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ABSTRACT In the mammlian brain, the hippocampus has been established as a
principle structure for learning and memory processes, which involve synaptic plastic-
ity. Althought a relationship between synaptic plasticity and stimulation frequency
has been reported in numerous studies, little is known about the importance of pulse
number on synaptic plasticity. Here we investigated whether the pulse number can
modulate bidirectional plasticity in hippocampal CA1 areas. When a CA1 area was
induced by a paired-pulse (PP) with a 10-ms interval, the strength of the synapse was
altered to form a long-term depression (LTD), with a 68 6 4% decrease in expression.
The PP-induced LTD (PP-LTD) was blocked by the metabotropic glutamate receptors
subtype 5 (mGluR5) antagonist MPEP, suggesting that the PP-LTD relied on the acti-
vation of GluR5. In addition, this modulation of LTD was protein kinase C (PKC)- and
Group II mGluR-independent. However, when increasing the pulse number to 4 and 6,
potentiated synaptic strength was observed, which was N-methyl-D-aspartate receptor
(NMDAR)-dependent but mGluR5-independent. Surprisingly, when blocking mGluR,
the synaptic efficacy induced by triple-pulse stimulation was altered to form a long-
term potentiation (LTP) with a 142 6 7% enhancement, and was further blocked by
NMDA antagonist APV. Following treatment with APV and PKC blocker chelerythr-
ine, the LTP expression induced by 4- and 6-pulse stimulation was switched to LTD.
We suggest that CA1 synaptic plasticity is regulated by the result of competition
between NMDA and mGluR5 receptors. We suggest that the pulse number can bidirec-
tionally modulate synaptic plasticity through the activation of NMDA and mGluR5 in
hippocampal CA1 areas. Synapse 00:000–000, 2011. VVC 2011 Wiley-Liss, Inc.

INTRODUCTION

A central hypothesis for learning and memory at
the cellular level is required for the experience-
dependent enhancement and weakening of synaptic
efficacy, which includes the induction of long-term
potentiation (LTP) and long-term depression (LTD).
LTP and LTD are considered models of such bidirection-
ally-changeable plasticity and are generally required for
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N-methyl-D-aspartate receptor (NMDAR) activation
followed by postsynaptic Ca21 influx, instigating the
triggering of Ca21-dependent signaling pathways
(Bliss and Collingridge, 1993; Malenka and Bear,
2004; Malenka and Nicoll, 1999). According to the
BCM theory (Beggs, 2001; Dudek and Bear, 1992),
the direction of the change in synaptic strength is
modulated by the activation of NMDA-dependent
Ca21 signaling. A small to moderate amount of
NMDA-dependent Ca21 signaling leads to LTD,
whereas a larger activation causes LTP (Dudek and
Bear, 1992; Mulkey and Malenka, 1992).

LTP can be induced with high-frequency stimula-
tion (HFS) or low-frequency stimulation (LFS) paired
with postsynaptic membrane depolarization (Lin
et al., 2003, 2006). In contrast, LTD can be induced
with (a) relatively LFS from 1 to 3 Hz; (b) presynaptic
LFS with a small postsynaptic potentiation; (c) two
independent pathways paired within a narrow period
of time (Bear and Melanka., 1994; Lin et al., 2008).
HFS causes a large influx of calcium into the postsy-
naptic membranes, which leads to LTP induction via
activation of calcium-dependent signaling transduc-
tion, such as calcium/calmodulin-dependent protein
kinase II, adenylyl cyclase, protein kinase, and mito-
gen-activated protein kinase (Lin et al., 2003, 2006).
However, LFS depolarizes a relatively small number
of NMDA receptors, leading to LTD via activation of
phosphatases, including calcineurin (Mulkey et al.,
1993, 1994).

Another induction of LTD expression at the hippo-
campal CA1 synapses was required for the paired-
pulse at low frequency (referred as to PP-LTD), causing
activation of metabotropic glutamate receptor (mGluR)
but not NMDAR (Kin et al., 2003; Otani and Connor,
1998). mGluR-LTD can also be induced by applying
mGluR5 agonist (R,S)-3,5-dihydroxyphenylglycine
(DHPG) by pharmacology (Palmer et al., 1997). PP-
LTD and DHPG share a common signaling pathway
mechanism, because PP-LTD was blocked by mGluR
antagonists (Kemp and Bashir, 1999). Interestingly,
LFS-induced LTD may be regulated developmentally,
as LTD can be induced in slices from young animals
within 4 to 6 weeks (Yang et al., 2002). In contrast,
recent studies have reported that paired-pulse LFS can
reliably induce LTD in adult animals (Alarcon et al.,
2004; Huang and Kandel, 2006). Therefore, the
switching mechanism of NMDAR-dependent LTD to
PP-induced mGluR-dependent LTD remains unclear.

It is well documented that a low frequency of 1 Hz
and PP stimulation at a low frequency can robustly
induce LTD, which is NMDAR- and mGluR5-depend-
ent, in the hippocampus. PP stimulation for a short
period can also induce age-related LTP. Our hypothe-
sis states that the paired-pulse number for low-
frequency stimulation can affect the bidirectional
plasticity. To verify our hypothesis, pulse numbers

from 1 to 6 were applied with a 10-ms interval for 10
min to hippocampal CA1 areas. Our results showed
that different pulse numbers can bidirectionally mod-
ulate synaptic plasticity by activation of NMDAR and
mGluR5 receptors. We believe that these results will
provide a better understanding of pulse number
responses and bidirectional plasticity as they relate to
natural burst firing.

MATERIALS AND METHODS
Experimental animals

Male Sprague-Dawley rats weighing 150 to 200 g
were used in this study. Rats were free access to food
and water. The usage of these animals was approved
by the Institute Animal Care and Use Committee of
China Medical University and followed the Guide for
the use of Laboratory Animals (National Academy
Press).

Electrophysiology

Adult male SD rats were anesthetized with halo-
thane and decapitated. The brains were quickly
removed and placed in ice-cold artificial CSF (ACSF)
containing the following (mM): 119 NaCl, 2.5 KCl, 26.2
NaHCO3, 1 NaH2PO4, 1.3 MgSO4, 2.5 CaCl2, and 11
glucose (the pH was adjusted to 7.4 by gassing with 5%
CO2-95% O2). Transverse hippocampal slices (450 lm
thick) were cut with a vibrating tissue slicer (Campden
Instruments, Loughborough, UK) and transferred to
an interface-type holding chamber at room tempera-
ture (258C). The slices were recovered for at least 90
min and then were transferred to an immersion-type
recording chamber, perfused at 2 ml/min with ACSF
containing 100 lM picrotoxin at room temperature.
The border between the CA1 and CA3 areas was cut to
prevent epileptiform discharge of pyramidal neurons
(Lin et al., 2003, 2008). For extracellular field potential
recording, a glass pipette filled with 3M NaCl was
positioned in the stratum radiatum of the CA1 area,
and the field excitatory postsynaptic potential (fEPSP)
was recorded. Bipolar stainless steel stimulating elec-
trodes (Frederick Haer Company, Bowdoinham, ME)
were placed in the striatum radiatum to stimulate
Schaffer collateral branches. The fEPSP was elicited
by adjusting the intensity of stimulation to about
40-50% of maximum response which population spikes
after fEPSP began to appear. Stable baseline fEPSP
activity was recorded by applying a short-duration
voltage pulse (�1 ms) at the determined intensity ev-
ery 30 s for at least 10 min. Different pulse stimula-
tions were used to induce LTP and LTD expression
from 1 to 6 pulses at 10 ms intervals. All signals were
filtered at 2 kHz using the low-pass Bessel filter pro-
vided with the amplifier and digitized at 5 kHz using a
CED micro 1401 interface running Signal software
(Cambridge Electronic Design, Cambridge, UK). All
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drugs were purchased from Sigma (St. Louis, MO).
The initial slopes of the fEPSP were measured for data
analysis. Synaptic responses were normalized to the
average of the baseline. The average size of the slope
of the fEPSPs recorded from the last 10 min after
different pulse stimulation was used for statistical
comparisons. All data are presented as the mean 6

standard error. Statistical significance was tested by
paired t-test and Mann-Whitney U test. P < 0.05 was
considered statistically significant.

RESULTS
Application of prolonged paired-pulse (PP)

stimulation at low frequency induces LTD at
CA1 synapses

First of all, we confirmed that the novel LTD
expression in CA1 areas was induced by PP stimula-
tion (Lin et al., 2003), which is two pulses with a
10-ms interpulse interval (IPI) at 0.167 Hz for 10
min. PP-induced LTD (PP-LTD) decreased to 68 6 4%
of the baseline (n 5 16 slices, P < 0.01, paired t-test,
Fig.F1 1A). However, the application of single-pulse
stimulation at 0.167 Hz for 10 min did not result in a
significant change in synaptic efficacy (Fig. 1B, 96 6

4% of baseline, n 5 13, P 5 0.12, paired t-test). These
results suggest that the induction of PP-LTD required
a two-stimuli pattern. Furthermore, the induction of
PP-LTD was not required for the activation of NMDA
receptors, as demonstrated by adding NMDAR antag-
onist APV. Following the application of 50 lM APV in
a bath, PP stimulation can reliably induce LTD (Fig.
1C, 79 6 3% of baseline, n 5 10 slices, P < 0.01,
paired t-test).

Induction of PP-LTD is required for the
activation of group I mGluR, including

mGluR5, but not NMDA receptors

It has been shown that LTD induced by PP stimula-
tion with an IPI of 50 ms at 1 Hz for 15 min was not
NMDAR-dependent but was Group I mGluR-depend-
ent (Bear et al., 2001; Kemp and Bashir, 2001). We
speculated that PP-LTD was also dependent on the
activation of Group I mGluR, including mGluR5
receptors. To test this possibility, we first examined
whether the chemical activation of Group I mGluR
could induce LTD. The application of 40 lM of Group
I mGluR agonist, DHPG, for 10 min resulted in sig-
nificant LTD expression (65 6 3% of baseline, n 5 6,
P < 0.01, paired t-test). The expression was measured
40 min after washing of DHPG. Second, we chose to
examine whether DHPG saturated the Group I
mGluR-dependent LTD. After repeated DHPG appli-
cation (three times at 10-min intervals), saturated
LTD expression resulted (45 6 2% of baseline, n 5 7
slices, P < 0.01, paired t-test). After the application of
DHPG thrice, PP stimulation led to an altered plas-

ticity of 90 6 5% (n 5 7 slices, P 5 0.13, paired t-test,
Fig. F22B) of the baseline; this recording was made 35
to 40 min after the final application of DHPG.
DHPG-saturated LTD was occluded in the formation
of PP-LTD, which suggests that the mechanism of
PP-LTD is similar to DHPG-LTD. It has been
reported that DHPG-induced LTD is independent of
PKC activation (Schnabel et al., 1999, 2001). We
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Fig. 1. Application of PP stimulation at low-frequency induced
LTD and was NMDAR-independent. A: Application of PP stimula-
tion with a 10 ms interval for 10 min resulted in LTD expression.
B: Single-pulse stimulation did not significantly alter the synaptic
efficacy. C: Induction of LTD by PP stimulation was NMDAR-inde-
pendent.
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further examined the role of PKC in PP-LTD. Follow-
ing the addition of 3 lM chelerythrine, a PKC
blocker, to the bath, PP-LTD was still inducible in
CA1 areas (Fig. 2C, LTD 5 78 6 4% of baseline, n 5

6, P < 0.01, paired t-test). The phenomenon was also
observed when using another PKC blocker, GF
109203X (Fig. 2D, LTD 5 82 6 5% of baseline, n 5 6,
P < 0.01, paired t-test). Thus, PP-LTD was independ-
ent of PKC activation.

DHPG-induced LTD is mediated by the mGluR5
subtype of Group I mGluR (Faas et al., 2002; Man-
naioni et al., 2001). Therefore, we examined the effect
of the mGluR5 pathway on PP-LTD by applying 5 lM
MPEP, a specific mGluR5 blocker. As shown in Figure

2E, under the conditions of an MPEP bath, PP-LTD
was completely blocked in CA1 areas (101 6 5% of
baseline, n 5 12 slices, P 5 0.98, paired t-test). We
also examined whether Group II mGluRs played any
role in PP-LTD. Following the application of 250 nM
LY341495, a specific Group II mGluRs blocker (Kings-
ton et al., 1998), PP-LTD was not affected by blocking
of the mGluR5 pathway in CA1 areas (LTD 5 74 6

5% of baseline, n 5 8 slices, P < 0.01, paired t-test,
Fig. 2F). Taken together, in CA1 areas, LTD induced
by the application of 10-min PP stimulation with a
10-ms IPI at 100 Hz was an analog of DHPG-LTD.
PP-LTD was mediated by mGluR5 but not by Group
II mGluRs.
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Fig. 2. Paired-pulse (PP) stimulation induced LTD and was
NMDA receptor-independent but mGluR5-dependent. A: Applica-
tion of DHPG induced a significant LTD. B: PP stimulation did not
further induce LTD after DHPG saturation. C: DHPG-LTD was
found to be PKC-independent by the addition of 3 lM chelerythrine,

a PKC blocker. D: DHPG-LTD was found to be PKC-independent by
the addition of 1 lM GF 109203X, a PKC blocker. E: DHPG-LTD
was found to be mediated by the mGluR5 subtype of Group I
mGluR by application of its blocker, MPEP. F: DHPG-LTD was
Group II mGluR-independent.
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Pulse number stimulation bidirectionally
regulates synaptic plasticity through activation
of NMDA and mGluR in hippocampal CA1 areas

It is well known that the application of a theta
burst, which consists of four stimulation pulses at
100 Hz, can induce LTP at CA1 synapses (Yang et al.,
2002), whereas the application of two stimulation
pulses at 100 Hz induces LTD, as shown here and by
Lin et al. (2003). It would therefore be of interest to
investigate the effect of application of conditioned
stimulation with different pulse numbers on synaptic
plasticity. The application of conditioned stimulation
with a burst of three pulses at 100 Hz did not result
in a significant change in synaptic efficacy (107 6 9%
of baseline, n 5 13 slices, P 5 0.41, Fig.F3 3A), while
conditioned stimulation with bursts of four or six
pulses at 100 Hz induced a significant LTP of 154 6

16% and 163 6 10%, respectively (Figs. 3B and 3C).

In the conditioned stimulation, bursts of different

numbers of pulses were given at 0.167 Hz for 10 min.
The LTP induced by conditioned stimulation with

bursts of four and six pulses was NMDAR-dependent
(Figs. 3D and 3E, 100 6 2% and 97 6 8%, n 5 8, P 5

0.89 and 0.68, respectively). LTP induction was

blocked by the addition of 50 lM APV to the bath.
These results showed a pulse-number-dependent

bidirectional synaptic plasticity at CA1 synapses.
It is likely that LTP of a high magnitude was induced

to counteract the expression of LTD mediated by
mGluR5 when conditioned stimulation with a large
number of pulses was used. Hence, we tested the effect
of a specific blocker of mGluR5 on the application of
conditioned stimulation with a moderate number of
pulses (three pulses) in the burst. Notably, when

J_ID: ZB0 Customer A_ID: 2010-Oct-0009.R1 Cadmus Art: SYN20906 Date: 18-JANUARY-11 Stage: I Page: 5

ID: nareshrao Date: 18/1/11 Time: 12:45 Path: N:/3b2/SYN#/Vol00000/110002/APPFile/JW-SYN#110002

Fig. 3. Pulse stimulation can induce LTP expression by the
mechanism of activation of NMDAR and PKC. A: Application of
conditioned stimulation with a burst of three pulses did not alter
synaptic efficacy. B: Application of four pulses induced LTP expres-

sion. C: Application of six pulses induced LTP expression. D: The
4-pulse stimulation-induced LTP was NMDA-dependent. E:
The 6-pulse stimulation-induced LTP was NMDA-dependent. F:
The 4-pulse stimulation-induced LTP was PKC-dependent.
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blocking the possibility of LTD induction by adding
MPEP to the bath, LTP induction by 3-pulse stimula-
tion was observed (142 6 7% of baseline, n 5 13 slices,
P < 0.01, Fig.F4 4A). This induction of LTP was NMDA-
dependent, as demonstrated by applying 50 lM APV to
the bath (95 6 6% of baseline, n 5 11, P 5 0.39, Fig.
4B). Interestingly, bath addition of MPEP did not have
a significant effect on the magnitude of LTP induced by
conditioned stimulation with 4- or 6-pulse bursts (Figs.
4C and 4D, 140 6 8 and 143 6 8%, n 5 6, P < 0.01,
respectively). These observations were consistent with
results that showed that blocking of NMDAR only
eliminated LTP induction rather than LTD expression
mediated by mGluR5. It has been shown that activa-
tion of PKC could cause desensitization of mGluR5,
thereby inhibiting DHPG-LTD (Rush et al., 2002). It is

possible that PKC is activated by conditioned stimula-
tion with 4- or 6-pulse bursts. LTD was not able to
counteract LTP expression, which explained the signif-
icant augmentation effect of MPEP application on the
magnitude of LTP induced by conditioned stimulation
with 4- or 6-pulse bursts. To test this possibility, cheler-
ythrine and APV were both added to the bath to block
PKC and NMDAR, respectively. Under these condi-
tions, the application of conditioned stimulation with
4- or 6-pulse bursts resulted in a LTD of 70 6 2%
(Fig. 4E). Similar results were also observed with four-
pulse stimulation and chelerythrine application
(Fig. 4F, 83 6 4%, n 5 6, P < 0.05). These results sug-
gested that synaptic efficacy can be bidirectionally
regulated by different pulse number stimulation via
the activation of NMDA and mGluR5 receptors.
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Fig. 4. Pulse number stimulation can alter the synaptic
strength by activating NMDAR and mGluR5. A: LTP can be
induced by the addition of MPEP with 3-pulse stimulation. B: LTP
induced with MPEP under 3-pulse stimulation was NMDA-depend-
ent. C: LTP induced by the application of four pulses was mGluR5-

independent. D: LTP induced by the application of six pulses was
mGluR5-independent. E: LTP can be switched to LTD expression by
the application of NMDA and PKC blockers with 4-pulse stimula-
tion. F: LTP can be switched to LTD expression by the application
of NMDA and PKC blockers with 6-pulse stimulation.
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DISCUSSION

It is known after long-term study that NMDAR and
mGluR can bidirectionally regulate frequency-depend-
ent synaptic plasticity, but it remains unclear whether
they can influence pulse number-dependent synaptic
plasticity. In this study, the bidirectional plasticity we
demonstrated could be modulated through the pulse
number, which activated NMDAR and mGluR. When
single-pulse stimulation was delivered in hippocampal
CA1 areas, no change in synaptic efficacy was
observed. With an increase in pulse number to paired
pulses with a 10-ms IPI, LTD was successfully induced
and maintained for 30 min. PP-LTD was NMDAR-,
PKC-, and Group II mGluR-independent but mGluR5-
dependent. It was shown that MPEP blocked this
induction and no further depression occurred after
saturated DHPG-induced LTD. Furthermore, when we
altered the pulse number from 3 to 6, the synaptic effi-
cacy was massively altered. With three stimulation
pulses, the synaptic strength was no longer depressed
but was unchanged as compared with basal stimula-
tion. When four or six stimulation pulses were deliv-
ered, the synaptic strength was potentiated, the mech-
anism of which was through activation of NMDAR and
PKC. Furthermore, NMDAR-dependent LTP expres-
sion was also observed with 3-pulse stimulation when
applying MPEP to unmask the effect of mGluR5 on
synaptic plasticity.

It is well-known that field potential oscillations at a
theta rhythmic frequency are important for the glean-
ing of new information about the hippocampus (Huh
et al., 2010) and are implicated in novel spatial explo-
ration. Modulation of synaptic efficacy during learn-
ing and memory occurs in a short period, with ento-
rhinal-hippocampal network oscillations at a theta
frequency playing a large role in this process. Theta
burst stimulation, which consists of high-frequency
theta oscillations, has been used to induce LTP in in
vitro investigations (Yang et al., 2002). Hippocampal
neurons are often either silent or discharge a single
spike in normal physiological signaling during
arousal (O’Keefe, 1976) but fire complex spike bursts
in the learning process (Gothard et al., 2001). The
high-frequency spike bursts significantly potentiate
synaptic plasticity and lead to LTP, learning, and
memory recall (Harris et al., 2001; Yang et al., 2002).
Under real physiological conditions, locomotion-
induced theta oscillations can successfully induce LTP
in freely-behaving animals (Orr et al., 2001). This
phenomenon is crucial and is usually observed in the
hippocampus during exploration. Under pathological
conditions, such as Alzheimer’s and Parkinson’s dis-
ease, hippocampal neurons can deliver theta rhythm
stimulation but fail to induce LTP, leading to learning
deficit (Yang et al., 2002). Here, we have used low-fre-
quency stimulation with different pulse numbers to

identify its effect on synaptic plasticity. Our findings
suggested that four to six pulses can induce LTP, the
mechanism of which is through activating NMDA
receptors. In contrast, 2-pulse stimulation can induce
LTD by activating mGluR5 receptors.

Recently, it has been reported that altered burst fir-
ing patterns in the hippocampus have altered effica-
cies depending on the distinguishable receptors acti-
vated during the stimulation periods - this is called
burst plasticity. Alteration of this plasticity does not
require synaptic depolarization, especially the activa-
tion of AMPA or NMDA receptors; in contrast, it
depends on synergistic activation of mGluR1, mGluR5,
and muscarinic receptors (Moore et al., 2009). There-
fore, it is interesting to examine how the synaptic plas-
ticity of EPSPs is potentiated with increasing numbers
of burst firings delivered by a train of somatic current
injections. This differs from synaptic plasticity due to
the resistance to NMDA blockage (Moore et al., 2009).
Accordingly, it is desirable to investigate the relation-
ship between pulse number and synaptic plasticity at
a relatively low-frequency stimulation. Our results
show that with increasing pulse number, synaptic
plasticity can be switched from LTD to basal level and
even LTP expression. This important finding is distin-
guished from previous studies, which show that the
synaptic strength can be altered by high-frequency
burst stimulation. Our results reveal that synaptic effi-
cacy can also be modulated by relatively low-frequency
stimulation with different pulse numbers.

Neurons can undergo potential mechanisms by mod-
ifying the firing frequency and spike pattern, referred
to as synaptic plasticity. The synaptic plasticity can be
potentiated by delivering the pairing of physiologically
relevant presynapse with coincident postsynaptic
burst discharge of neurons. Previous studies have
reported that burst pulses mimicking a natural pat-
tern delivered to CA1 neurons can raise the excitatory
recurrent circuit of the CA3 region. King et al.
reported that CA1 pyramidal neurons were discharged
by direct current injection or extracellular stimulation
in rats (King et al., 1999). In the Schaffer collateral
branches, pairing physiological activation with burst
discharge can significantly increase the excitability
and discharge probability. This synaptic plasticity was
also observed in the amygdale (Rogan et al., 1997) and
in the auditory cortex (Ahissar et al., 1992). Further-
more, it is also well-documented that theta bursts at a
high-frequency can clearly induce LTP expression
(Yang et al., 2002). Herein, we report that four and six
pulses can simulate the natural firing property of the
hippocampal Schaffer collateral branches. Stimulation
patterns of a low- and high-frequency inducing pulse-
number-dependent LTP share the common NMDAR-
dependent mechanism

LTD is most commonly induced by prolonged (15
min) low-frequency stimulation, leading to an increase
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in the relatively small but long-term influx of Ca21

through NMDAR. Interestingly, brief high-frequency
stimulation with partial blockage of NMDAR can also
produce LTD (Cummings et al., 1996). Moreover, PP
stimulation at low frequency can also induce LTD, the
mechanism of which is through activation of mGluR5
and ERK (Volk et al., 2006). The same phenomenon
can be also induced by application of mGluR5 agonist
DHPG (Huang and Hsu, 2006). These results support
the hypothesis that PP stimulation can induce suffi-
cient Ca21 influx, contributing to LTD expression. In
contrast, single-pulse stimulation of synapses was not
able to generate a postsynaptic spike to activate
enough NMDAR to cause a large calcium influx lead-
ing to LTD.

Huang et al. reported that the synaptic plasticity
induced by PP stimulation at 1 Hz is bidirectional
(Huang et al., 2006). The direction of synaptic efficacy
depends on the number of stimulation pulses and the
timing of pulses. Classical stimulation of a prolonged
single pulse at 1 Hz for 15 min can reliably induce
LTD in young animals. However, brief PP stimulation
for 10 min induces LTD in adult animals (Huang
et al., 2006). These results demonstrated that a
shorter induction period of 1 to 3 min dramatically
induced LTP, whereas a longer period led to LTD;
they also suggested that, in 1.5- to 2-month-old mice,
PP stimulation can only induce early LTP that decays
with time within 90 min. In contrast, the same
manipulation induces the expression of late-LTP in
12- to 18-month-old mice (Huang et al., 2006). This
stimulation protocol inducing late-LTP is dependent
on NMDAR activation and voltage-dependent calcium
channels. In comparison, we show that PP stimula-
tion can successfully induce LTD in hippocampal CA1
areas. This result is consistent with previous studies
showing that the number of stimulation pulses is im-
portant for synaptic strength.

In conclusion, we report that the pulse number can
modulate bidirectional plasticity in hippocampal CA1
areas. When PP stimulation was delivered, the synap-
tic strength was decreased to 68 6 4% as LTD induc-
tion. PP-LTD was found to be mGluR-dependent,
because LTD was not further induced in completely
DHPG-treated slices. Increasing the pulse number to
4 or 6 potentiated synaptic efficacy; this was NMDAR-
dependent but mGluR5-independent, as single- and
triple-pulse stimulation could not alter synaptic effi-
cacy further. We suggest that this may due to the bal-
ance of activating NMDA and mGluR5 receptors. With
the blockage of mGluR5, the strength of the synapse
was potentiated to express LTP, and was further
blocked by an NMDAR antagonist. Interestingly, fol-
lowing treatment with NMDAR antagonist APV and
PKC blocker chelerythrine, the potentiated synaptic
strength switched to LTD. We highly suggest that
NMDAR and mGluR can bidirectionally modulate the

expression of synaptic strength in hippocampal CA1
areas.
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