < K. Thus,(S, P)) = (555, 57 (1 — xteyn) (L + 70257)) is the unique

positive interior equilibrium of 3.1). Note thatE* exists if and only ifR; > 1. Now, we have the
Jacobian aE*:

a[Kf-—ay)—nl-F = _oan
KB —apy) 7

Ag+ =
K(B —zzyll) 1 0
Since
ail[K(B —a1y1) — 1]l — KB —ay1) — 7
- () (O30
if we let¢; = — K¢~ a”l) 71] Lyir andcy = K(ﬂ#gl)“ylr it follows thatS* = 72— < K

implies thatK (8 — alyl(f y1 > 0, and hencey > 0. Now, we consider the local stability p?operty of
E* for (3.1) using Routh—Hurwitz criterion and yield; = ¢; andD2 = c;¢p. Sincef — a;y1 > 0 and
K(f —aiy1) — y1 > 0, then

B
1> 0= q[K(p —a —]-pf<0eoR <14 —M—M—,
1 1[K(B —awy1) — ]l — B 1 a1+ k)
B
cl <0 ag[KpB —a - - f>0oR >1+— %
1 1[K(B —awy1) —yal — B 1 a1+ a1k
B
=0 a[K(p —a - - =0 Rg=14+ ——"———.
1 1[K(B —awy1) —yal — B 1 a1t &k
Part (iii) follows from a theorem il€oddington & Levinsor{1955 p. 382). O

Proof of Theoren8.3. The proof basically follows from Lemma 4.4 bfsuet al. (1978. First, let

S S
f P) = 1—-—) - P
1(S, Py rS( K) * (1+a18) L

S
f2(S, P) =4 (1+ als) PL—y1P1,

1 S\ A
h(s, P1>=( - ) PE,

whereA, B € R will be selected below. Now,
a(fih) ~a(f2h)
0S 0Py

whereC = B+l and

= [~ PPTISA1L 4+ 219 A1 A+ 1) + [rPESAL + 219~ AHDIGAc(S),

2 2
Gac(9=- (%) S+ [(ﬁ —a;y1)C + (al - A%)} S+[(A+1) —Cyi].
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We look for A > —1 andC such thatG a c(S) < Ofor all S. To do this, we first consider the discriminant
DA(C) of Ga,c(S) and the discriminand (A) of Da(C) which are given by

A+2 4
DA(C) = (f — a1y1)’C? +2 [w —ay) (al e ) - aéyl] ©

A+2\?2 8Ba(A+1)
+la1— K + K )

D(A) = {(ﬂ ary)[y1 — KB —ary)] A+ B[2y1 — K(B — ary1)]}.

Now we takeA = —1, then
32
D(-1) = =S @K (6 — ayn) — 1] - 4.

SinceR; < 1+ 311’71:'3% implies thatD(—1) > 0, the polynomialD_1(C) = 0 has two real roots
C1 andCy with C1 < C». Thus, we can take @* with C; < C* < Cs such thatD_1(C*) < 0 implies
thatG_1,c+(S) < 0. Hence, the expressm%;lsﬁ + %%lh) does not change sign. By Dulac criterion
(Hahn 1967 p. 67), system3.1) has no periodic orbit in the first quadrant and thEfsis globally
asymptotically stable for3(1). O

Proof of Theoren8.4. The uniqueness of a limit cycle for a predator—prey system is proved first by
Cheng(1981). The rest of proof follows from Theorem 4.2 ikuang & Freedmar(1988. First, let

(13 w5 _ __Fs
g(S)—r(l K), PO =1ras I9=11.g

Then, the assumptions (H1)—(H8) of Theorem 4.Kirang & Freedmai(1988 are satisfied. To apply
that theorem, we require the following:

d (sg<5> +9(S) - sq&%)
ds

—-y1+a(S

Coay P _
_di(_ 2 S + (K 1)S)<o for0<S<S, S <S<K

K (B —a1y1)S—m

- d {2 + (1K — 1)S
ds S-S

2 —43S'S+ (K — 1S
B (S— 82

>0 for0<S<S, $ <S<K

& DS =221 —4a15S+ (@K —1)S* >0 for0<S<S, S <S<K.
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Now, note thatD’(S) = 4a;(S — S*) implies thatD(S") is the local minimum ofD(S). Also Ry >
1+ —fragy implies thatasK — 1— 2 S* > 0, hence

D) = (aaK —1)S" > 0,
D(S") = (K —1-2a;5)S" > 0.
Subsequently, we haig(S) > 0for0 < S < S*, S* < S < K. Under the above assumptions, this

implies that the systen8(1) has a unique limit cycle that is globally asymptotically orbitally stalile.
Proof of Lemmat.L From

_ K K -
r—(0+Ki) -1k  —ToaK
0 Kii—u 0 0
AEO - K >
0 0 Ttk — 71 0
| 0 0 0 -2

it follows that if we letRy = “1 , the disease basic reproduction number of the prey, we have the

stability result forEg.

Proof of Lemmat.2 WhenRy > 1,(S,1,0,0) = (£

A1 A1(r+K11)?

S+ 1 < K whenRy > 1. We have

— e

O

TKa-p) o 0) exists. It is easy to shothat

r -
KA1 _(?ﬂLl + 'u) _)ng-li}al,u _Ali}aly
r(Kii—w) 0 _ agl (KAi—u) _ agl (KAa—pu)
A r+41K A1(r+Ki1)+aor (Kii—u) A1(r+Ki1)+agr (Kii—u)
Es = ;
? 0 0 M 0
Jof (KA1—u)
. O 0 Al(r+Kil)+2§r(pkzl—ﬂ) —72 i
_ _BS Jol _ 2 r r(Kii—p)
whereM = Tas™ 1+22| y1. Since detAg, — A12) = (M =) (—y2— )[2° + (K/j_l)’1+(r+—/llﬂ<%
= Al _BS
A1+aw] 0 andM < 0 is equivalento Ry < 1+ (e’ whereR; = SETASE we have the
stability resultfor Eg. O
* a:
Proof of Lemmat.3 WhenRy > 1, (S, 0, P, 0) = (52457, 0, oo (1~ wirtsamy) (1 + 7o) 0)
exists.
Fa[K(B—a1y1)—y1]-p o1y _eay1’]
KfG—agm 1" —(k +41) 7am i i
0 N 0 0
AEE N KB-a1y1)—71 ra 71 a1 -1 ’
~pmal/l)— sl 142 —
Kai r ai (1 K(ﬁ_alyl))(1+ ﬁ—alyl) 0 0
209 __ 1 a1y1 _
L 0 ai (1 K(ﬁ_alyl))(1+ ﬁ—alyl) 0 2
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whereN = 11S* — axP} — u. From de(AEr3 —Alg) = (N =) (=y2—4) - det(AEg — lp) and

Ry = 7745, we have the stability result fdg. O
1

Proof of Lemmat.4.  To show the existence &, we know

A2l
— 91— =

Pl=0—
1 1+ aol

1+aS

T AS;(ﬂ—al~Vl)—V1 ,
A2(1+a1S) — ag[S(f — ary1) — yil

provi?ed thatS(8 — a1y1) — 71 > 0 andiz(1+ & S) — a2[S(8 — a1y1) — 1] > 0. Note that 1< Ry <
2

1+ FYy is equivalent toS(f — a1y1) — y1 > 0 andix(1+ a1S) — ap[S(f — a1y1) — y1] > 0. From
B A T \p
P, = 0, obtainP, = y—z(razr) P1. Also
1
I/ =0=— 11S— —2—(PL+ Pp) = = 0= P+ Py = —(11S— )L+ al)
1+ apl a2
1 A T\
az y2 \1+ al A1

FromS = 0, we obtain

r o1 1
—(K-=S—-1)— 11l — —.
K( ) ! a2 l4+aS

(1S—p)(L+al)=0
= ool [(f — ary1) — 22l S + (K {awaor [A2 — (B — a1y1)]

—azA1(f —a1y1) — a1d1d2} — aor [(f — ary1) + A2 + ay1]}S
+ {K{aor + [A2 + azy1] + a2l1y1 + a1dau} + azyir} =0

—b+ Vb2 — 4ac .
—_ if (8 —a1y1) — 42+ 0 andb?—4ac> 0,
~ 2a
=51« (BF + A1y1) + ardou] +
a2(pr 171 1A a2yl .
, if (B—a —A2=0,
Kl142(a1 4+ a2) + aor (241 + a2y1) # 171) 2
where

a=agor [(f —aiy1) — 42],
b= {K{aiazr[i2 — (B —a1y1)] — a221(B —a1y1) — aria1d2} —azr[(B —a1y1) + 42 + a2y1l},
c={K{aar 4 [42 4+ a2y1] + azd1y1 + ardou} + azyar}.

Thus we have the desired result. O
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