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Abstract
Gypenosides (Gyp), found in Gynostemma pentaphyllum Makino, has been used as a folk medicine in the Chinese
population for centuries and is known to have diverse pharmacologic effects, including anti-proliferative and
anti-cancer actions. However, the effects of Gyp on prevention from invasion and migration of oral cancer cells
are still unsatisfactory. The purpose of this study was to investigate effects of Gyp treatment on migration and
invasion of SAS human oral cancer cells. SAS cells were cultured in the presence of 90 and 180 mg/mL Gyp for
24 and 48 hours. Gyp induced cytotoxic effects and inhibited SAS cells migration and invasion in dose- and
time-dependent response. Wound-healing assay and boyden chamber assay were carried out to investigate
Gyp-inhibited migration and invasion of SAS cells. Gyp decreased the abundance of several proteins, including
nuclear factor-kappa B (NF-kB), cyclooxygenase-2 (COX-2), extracellular signal-regulated kinase 1/2 (ERK1/
2), matrix metalloproteinase-9, -2 (MMP-9, -2), sevenless homolog (SOS), Ras, urokinase-type plasminogen
activator (uPA), focal adhesion kinase (FAK) and RAC-alpha serine/threonine-protein kinase (Akt), in a
time-dependent manner. In addition, Gyp decreased mRNA levels of MMP-2, MMP-7, MMP-9 but did not affect
FAK and Rho A mRNA levels in SAS cells. These results provide evidences for the role of Gyp as a potent anti-
metastatic agent, which can markedly inhibit the metastatic and invasive capacity of oral cancer cells. The inhi-
bition of NF-kB and MMP-2, -7 and -9 signaling may be one of the mechanisms that is present in Gyp-inhibited
cancer cell invasion and migration.
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Introduction

Over 300,000 cases of oral and oropharyngeal cancers

are diagnosed annually worldwide.1,2 To date, effi-

cacy of different treatments (surgery, radiotherapy

and chemotherapy) for oral and oropharyngeal can-

cers have not been satisfactory. Many components

from natural plants and their derivatives have been

shown to inhibit cancer, such as paclitaxel which is

derived from Taxus brevifolia,1,3 and it has been used

clinically for lung cancer for over 20 years.3 Gynos-

temma pentaphyllum Makino (family Cucurbitaceae)

has been used as a folk medicine in the Chinese pop-

ulation for centuries. Gypenosides (Gyp) are the

major components in Gynostemma pentaphyllum

Makino,4 and it has a variety of pharmacological

effects including anti-inflammatory, anti-oxidative,5

anti-hyperlipidemic, anti-cardiovascular6-8 and anti-

cancer.9-12 Gyp induced apoptosis in human hepa-

toma cells via the mitochondria-dependent pathway.9

In our laboratory, we found that Gyp affected N-acet-

yltransferase activity and gene expression in human

cervical cancer cells.13 We had reported that Gyp

induced apoptosis in human colon cancer colo

205 cells through the mitochondria-dependent path-

way and activation of caspase-3.14 Recently, we

reported that Gyp induced apoptosis in human tongue

cancer SCC-4 cells through the endoplasmic reticu-

lum stress and mitochondria-dependent pathways.1

There is no information on effects of Gyp on migra-

tion and invasion of human oral cancer SAS cells.

Therefore, in the present study, we selected human oral

cancer SAS cells for examining the effects of Gyp on

migration and invasion of SAS cells. Gyp inhibited the

migration and invasion of SAS cells by inhibition of

matrix metalloproteinase (MMP)-2, -7 and -9 by

nuclear factor-kappa B (NF-kB) signaling pathways.

Materials and methods

Chemicals, reagents and cell culture

Gyp was kindly provided by Dr Jung-Chou Chen

(School of Chinese Medicine, China Medical Univer-

sity). Dimethyl sulfoxide (DMSO), potassium phos-

phates and Triton X-100 were obtained from Sigma

Chemical Co. (St. Louis, Missouri, USA). Dulbecco’s

modified Eagle’s medium (DMEM), L-glutamine,

fetal bovine serum (FBS) and penicillin–streptomy-

cin, trypsin-EDTA were obtained from Invitrogen

(Carlsbad, California, USA). The primary antibodies

(anti-NF-kB, -COX-2, -ERK1/2, - MMP-9, -MMP-

2, -SOS, -Ras, -uPA, -FAK, -PI3K, -Akt) were pur-

chased from Santa Cruz Biotechnology, Inc. (Santa

Cruz, California, USA). All materials used for gel

electrophoresis were obtained from Bio-Rad Labora-

tories, Inc. (Hercules, California, USA). The SAS cell

line (human oral squamous cell carcinoma) was

obtained from Dr Pei-Jung Lu (Graduate Institute of

Clinical Medicine, National Cheng Kung University,

Tainan, Taiwan). The cells were cultured in DMEM

containing 10% FBS, 2 mM L-glutamine, 100 Units/

mL penicillin and 100 mg/mL streptomycin in 75

cm2 tissue culture flasks at 37�C under a humidified

5% CO2 and 95% air atmosphere as we have previ-

ously reported.1

Viability of SAS cells

Cells (2� 105 cells/well) were plated in 12-well plates

and incubated at 37�C for 24 hours before each well

were co-treated with 0, 90 and 180 mg/mL Gyp for

24 hours. DMSO was used for the control regimen. All

cells were harvested and stained with Propidium

iodide (PI) (5 mg/mL) and then were analyzed by flow

cytometry (Becton-Dickinson, San Jose, California,

USA) as previously described.15,16

Wound healing assay

Cells were cultured in 6-well plates for 24 hours and

then were wounded by scratching with a sterile pipette

tip (to remove the cells but both sides still have orig-

inal cells) and incubated with DMEM containing no

FBS, and then the cells were treated with Gyp (90 and

180 mg/mL) or without (control) for 0, 24 and

48 hours. The migrated cells in each well were photo-

graphed under phase-contrast microscopy (�200) as

previously described.17

Invasion and migration determinations

Cell invasion was determined by using Matrigel

(BD Biosciences, Franklin Lakes, New Jersey,

Lu K W et al. 407



USA)-coated transwell cell culture chambers (8 mm

pore size; Millipore, Billerica, Massachusetts, USA)

as previously described.18 SAS cells were kept for 24

hours in serum-free medium and then were trypsinized

and resuspended in serum-free DMEM and placed in

the upper chamber of the transwell insert (5 � 104

cells/well) and incubated with 0.5% DMSO or Gyp

(90 and 180 mg/mL), and DMEM containing 10% FBS

was added to the lower chamber. The plates were incu-

bated in a humidified atmosphere with 95% air and 5%
CO2 at 37�C for 24 or 48 hours, non-invasive cells in

the upper chamber were removed by wiping with a cot-

ton swab and invasive cells were fixed with 4% formal-

dehyde in PBS and stained with 2% crystal violet in 2%
ethanol. Cells in the lower surface of the filter that

penetrated through the Matrigel were counted under a

light microscope at �200.17 Cell migration was deter-

mined as described for cell invasion assay except that

the filter membrane was not coated with Matrigel.

Cells located on the underside of the filter were

counted under a light microscope at �200.17,19

Western blotting analysis

SAS cells were cultured on 6-well culture plates and

grown for 24 hours. Gyp was added to cells at a final

concentration of 180 mg/mL, while DMSO (solvent)

alone was added to control cells. Cells from each

treatment were incubated in DMEM with 0.5% FBS

at 37�C for 0, 6, 12, 24, 48 and 72 hours. The cells

in each treatment were harvested by centrifugation

and resuspended in ice-cold 50 mM potassium phos-

phate buffer (pH 7.4) containing 2 mM EDTA and

0.1% Triton X-100. The collected cells were soni-

cated and centrifugated at 13,000g for 10 min at

4�C to remove cell debris and the supernatant col-

lected for determination of total protein concentration

by using a Bio-Rad protein assay kit (Hercules), with

bovine serum albumin (BSA) as the standard. Sodium

dodecyl sulfate (SDS) gel electrophoresis and West-

ern blotting were performed as described previously17

for determining the effects of Gyp on protein levels of

NF-kB, cyclooxygenase-2 (COX-2), extracellular

signal-regulated kinase 1/2 (ERK1/2), MMP-9,

MMP-2, sevenless homolog (SOS), Ras, urokinase-

type plasminogen activator (uPA), focal adhesion

kinase (FAK), PI3K and alpha serine/threonine-

protein kinase (Akt). Due to the observation that Gyp

treatment altered total protein levels, b-actin, which

was not altered by Gyp, was used to normalize

changes in specific protein levels.

Real-time polymerase chain reaction (PCR)

Cells were cultured in 6-well culture plates and

180 mg/mL Gyp was added to cells for 24 or 48 hours.

Cells were collected and total RNA was extracted

using the Qiagen RNeasy Mini Kit (Qiagen, Valencia,

California, USA) as previously described.17,20 RNA

was reverse-transcribed for 30 min at 42�C with High

Capacity cDNA Reverse Transcription Kit according

to the standard protocol of the supplier (Applied Bio-

systems, Foster City, California, USA). Quantitative

PCR was performed by the following conditions:

2 min at 50�C, 10 min at 95�C and 40 cycles of 15 sec

at 95�C, 1 min at 60�C using 1 mL of the cDNA

reverse-transcribed as described above, 2X SYBR

Green PCR Master Mix (Applied Biosystems) and

200 nM of forward (F) and reverse (R) primers,

including MMP-2: F-CCCCAGACAGGTGATCTT

GAC, R-GCTTGCGAGGGAAGAAGTTG; MMP7:

F-GGATGGTAGCAGTCTAGGGATTAACT, R-AG

GTTGGATA CCACTGCATTAGG; MMP9: F-CG

CTGGGCTTAGATCATTCC, R-GTGCCGGATGCC

ATTCAC; FAK: F-TGAA TGGAACCTCGCAGTCA,

R-TCCGCATGCCTTGCTTTT; Rho A: F- TCAAGC

CGGAGGTCAACAAC, R-ACGAGCTGCCCATAGC

AGAA; Glyceraldehyde 3-phosphate dehydrogenase

(GAPDH): F-ACACCCACTCCTCCACCTTT, R-TA

Figure 1. Gypenosides (Gyp) affected the viability of SAS
cells. The SAS cells (2 � 105 cells/well) were placed in
12-well plates and incubated at 37�C for 24 hours before
they were co-treated with various doses of Gyp for 24
hours. DMSO (dimethyl sulfoxide; solvent) was used for
the control regimen. Cells were stained with PI and
analyzed by flow cytometry as described in materials and
methods section. Each point is mean + SD of three
experiments. *p < 0.05 and ***p < 0.001 vs control.
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GCCAAATTCGTTGTCATACC. Each assay was run

on an Applied Biosystems 7300 Real-Time PCR system

in triplicates and expression fold-changes were derived

using the comparative CT method.17,20

Statistical analysis

All results were expressed triplicate as mean + SD.

Differences between the Gyp-treated and control

groups were analyzed by Student’s t test, with values

of *p < 0.05 and ***p < 0.001 considered significant.

Results

Gyp affected the viability of human oral cancer
SAS cells

Cells were incubated with 90 and 180 mg/mL of Gyp

for 24 and 48 hours, and cell viability was determined.

Figure 1 shows that there were fewer viable cells as

Gyp concentration increased when compared to con-

trol groups. These effects were time-dependent.

Gyp inhibited the migration of SAS cells in vitro

Inhibition of cell migration by Gyp was determined

using a wound-healing assay and the results are

shown in Figure 2A and B. The higher Gyp concentra-

tion (180 mg/mL) and longer period of time (48 hours)

incubation time produced greater inhibition as com-

pared with lower concentrations and shorter

incubation times. Percentage of inhibition ratio was

30%–48% for the 24-hour treatment, 30%–58% for

the 48-hour treatment. Gyp significantly inhibited

SAS cells motility.

Gyp suppressed the invasion and migration of
SAS cells

One of the major characteristic of metastasis is the

migratory and invasive ability of tumor cells. Effects

of Gyp inhibition of invasion and migration were

examined by Boyden Chamber assay and these results

are shown in Figure 3. Gyp inhibited cell migration

with increasing concentration in a dose-and time-

dependent manner (Figure 3A and B). At 90 mg/mL

of Gyp, the cell migration was reduced to 32% and

46% for 24- and 48-hour treatment, respectively, and

at 180 mg/mL of Gyp, the cell migration was reduced

to 63% and 78% for 24- and 48-hour treatment,

respectively. Gyp also induced a dose-dependent

decrease in invasion (Figure 3C and D). At 90 mg/

mL of Gyp, cell invasion was reduced to 28% and

65% for 24-hour and 48-hour treatment, respectively,

and at 180 mg/mL of Gyp, the invasion was reduced

to 51% and 80% for 24-hour and 48-hours treatment,

Figure 2. Gypenosides (Gyp) inhibited the migration of SAS cells in vitro. Cells in 6-well plates were wounded by
scratching with a pipette tip and the cells were incubated with Dulbecco’s modified Eagle’s medium (DMEM) containing
no fetal bovine serum (FBS) and incubation with or without Gyp for 24 and 48 hours. The cells were photographed
under phase-contrast microscopy (�200; A) performed by counting cells (B). ***p < 0.001 vs control.
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respectively. These results demonstrated that Gyp

significantly inhibited the migration and invasion

of SAS cells.

Gyp decreased the levels of migration- and
invasion-associated proteins in SAS cells

Levels of invasion- and migration-associated proteins

in SAS cells after treatment with Gyp for different time

periods were determined by Western blotting. The

results indicate that the levels of NF-kB, COX-2,

ERK1/2, MMP-2 and MMP-9 (Figure 4A) and SOS,

Ras, uPA, FAK and Akt (Figure 4B) were lower in

Gyp-treated cells than control cells. However, PI3K

(Figure 4B) was lower than that of control for up to

12 hours and then started to increase to that of control

levels for up to 48 hours.

Gyp reduced MMP-2, MMP-7 and MMP-9
mRNA expressions in SAS cells

In order to further investigate whether Gyp affected

migration- and invasion-associated gene expression in

SAS cells, the cells were treated with Gyp (180 mg/

mL) for 0, 24 or 48 hours. Total RNA was isolated from

Gyp-treated and control groups, and gene expressions

were examined by real-time PCR. The results are shown

in Figure 5A and B which indicate that the expression

levels of MMP-2, MMP-7 and MMP-9 (Figure 5A)

were inhibited during Gyp treatment for 48 hours and

Figure 3. Gypenosides (Gyp) suppressed the migration and invasion of SAS cells in vitro. Cells that penetrated through
without or with the Matrigel to the lower surface of the filter were stained with crystal violet and photographed under a
light microscope at �200 (A and C). Quantification of cells in the lower chambers was performed by counting cells at
�200 (B and D). Columns repeat the mean from three independent experiments. ***p < 0.001, significant difference
between Gyp-treated groups and the control as analyzed by Student’s t test.
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FAK and Rho A (Figure 5B) were not significantly

reduced after exposure to Gyp for 24 hours.

Discussion

Oral squamous cell carcinoma (OSCC) can be aggres-

sive if not detected early. Approximately 50% of

OSCC patients have nodal metastases and the 5-year

survival rate is less than 50%.21 Metastasis is one of the

major challenges for a successful cancer treatment. In

the present study, we show that Gyp significantly

inhibited the invasion and migration of SAS cells,

which is one kind of OSCC cell line. Furthermore, our

findings showed that Gyp could decrease protein levels

of tumor metastasis-related proteins such as MMP-2, -

9 and uPA (Figure 4A and B). These findings are the

first reported to address the inhibitory effects of Gyp

on oral cancer invasiveness and migration via decreas-

ing the production of tumor-associated metastatic-

related proteins in SAS cells.

Tumor invasion requires degradation of basement

membranes, proteolysis of extracellular matrix

(ECM), pseudopodial extension and cell migration.22

The basement membrane is the first barrier of the ECM

Figure 4. Representative Western blotting analyses demonstrated the changes in the levels of associated proteins in
migration and invasion of SAS cells after exposure to gypenosides (Gyp). The SAS cells (5 � 106 cells/well) were treated
with Gyp at 180 mg/mL for different periods of time (0, 6, 12, 24, 48 and 72 hours) and then cells were collected and the
total protein extracts were prepared and determined as described in materials and methods section. The levels of
nuclear factor-kappa B (NF-�B), cyclooxygenase-2 (COX-2), extracellular signal-regulated kinase 1/2 (ERK1/2), matrix
metalloproteinase (MMP)-9 and MMP-2 (panel A), sevenless homolog (SOS), Ras, urokinase-type plasminogen activator
(uPA), focal adhesion kinase (FAK), PI3K and threonine-protein kinase (Akt; panel B) expressions were estimated by
Western blotting as described in materials and methods.
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against cancer invasion. A number of proteolytic

enzymes, including MMPs and serine proteinases,

contribute to the degradation of underlying basement

membrane. MMPs play a role in the progression of oral

cancer23 and they are secreted by invasive cancer cells,

Therefore, MMPs play an important role in cancer cell

invasion and metastasis.24,25 In addition to MMPs, the

serine proteinase, uPA and cathepsins are involved

during metastasis and angiogenesis, which degrades

basement membranes and activates pro-MMPs.26

Inhibition of the invasion-mediated by MMP-2 and

uPA can reduce metastasis, suggesting the possible

usefulness of specifically selected MMP inhibitors

would be worthy of investigation also

as chemopreventive agents in patients at high risk

of developing oral cancer. Other reports have shown

that MMP-2 was associated with tongue cancer27

and MMP-9 associated with nasopharyngeal carci-

noma28 and with the recurrence rate of head and

neck SCC.29 Thus, elevated expression of MMP

appears to be related to the invasion, aggressiveness

and overall survival of patients with head and neck

cancers.

The 52-kDa uPA plays a major role in the decom-

position of basement membranes, and expression of

uPA is increased in solid tumors. Our results showed

that Gyp decreased the uPA protein levels in SAS

cells. It was also reported that the activation of the

uPA/uPAR/plasmin proteolytic network occurred

with tumor invasion and dissemination of various

malignancies.30,31 The presence of uPA in tumors can

be useful as a potential prognostic factor and a prog-

nostic enzyme-linked immunosorbent assay (ELISA)

for uPA for solid cancers.32 Moreover, the levels of

uPA and uPAR expression have served as prognostic

markers in various malignancies.33 Thus, we exam-

ined the expression of MMPs, FAK and Rho A in SAS

cells and observed that real-time PCR revealed a

marked decrease in the level of MMP-2, -7 and -9

mRNA after Gyp treatment for 24 hours. These results

indicated that Gyp inhibited the expression of MMP-

2, -7 and -9 in oral cavity carcinoma cells (SAS). Our

results showed that Gyp suppressed the levels of

ERK1/2, NF-kB, uPA, Ras, SOS, COX-2, Akt, FAK,

MMP-2 and -9 protein levels in SAS cells. It has been

reported that MMP-9 and uPA proteins require NF-

kB34,35 and activator protein-1 (AP-1) for production.

Other investigators also showed that the activation of

ERK will stimulate two cis-acting regulatory ele-

ments such as the binding sites of AP-1 and NF-kB,

which play an important role in controlling MMP-9

gene expression.36

Gyp also inhibited protein levels of FAK, Ras and

ERK1/2 in SAS cells. Clinical evidence indicates that

high FAK expression relates to tumor progression and

reduced FAK expression reduced expression of

MMPs.37 FAK is a positive regulator of nonmalignant

cell migration and cell survival38 and increased FAK

expression has been detected in several types of human

cancers.37 FAK is required for tumor development

induced by some oncogenic proteins, which activate a

positive FAK-c-Src feedback loop with ERK and Akt.

Ras has been demonstrated to be either mutated or

activated in many types of human cancer, and it is

Figure 5. Effects of gypenosides (Gyp) on matrix
metalloproteinase (MMP)-2, MMP-7, MMP-9, FAK and Rho
A mRNA expressions in SAS cells. The total RNA was
extracted from SAS cells after Gyp (180 mg/ml) treatment
for 0, 24 and 48 hours, and RNA samples were reverse-
transcribed cDNA then for real-time PCR as described in
materials and methods section. The ratios of MMP-2, -7
and -9 (A), focal adhesion kinase (FAK) and Rho A (B)
mRNA/GAPDH are presented in panels A and B. Data
represents mean + SD of three experiments. ***Indicate
p < 0.001 vs control.
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recognized as a driving force for tumor development in

mouse models.39 Aberrant activation of Ras protein has

been found in the malignant phenotype of cancer cells

that are associated with cellular proliferation, transfor-

mation, invasion and metastasis.40 Other reports also

showed that elevated Ras correlated with ERK activa-

tion that has been detected in human glioblastoma mul-

tiforme (GBM) specimens.41 We demonstrated that

Gyp inhibited MMP-2 and -9, which are associated with

ERK1/2, Ras, FAK and Rho A in SAS cells.

In conclusion, our observations show that Gyp

exerted an inhibitory effect on several essential steps

of metastasis, including cell invasion and migration,

through NF-kB and ERK signaling pathways, result-

ing in the inhibition of MMP-2 and -9 as summarized

in Figure 6. Gyp and other flavones could possibly

regulate the activities of invasion-associated protei-

nases and their natural inhibitors. Our results indicate

that Gyp may be a powerful candidate to be used as a

preventive agent against oral cancer metastasis.
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