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Diarrhea is an important public health problem in Taiwan. Climatic changes and an increase in extreme
weather events (extreme heat, drought or rainfalls) have been strongly linked to the incidence of diarrhea-
associated disease.
This study investigated and quantified the relationship between climate variations and diarrhea-associated
morbidity in subtropical Taiwan. Specifically, this study analyzed the local climatic variables and the number
of diarrhea-associated infection cases from 1996 to 2007. This study applied a climate variation-guided
Poisson regression model to predict the dynamics of diarrhea-associated morbidity. The proposed model
allows for climate factors (relative humidity, maximum temperature and the numbers of extreme rainfall),
autoregression, long-term trends and seasonality, and a lag-time effect. Results indicated that the maximum
temperature and extreme rainfall days were strongly related to diarrhea-associated morbidity. The impact of
maximum temperature on diarrhea-associated morbidity appeared primarily among children (0–14 years)
and older adults (40–64 years), and had less of an effect on adults (15–39 years). Otherwise, relative humidity
and extreme rainfall days significantly contributed to the diarrhea-associated morbidity in adult. This
suggested that children and older adults were the most susceptible to diarrhea-associated morbidity caused
by climatic variation. Because climatic variation contributed to diarrhea morbidity in Taiwan, it is necessary to
develop an early warning system based on the climatic variation information for disease control management.
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1. Introduction

Due to anthropogenic climate changes, the global average
temperature is continuing to increase, and extreme hydrologic cycles
(such as floods and droughts) are projected to increase as the ambient
temperature increases. Extreme weather events indicate that global
climate continues to change, damaging human activity, and health.
Increasing evidence shows that such changes in the global-scale
climate system may already pose a threat to humans through
increased morbidity and mortality caused by heat, cold, drought or
rainfalls, changes in air and water quality, and the ecology of
infectious diseases (Stott et al., 2004; Gregory et al., 2009; Semenza
and Menne, 2009). Several prevalent human diseases have been
linked to climate-mediated changes for susceptible populations such
as infants and the elderly, who often have relatively poor immunity
(Patz et al., 2005). Therefore, an understanding of the impact of
climate change on disease patterns is critical to control efforts.
Infectious (bacterial, viral and parasites) and non-infectious (food
intolerances or intestinal diseases) diarrhea remains a major public
health problem around the world. Diarrhea is one of the primary
causes of morbidity andmortality on a global scale, leading to 1 billion
disease episodes and 1.8 million deaths each year (WHO, 2008).
Previous studies have showed that climate factors significantly affect
seasonal diarrhea in susceptible populations (Gajadhar and Allen,
2004; Emch et al., 2008; de Magny et al., 2008). Checkley et al. (2003)
presented that higher temperatures increase bacterial and parasitic
diarrhea, and extend the survival of enterogastritis-causing bacteria,
such as Escherichia coli, in contaminated food. Higher temperatures
may also indirectly affect behavior patterns, such as increased
consumption of water, lax hygiene, which may promote diarrhea
transmission. Checkley et al. (2000) observed that daily hospital
admissions for diarrhea exhibited a twofold increase per 5 °C increase
in the mean ambient temperature. Diarrhea outbreaks are related to
periods of heavy rainfall and runoff when subsequent turbidity
compromises the efficiency of the drinking water treatment plants
(Kramer et al., 1996). For example, Auld et al. (2004) found that heavy
rainfall increases diarrhea outbreaks due to contamination of the
water distribution systems. Zhang et al. (2010) revealed a strong
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correlation between heavy rainfall events and gastroenteritis (Salmo-
nella infection) in Australia. These studies suggested that tempera-
ture/precipitation factors have a strong effect on triggering diarrhea.

Previous researchers have used time-series analysis to analyze the
correlation between diarrhea epidemics and climatic factors (Pascual
et al., 2000; Rodo et al., 2002). A time-series regression model has
been applied to assess the impact of long-term climate change,
especially for extreme diarrhea epidemics (Kale et al., 2004;
Hashizume et al., 2007; de Magny et al., 2008). This weather
variation-guided modeling approach employs a Poisson regression
model to fit hospital surveillance and mortality data for diarrhea
diseases to estimate the temporal pattern of diarrhea in susceptible
populations. This approach provides support for decisions about the
prevention and control of this disease. Fernandez et al. (2009)
appropriately applied the Poisson regression model to estimate the
impact of daily maximum temperature and rainfall on the number of
hospitalizations for cholera diarrhea in Zambia.

Hashizume et al. (2007) indicated that high temperature and
heavy rainfall are associated with an increased number of diarrhea
cases. This suggests that rainfall and temperature have a sufficient
force to forecast the epidemics of diarrhea, and implies that these
weather factors provide valuable insights into the seasonality of
diarrhea. de Magny et al. (2008) adopted a generalized linear model
with Poisson distribution to identify how environmental signatures
(chlorophyll a concentration) and climatic factors (rainfall anomalies)
can significantly influence the dynamics of the cholera epidemics in
India and Bangladesh. Therefore, surveillance data is useful to predict
disease occurrence through regional climatic factors such as temper-
ature or rainfall.

Global warming has directly affected the weather in Taiwan. Hsu
and Chen (2002) indicated a 0.9–2.7 °C temperature raise from 1961–
1999 relative to the past 100 years, and significant changes in
precipitation. Typhoon Morakot struck Taiwan, bringing nearly 9 ft
(around 2.5 m) of rain and the island's worst floods in over 50 years.
Such extreme weather events increase the number of waterborne
disease cases, especially diarrhea. Hence, a robust early warning
system that considers how climatic factors affect diarrhea diseases in
Taiwan is necessary for decision-making in policy and public health.

This study investigated the correlation between climatic variables
and diarrhea cases in Taiwan from 1996 to 2007. The time-resolved
meteorological data in this analysis included temperature, humidity,
and rainfall during the entire 12-year study period. The purpose of
this study was (1) to estimate the relationship between climate
variations and occurrence of diarrhea cases and predict the impact of
diarrhea-associated morbidity in Taiwan, and (2) to predict the
dynamics of diarrhea epidemics by a best-fit Poisson regression
model.
2. Methods

2.1. Surveillance data

The National Health Insurance Research (NHIR) Database, a public
healthcare system in Taiwan, was founded in 1995, and insured
98.70% of Taiwanese citizens in 2005. The NHIR database records
hospital admissions in terms of gender, age, sex, hospital identifica-
tion, case of admission, cure items, disease duration, and expense. This
study collected monthly numbers of hospital admissions associated
with diarrhea for the period 1996–2007 from the NHIR Database. This
study also extracted information on diarrhea from ICD9 001–009 for
infectious diarrhea, and ICD9 535, ICD9 555 and ICD9 558 for non-
infectious diarrhea. The monthly number of cases was divided by the
year-end population to express morbidity per 1,000,000 population,
and the diarrhea cases were aggregated by age into the groups of 0–
14 years, 15–39 years and 40–64 years.
2.2. Meteorological data

Daily temperature, rainfall, and relative humidity in Taiwan were
obtained from the Taiwan Central Weather Bureau. The average
monthlymaximum temperature was calculated from the daily record.
This study also calculated the monthly numbers of extreme rainfall
days and monthly levels of rainfall accumulating within rainy days
from 1996 to 2007. This study defined extreme rainfall as daily
accumulative rainfall exceeding 40 mm.

2.3. Statistical analysis

This section presented a descriptive statistical analysis of the
variables relevant to number of diarrhea diseases and climatic factors
such as daily temperature, total rainfall, extreme rainfalls days and
relative humidity during 1996–2007. The surveillance data of diarrhea
was categorized by age group (0–14, 15–39 and 40–64 years old).

This study used a time-series Poisson regression that considered
autocorrelation, seasonality, long-term trends, and lag effects to
determine the best-fit model in relation to diarrhea, and estimate the
morbidity of diarrhea attributed to climate factors. To build a robust
model, this study estimated the deviance in explanation and the
relative contribution of each variable in the model. The relative
contribution of each variable was determined through a process of
manually entering and omitting variables from the model in a stepwise
manner, with the regulation for elimination being a p-value N0.05.
Spearman's correlation was used to calculate the relationship between
the number of diarrhea cases and climatic factors for the present or lag
time with one or two months. The regression model was described as
follows:

ln Ytð Þ = α0 + α1t + α2 sin
2πt
12

+ α3TMAX;t−n

+ α4RainEXT ;t−n + α5RHt−n;

ð1Þ

where Yt denotes the incidence of diarrhea confirmed cases at time t,
α0 through α5 individually represent the coefficients, and TMAX,
RainEXT and RH are the monthly maximum temperatures (°C), the
extreme rainfall intensity (mm) and the relative humidity (%),
respectively. The term t−n in the subscript represents the n-month
lag time. This model includes lag values to control for the
autocorrelation of explanatory variables. To consider how seasonality
and long-term trends may be associated with weather conditions, the
proposed model includes a triangular function, sin(2πt/12), to reveal
the seasonal component in series.

The regression coefficients of climate variables (α3, α4, α5) were
transformed using the equation

100 eα−1
� �

; ð2Þ

This equation revealed the percent change in morbidity associated
with a unit change of climatic factors, including maximum temper-
ature, extreme rainfall, and relative humidity.

The monthly morbidity attributed to extreme weather events was
calculated as the difference between observed and predicted baseline
morbidities during the study period. The baseline morbidities during
the study periodwere defined as the lower limit of the 95% confidence
interval (CI) (i.e., 1.96 standard deviations with sample size great
than 30) predicted by this model.

The probabilistic density function was then applied to character-
ize the excess morbidities for 1996–2007. A lognormal distribution
(LN(geometric mean, geometric standard deviation)) was optimally
fitted to the averaged excess morbidity estimates per 1,000,000
population during the study period. The overall expected excess risk



Table 1
Description of diarrhea diseases by age and climatic variables from 1996 to 2007.

Total Mean±SD Minimum Maximum

Number of diarrhea diseases by ages
All 1,212,621 9186±6945 3298 20,356
0–14 group 290,331 2199±388 57 4905
15–39 group 643,099 4871±5114 979 12,324
40–64 group 279,191 2115±2218 299 3589

Climatic variables, 1996–2007
Daily average
temperature (°C)

22.1±3.9 14.5 28.8

Daily maximum
temperature (°C)

29.5±3.1 23.5 44.6

Daily total rainfall (mm) 197.5±150.2 22.8 996.4
Extreme rainfall
days per year

18.4±9.3 0.0 59.0

Daily average
relative humidity (%)

78.7±2.9 69.3 84.6

Fig. 1. Dynamics of gastrointestinal diseases in Taiwan in analysis with Poisson
regression model from 1996 to 2007. Shaded region represented 95% prediction
intervals.
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could then be computed by the cumulative distribution curves of
excess morbidity.

The Poisson regression model in Eq. (1) was fitted to diarrhea
morbidity data for 1996–2007. The relative contribution of extreme
weather events to diarrhea morbidity was then calculated using
Eq. (2), which determined per unit changes in maximum tempera-
ture, extreme rainfall and relative humidity. All statistical analysis was
performed using SPSS software (version 15.0 for windows, SPSS Inc.,
Chicago, IL).
Table 3
Parameters from Poisson regression model for gastrointestinal disease-associated
morbidity in Taiwan from 1996 to 2007.

Coefficient Std. err. p-value r2

All case 0.84
Max temp (lag 1) 0.014 0.007 0.043
Extreme rainfall (lag 2) 0.004 0.002 0.021
Humidity (no lag) −0.005 0.005 0.022
3. Results

3.1. Descriptive statistics of diarrhea and climatic variables

Table 1 showed that there were 1,212,621 cases of diarrhea from
1996 to 2007, and that 24% of the infected were aged between 0 and
14 years old, 53% were aged between 15 and 39 years old, and 23%
were aged between 40 and 64 years old. Because Taiwan has a
subtropical environment, the daily maximum temperature varied
between 23.5 and 44.6 °C, with a mean of 29.5 °C. There were 72
extreme hot days (above the 95th percentile of 35.5 °C) and 18 days of
extreme rainfall (above the 40 mm for daily accumulative amount of
rainfall) during the study period. The daily relative humidity was
between 63.9% and 84.6%.
Table 2
Correlations between diarrhea diseases and climate variables in Taiwan from 1996 to
2007.

Monthly climate variables Lag (months) r2 p-value

Monthly average temperature 0 0.409 0.36
Monthly average temperature 1 0.374 0.41
Monthly average temperature 2 0.484 0.17
Monthly maximum temperature 0 0.484 0.02
Monthly maximum temperature 1 0.583 0.02
Monthly maximum temperature 2 0.382 0.13
Total rainfall (mm) 0 −0.155 0.67
Total rainfall (mm) 1 −0.195 0.51
Total rainfall (mm) 2 −0.148 0.69
Monthly extreme rainfall days (N40 mm) 0 −0.348 0.02
Monthly extreme rainfall days (N40 mm) 1 0.283 0.11
Monthly extreme rainfall days (N40 mm) 2 0.354 0.01
Monthly average humidity 0 −0.045 0.98
Monthly average humidity 1 −0.547 0.06
Monthly average humidity 2 −0.243 0.29
3.2. Spearman's correlation analysis

Correlation analysis was conducted to quantify the relationship
between monthly morbidity of diarrhea and climatic variables during
study periods, with a lag of one to two months (Table 2). Results
indicated that monthly average and maximum temperatures were
positively correlated with the monthly morbidity of diarrhea in
Taiwan throughout the study period (r2 ranged from 0.37 to 0.58). The
monthly relative humidity and total rainfall were inversely correlated
with monthly morbidity of diarrhea (r2 ranged from−0.04 to−0.55).
There was a strong lag effect on the relationship between extreme
rainfall days and monthly morbidity of diarrhea. Though, the extreme
rainfall days at zero lag were adversely related to the monthly
morbidity of diarrhea (r2=−0.35), the morbidity was positively
sin(2πt/12) 0.067 0.030 0.028
Month 0.029 0.001 b0.001
Constant 5.323 0.210 b0.001

0–14 Age group 0.27
Max temp (lag 1) 0.039 0.015 0.012
Extreme rainfall (lag 2) 0.003 0.004 0.043
Humidity (no lag) −0.033 0.011 0.004
sin(2πt/12) 0.090 0.050 0.039
Month −0.003 0.002 b0.001
Constant 9.823 1.055 b0.001

15–39 Age group 0.92
Max temp (lag 1) 0.013 0.011 0.023
Extreme rainfall (lag 2) 0.006 0.003 0.021
Humidity (no lag) −0.028 0.008 0.001
sin(2πt/12) 0.041 0.034 0.023
Month 0.039 0.002 b0.001
Constant 7.040 0.760 b0.001

40–64 Age group 0.94
Max temp (lag 1) 0.023 0.007 0.003
Extreme rainfall (lag 2) 0.004 0.002 0.026
Humidity (no lag) −0.004 0.005 0.042
sin(2πt/12) 0.077 0.023 0.001
Month 0.050 0.001 b0.001
Constant 4.987 0.512 b0.001

Lag 1/2 represented the lag effects of 1 or 2 months.



Fig. 2. A Poisson regression model fitting the trends of monthly age-specific diarrhea morbidity and monthly weather factors, including monthly maximum temperature (Tmax),
extreme rainfall days (ERd) and relatively humidity (RH), in age groups of (A) 0–14, (B) 15–39 and (C) 40–64 years old. Contribution of monthly maximum temperature, extreme
rainfall days, and relative humidity to diarrhea-associated morbidity in age groups of (D) 0–14, (E) 15–39, and (F) 40–64 years old.
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correlated with the extreme rainfall days at lag one (r2=0.28) and
two months (r2=0.35).

3.3. Regression analysis

This study developed a Poisson regression model (Eq. (2)) with
monthly diarrhea diseases and the higher correlated weather
variables (r2≧0.5 and p-valueb0.05) listed in Table 2. This model
showed that peaks in monthly diarrhea morbidity corresponded well
with this regression model during the study period (Fig. 1). The
Poisson regression model was used to best-fit various age-specific
morbidity of diarrhea (Table 3), and the contribution of climatic
factors to diarrhea disease was examined by Poisson regression
(Fig. 2). The results in Table 3 indicated that the monthly maximum
temperature (1-month lag), number of extreme rainfall days (2-
month lag), and relative humidity (no lag) had statistically significant
effects (p-valueb0.05) on age-specific morbidity of diarrhea in the
Poisson regression model. Fig. 2 demonstrated that the goodness-of-

image of Fig.�2


Fig. 3. Dynamics of excess diarrhea morbidity posed by extreme weather events in analysis with Poisson regression model among various age groups (A) 0–14, (B) 15–39, and
(C) 40–64 years old from 1996 to 2007.
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fit with a correlation between observed and expected morbidity of
diarrhea exceeded 90% except for the age group 0–14 years old
(r2=0.27). This study indicated that the maximum temperature
contributed approximately more than 50% morbidity of diarrhea
among age groups 0–14 and 40–64 years old. Additionally, extreme
rainfall and maximum temperature contributed 30% and 25%,
respectively, to the 15–39 years old group.
3.4. Excess risk assessment

A baseline of moderate diarrhea morbidities among various age
groups was used to estimate the excess morbidities attributed to
extreme weather events (Fig. 3). Fig. 4 illustrated the excess
morbidity of diarrhea for various age groups from 1996 to 2007. The
highest excess diarrhea morbidity per 1,000,000 population occurred

image of Fig.�3


Fig. 4. (A) Bar chart and (B) box plot of excess morbidity of age-specific diarrhea.
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in the age group of 0–14 years old in 2002–2003 (mean range 230.26–
603.59), 15–39 years old in 2002–2003 (mean range 189.89–466.77),
and 40–64 years old in 2000–2001 (mean range 0–624.15) (Table 4).
The average excess diarrhea morbidity was 107.24, 57.37 and 85.38 in
age groups of 0–14, 15–39 and 40–64 years old (Fig. 4B).

This study applied a lognormal distribution to optimally fit the
excess diarrhea morbidity attributed to extreme weather events, and
used excess risk to evaluate the excess diarrhea morbidity posed by
extreme weather events (Fig. 5). The risk curves for excess diarrhea
morbidity indicated that more than 20% of the population in Taiwan
was susceptible to diarrhea (risk=0.2). It was approximately 203.62
(95% CI 151.38–232.49), 157.34 (95% CI 113.96–179.02), and 201.22
(95% CI 155.35–227.22), respectively, for age groups of 0–14, 15–39
and 40–64 years old (Fig. 5D, E, F). Table 5 summarized the excess
diarrhea morbidity at risk of 0.2, 0.5 and 0.8 for various age groups.

4. Discussion

Recent studies indicated that climate change poses real risk to
human health (Mcmichael et al., 2006). Future climate change could
exacerbate a number of current health problems, including heat-related
mortality (Ostro and Roth, 2009), dengue fever, (Wu et al., 2009) and
diarrhea (Hashizume et al., 2007). Taiwan is not immune to the effects
of projected climate change on public health (Lin et al, 2009; Hsieh and
Chen, 2009). This study applied a time-series Poisson regression model
Table 4
Estimated diarrhea-associated morbidity in Taiwan from 1996 to 2007.

Years Excess morbidity (1/1,000,000 population)

0–14

1996–1997 99.42 (5.34-253.44)a

1997–1998 169.54 (19.39–313.74)
1998–1999 12.94 (0–83.86)
1999–2000 37.61 (0–122.59)
2000–2001 6.86 (0–82.34)
2001–2002 1.65 (0–19.79)
2002–2003 369.42 (230.26–603.59)
2003–2004 159.44 (0–448.54)
2004–2005 213.26 (83.05–544.57)
2005–2006 64.35 (0–281.76)
2006–2007 45.08 (0–122.07)

a Mean with 95% confidence interval in the parenthesis.
to predict the monthly cases of diarrhea in Taiwan from 1996 to 2007
based on weather condition data. Results showed that local climatic
factors significantly influenced on the dynamics of diarrhea, revealing a
relationship between the time-lag effect, coincident weather condi-
tions, and age-specific diarrhea morbidity. Interestingly, the effect of
extreme weather variables (monthly maximum temperature and
heavy rainfall) in this model contributed greatly to diarrhea morbidity.
The significant contribution indicated a strong effect of extreme
weather events on the dynamics of diarrhea epidemics.

From a modeling perspective, mathematical approaches are
available for combing the cyclic forcing into the epidemiological
investigations. Several researchers used the Poisson regression model
to describe diarrhea-associated hospital admissions and death rates
worldwide (Pascual et al., 2000; Kale et al., 2004; Hashizume et al.,
2007; de Magny et al., 2008; Zhang et al., 2010). The current study
used a time-series Poisson regression model to estimate the diarrhea
morbidity attributed to weather conditions. The best-fitted Poisson
regression model captured the effect of annual trends, seasons,
monthly maximum temperatures, and the cumulative number of
monthly extreme rainfall days, with a lag time of 1–2 month on age-
specific diarrhea-associated morbidity (Tables 2 and 3). A higher
correlations appeared for the age groups of 14–39 (r2=0.92) and 40–
65 (r2=0.94) than for the 0–14 age group (r2=0.27). This positive
relationship between climatic variations (i.e., temperature and heavy
rainfall) and diarrhea morbidity is similar to recent findings in North
15–39 40–64

30.45 (7.97–74.39) 4.91 (0–21.23)
16.94 (0–42.75) 19.28 (0–120.69)
5.81 (0–47.69) 23.21 (0–93.14)

11.32 (0–36.31) 136.39 (0–312.86)
50.33 (0–171.19) 216.84 (0–624.15)

0.0 (0) 2.07 (0–24.86)
338.74 (189.89–466.77) 29.59 (0–165.28)
157.62 (0–389.22) 0.0 (0)
190.03 (61.81–521.61) 83.63 (0–315.25)
38.56 (0–181.38) 3.07 (0–21.41)
95.46 (0–216.59) 112.07 (0–396.44)

image of Fig.�4


Fig. 5. A lognormal distribution for excess diarrhea morbidity at three age-specific baseline in age groups of (A) 0–14, (B) 15–39, and (C) 40–64 years old in the burden of extreme
weather events. Excess risk (ER) curves among various age groups (D) 0–14, (E) 15–39 and (F) 40–64 years old.

Table 5
Risk analysis of diarrhea morbidity among age-specific groups.

Excess risk (ER)

Age
group

0.8 0.5 0.2

Excess diarrhea morbidity

0–14 51.03 (33.16–66.15)a 107.39 (73.02–133.51) 203.62 (151.38–232.49)
15–39 21.18 (12.75–28.41) 64.56 (40.46–80.22) 157.34 (113.96–179.62)
40–64 31.49 (20.78–40.66) 86.53 (106.41–60.54) 201.22 (155.35–227.22)

a Median with interquartile range in the parenthesis.
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America, Europe and Australia (Kovats et al., 2005; Fleury et al., 2006;
Zhang et al., 2010).

This study revealed several important findings. First, results
showed that maximum temperature contributed 52% and 63% to
morbidity, respectively, in predicting the dynamics of diarrhea disease
for children (0–14 years) and older adult (40–64 years) groups
(Fig. 2A and C). This implied that increased temperature may
influence the incidence of diarrhea. This finding revealed that children
have increased exposure to many viral, bacterial and parasitic
pathogens (Cama et al., 1999; Checkley et al., 2000). Therefore, this
suggested that higher temperatures played an important role in the
epidemics of diarrhea disease via increased viral exposure and
transmission for diarrhea, and children and older adult were

image of Fig.�5
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susceptible population at high risk and exhibited significantmorbidity
to diarrhea diseases due to their weak immune system.

Second, the proposed model revealed that the relative humidity
(45%) and number of extreme rainy days (30%) had higher
proportional contribution to the diarrhea-associated morbidity
among the 15–39 age group (Fig. 2B). Although relative humidity
was not a statistically significant effect included in this Poisson
regression model (Table 3), the relative humidity was strongly linked
with the numbers of extreme rainy days, and thus its effect on
morbidity was dependent on its relation with the number of heavy
rainy day. This indicated that the number of extreme rainy days
dominated the diarrhea-associated morbidity in the 15–39 age group
rather than relative humidity. Previous studies showed evidences
supporting the role of extreme rainfall in the dynamics of diarrhea
(Buddemeier, 1992; Watson et al., 1998; Checkley et al., 2000). In
subtropical Taiwan, however, flash flooding and water discharges
rapidly into the sea without having been used effectively are
frequently a problem. Thus, extreme rainfall is likely to be a worse
problem for diarrhea in Taiwan.

Third, climatic variables may not directly affect the number of
cases for diarrhea, but pose the disease outbreak through various
pathways as mentioned above. Therefore, the lag effects of these
climatic variables on the number of cases of diarrhea morbidity were
observed in this study. Zhang et al. (2010) reported that the impact of
temperature on diarrhea morbidity has shorter lagged time in topical
Townsville (0 month) than in this study (1 month). This difference
may be relevant to the stable ambient temperature in the topical
region. However, the lag effects of rainfall on diarrhea morbidity in
Townsville (3 month) are longer than in this study (2 month), which
may be due to less rainfall in the tropical region. The variety of lag
effect from the impact of climatic variables on diarrhea-associated
morbidity has important implications. Precise local climatic condi-
tions should be taken into account on the strategies for prevention
and control of diarrhea-associated diseases.

Diarrhea-related studies have no well defined for age-specific
effect on diarrhea-associated morbidity. This study indicated that
different age groups were affected differently by the results obtained
from the Poisson regression models and the estimates of excess
morbidity. However, this study cannot exactly predict the dynamics of
diarrhea-associated disease in children (0–14 years) population
implying that the predicting model had the limitation in age-specific
characteristics or other confound factors, such as behavior patterns,
vaccination coverage, immune system and dietary habit. Therefore,
more detailed age-specific information could justify the peak values in
dynamics of diarrhea-associated morbidity. Yet, the predicting model
considering the age-specific effect on diarrhea-associated morbidity
still could provide some insights on deciding the government policy or
establishing the management of an early warning system.

Predicting diarrhea-associated morbidity in Taiwan using climatic
factors alone is imperfect because diarrhea epidemics involve
complex and critical interactions between intrinsic dynamics and
extrinsic environmental factors, as indicated by different seasonal
patterns. However, these confounder factors remained consistent
over the study period, and thus the association between climatic
variables and diarrhea morbidity can be predicted by the time-series
analysis after controlling for the confounders. Furthermore, the excess
diarrhea morbidity may be overestimated by the Poisson regression
model, primarily attributed to the climatic change. This is because
some of the diarrhea morbidities outside these periods are likely due
to the interactions between pathogens and human immune system or
various individual behaviors. Therefore, more of environmental or
climatic observation and detailed surveillance data (including viral,
antigenic, and whole-genome analysis) would likely improve the
accuracy to predict diarrhea morbidity. Moreover, it is necessary to
seek novel mechanism and further provide biologically plausible and
epidemiological information for an optimal early warning system.
In summary, this study provided a foundation for predicting
diarrhea epidemics for various age groups (children (0–14 years),
adult (15–39 years) and seniors (40–65 years)), and proposed an
early warning system to enhance public health measures in Taiwan
and areas of the world that suffer from climate change. A best-fitted
Poisson seasonal regression model quantitatively analyzed extreme
weather events relevant to the age-specific diarrhea-associated
diseases in Taiwan, and the selected climatic factors effectively served
as indicators of diarrhea morbidity. Results suggested that monthly
maximum temperature and monthly number of extreme rainfall with
a lag time of 1–2 months was contributed to diarrhea-associated
morbidity. Excess risk attributed to extreme weather events in age-
specific diarrhea morbidity was also probabilistically quantified.
Future studies should develop a fully integrated model for diarrhea
prediction that accounts for the components of human population
exposed to diarrhea-associated diseases and the complexity of
diarrhea epidemiology, and climatic and environmental factors and
the genomics analysis of diarrhea pathogens.
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