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HLA-G and Immune Evasion in Cancer Cells
Jim Sheu,1,2,3 Ie-Ming Shih1*

Acquisition of novel gene products or new antigens in cancer cells elicits a host immune response that
results in selection pressure for tumor clones to evade immunosurveillance. Similar to maternal–fetal
tolerance and allotransplantation acceptance, upregulation of HLA-G expression has been found as one
of the mechanisms that are programmed in cancer cells. HLA-G expression is frequently detected in a
wide variety of human cancers and its protein levels negatively correlate with poor clinical outcome.
The immune inhibitory effect can be achieved by binding of HLA-G molecules to the immunoglobulin-
like inhibitory receptors that are expressed on the immunocompetent cells at all stages of the immune
response. This review summarizes recent studies of HLA-G expression in human cancer, with a special
focus on the molecular mechanisms that underlie how HLA-G molecules facilitate tumor cell evasion
of the host immune response, and presents new directions for developing HLA-G-based diagnosis/
therapeutics.
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In normal human tissues, constitutive HLA-G 

expression is restricted to a few tissue types, in-

cluding trophoblastic cells and thymic epithe-

lium.1–3 The identification of HLA-G expression

in trophoblasts and its role in suppressing local

immunity in the placenta suggest that cancer cells

employ HLA-G overexpression during tumor 

development to help evade host immunosurveil-

lance; a strategy that is similar to that of tro-

phoblastic at the maternal–fetal interface. Indeed,

HLA-G expression has been detected in a wide

variety of human cancers, including cutaneous

melanoma, lung carcinoma, ovarian carcinoma,

endometrial carcinoma, gastric carcinoma, hema-

topoietic tumors, renal cell carcinoma, mesothe-

lioma, breast carcinoma, trophoblastic tumors,

glioma, bladder carcinoma, and colorectal carci-

noma, and lymphoproliferative disorders.3–11 In

addition, the soluble form of HLA-G (sHLA-G) can

also be detected in the supernatant of body fluids

or malignant effusions in cancer patients.7,12–16

These studies have important biological and clini-

cal implications for HLA-G expression in human

tumor tissues. The above tumor types might only
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represent a short list and more human cancers

with HLA-G expression will be reported as research

progresses.

This review summarizes those recent studies of

HLA-G expression in human cancer, with a special

emphasis on the molecular mechanisms of how

HLA-G molecules inactivate immune effectors.

Understanding the HLA-G-regulated immune 

response is fundamental to elucidation of the

molecular mechanisms in cancer development

and lays the foundation for future therapeutics

by targeting HLA-G and related molecules.

HLA-G is a Distinct Major 

Histocompatibility Complex (MHC) 

Class I Molecule

HLA-G is a unique, non-classical (class Ib) MHC

class I molecule and, like other class I MHC pro-

teins, it is composed of a membrane-bound heavy

chain and a nonameric peptide that associate with

each other via a non-covalent protein–protein

interaction. The heavy chain of HLA-G requires

association with the β2m molecule for its expor-

tation to the cell surface and for binding to 

HLA-G ligands.1,17 Although the HLA-G gene is

located in the HLA-1 locus of human chromo-

some 6 and shares several similar characteristics

with other MHC class I molecules, its expression

pattern, peptide binding properties, and im-

munological functions are different. More im-

portantly, the expression levels of classical MHC

molecules (class Ia), HLA-A, HLA-B and HLA-C,

are usually downregulated in tumor cells. This

indicates different patterns of expression of the

various classes of MHC molecules in the develop-

ment of human cancer, which might act in con-

cert for the tumor-associated immunosuppressive

phenotype.18,19

Protein structure analyses demonstrate that the

membrane bound heavy chain of HLA-G contains

three immunoglobulin-like domains (α1–α3) 

in which the α1 and α2 domains constitute the

peptide-binding cleft. For the classical (class Ia)

MHC molecules, the peptide-binding regions 

are characterized by extensive amino acid poly-

morphism, which creates a diverse repertoire for

peptide-loading and T-cell recognition.20 In con-

trast, non-classical HLA molecules such as HLA-

G contain limited polymorphism, which results

in a restricted number of peptides that are capa-

ble of binding to HLA-G.21,22 To date, only three

peptides have been isolated and characterized

from placenta-derived HLA-G molecules,23 and

other HLA-G binding peptides remain to be

identified from human cancer cells.

In addition, unlike classical MHC class I mol-

ecules, HLA-G appears inefficient at presenting

exogenous peptides because it does not contain

most of the intracellular portion that other MHC

class I proteins do.24 The structural uniqueness

of HLA-G is therefore translated to its distinct 

biological features in cellular functions. For ex-

ample, HLA-G functions as a common ligand for

inhibitory receptors on immune effectors, thus

participating in immune regulation. It has also

been shown that the identity of the peptide on

the peptide-binding cleft affects the binding of

HLA-G to killer cell immunoglobulin-like recep-

tor (KIR).25 Another feature unique to HLA-G

which is not shared by other MHC molecules 

is its homodimerization to form the cys42–

cys42 disulfide-linked complexes.26,27 Dimerized

HLA-G proteins, in contrast to the monomeric

form, have a higher protein stability and confer a

higher affinity to the inhibitory receptors, which

in turn can contribute to more potent immuno-

suppression in immune effector cells.17,26–28

Clinical Evidence of HLA-G in

Immunosuppression

Clinical evidence in support of the role of HLA-G

in immunosuppression primarily comes from

studies that have focused on correlating HLA-G

expression levels and clinical outcome in preg-

nancy and organ transplantation, which represent

two major conditions for a host response to non-

self tissues. In pregnancy, it is accepted that ma-

ternal immunotolerance to the “semi-allograft”,
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that is, fetus and placenta, is attributed to the

presence of HLA-G. The fact that trophoblast

cells in human placenta express a very high level

of HLA-G suggests its involvement in regulating

immune reactions at the fetal–maternal interface.

Secretion of sHLA-G by the early conceptus ap-

pears to be essential for successful implantation,

and it has been used as a reliable marker of in-

creased subsequent pregnancy following in vitro

fertilization.15,29–31 The presence of HLA-G tran-

scripts in preimplantation embryos is correlated

with increased blastocystic cleavage rate and a

greater number of blastomeres per embryo fol-

lowing in vitro fertilization.32 In contrast, the abor-

tion rate increases for women who have previously

received embryos with low or undetectable HLA-G

expression.31 A null HLA-G allele in a conceptus

is also associated with recurrent miscarriage in

women.33,34

Allogeneic organ transplantation is always 

rejected by the host immune surveillance system

unless immunosuppressive reagents are adminis-

tered to protect the grafted tissues. sHLA-G is usu-

ally detected at high levels in blood samples from

transplantation patients whose grafted tissues

survive.35 In addition, HLA-G-positive infiltrat-

ing monocytes are observed in the grafted tissues

due to the binding of sHLA-G to its receptor on

the immune cells. The finding of the above clini-

cal correlation studies are consistent with the view

that HLA-G expression plays an important role

in immunosuppressive functions in pregnancy

and allograft rejection. It is very likely that simi-

lar molecular mechanisms also are used by cancer

cells to evade host immunosurveillance.

Variant Forms of HLA-G in 

Human Cancer

In addition to the membrane-bound form of

HLA-G, increased plasma levels of sHLA-G have

been detected in patients with malignant tumors.

These findings suggest that HLA-G participates in

the immune response and networking via direct

cell–cell contact and through secretion of sHLA-G

(Figure 1). Clinical studies on tumor specimens

have demonstrated that monomeric and dimeric

sHLA-G can be detected in body fluids, including

serum and effusion samples, and sHLA-G shares

similar biological functions with the membrane-

bound form. These findings could explain why

only a small percentage of tumor cells show pos-

itive HLA-G staining in human tumor tissues. By

secreting sHLA-G that diffuses into deeper tissues,

tumor cells still can inactivate the local immune
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Figure 1. HLA-G variants and protection of cancer cells from immunosurveillance. (A) HLA-G variants are produced by
alternative splicing. Splicing variants HLA-G1 to G4 contain the entire transmembrane domain and the intracellular tail,
thus forming membrane-bound HLA-G on the surface of cancer cells. Splicing variants HLA-G5 to G7 are secreted forms
of HLA-G, thus functioning as soluble HLA-G (sHLA-G) to block immune recognition and targeting. (B) Immune effector
cells proceed to inactivation or cell death after binding to membrane-bound or sHLA-G. Although not all of the cancer
cells express HLA-G, sHLA-G from HLA-G-positive cells can still protect them from immunosurveillance.
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response, even for those bystanders without HLA-

G expression on the cell surface.

Production of sHLA-G can be achieved by

mRNA splicing. In fact, seven different HLA-G

isoforms have been reported and they are found

in a tissue-specific expression pattern. These iso-

forms include four membrane-bound HLA-Gs

(HLA-G1 to G4) and three sHLA-Gs (HLA-G5 to

G7). HLA-G1 represents the full-length version

of HLA-G and contains a signal peptide (exon 1);

the α1, α2 and α3 domains (exons 2–4, respec-

tively); the transmembrane domain (exon 5); and

a short intracellular domain (exons 6 and 7). HLA-

G2, as compared with HLA-G1, does not contain

exon 3, and HLA-G3 does not contain exons 3

and 4, whereas HLA-G4 does not contain exon 4.

Isoforms HLA-G5 to G7 retain a portion of in-

tron 4 that contains a stop codon, which results

in expression of truncated (without exon 5 trans-

membrane domain) or soluble forms that corre-

spond to HLA-G1 to G3, respectively.

Factors Involved in Regulation of HLA-G

Expression in Tumors

The molecular mechanisms that upregulate

HLA-G expression in tumor cells are complex.

They involve several factors including epigenetic

control of the HLA-G promoter activation and a

variety of environmental factors such as hypoxia,

stress, hormones, certain cytokines, and viral in-

fection. Sequence analysis of the HLA-G gene

promoter reveals that almost all regulatory boxes

described for classical MHC class I genes are not

conserved in the HLA-G promoter.4 This finding

suggests that the mechanisms involved in the

transcriptional regulation of HLA-G expression

are unique and partly independent of those that

regulate classical HLA-class I genes.

Recent studies have demonstrated that HLA-G

gene transcription activity can be controlled 

by cis-acting epigenetic mechanisms that include

DNA methylation and histone acetylation.36 For

example, primary tumor cells in culture gradu-

ally decrease HLA-G expression, and cells treated

with histone deacetylase inhibitors or DNA

demethylating agents re-express HLA-G by re-

versing the promoter silencing.4 The epigenetic

regulation is even more pronounced under cer-

tain microenvironmental conditions, such as hy-

poxia, which is a common phenomenon in solid

tumor tissues. Stabilization/activation of hypoxia-

inducible factor I is the key cellular response under

hypoxic conditions. Hypoxia-inducible factor I

acts as a transcription regulator that controls ex-

pression of a wide variety of genes, including

HLA-G in response to hypoxia. Gazit et al have

recently demonstrated that hypoxia upregulates

HLA-G in Epstein–Barr-virus-transformed B-cell

lines but not in freshly isolated peripheral blood

lymphocytes, which suggests that oncogenic

viruses also play a role in hypoxia-induced HLA-G

upregulation.37

A tumor microenvironment is enriched by a

variety of cytokines that are released by tumor-

infiltrating lymphocytes. The interaction of 

cytokines and tumor cells can regulate HLA-G ex-

pression. For example, granulocyte–macrophage

colony-stimulating factor and interferon (IFN)-γ
that are secreted by infiltrating cytotoxic T cells

have been shown to enhance HLA-G expression 

in tumor cells.38 Secretion of interleukin (IL)-10

by tumor cells can also upregulate HLA-G expres-

sion in tumor tissues through an autocrine or

paracrine mechanism.9,39 HLA-G, in turn, modu-

lates cytokine expression in immune cells to pro-

duce a profile of Th2-type cytokines, including

IL-10, IL-4 and IL-3. Clinical studies have shown

that this shift towards the Th2 cytokine profile,

especially the enhanced IL-10 secretion, is fre-

quently associated with impairment of antitumor

immunity.

Molecular Mechanisms of HLA-G in

Immunosuppression

Tumor development and progression are always

accompanied by expression of novel tumor-

associated antigens that can elicit an immune 

reaction by activating immune defenders such as
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cytotoxic T cells, natural killer (NK) cells, and

macrophages. In recent decades, great efforts have

been made to develop immunotherapy against

cancer by applying tumor-specific cytotoxic T-cells

to cancer patients.40 Although this T-cell-based

approach has shown some promise in preclinical

models and clinical trials, only moderate success

has been achieved to date.41 Tumor clones equip-

ped with the ability to evade immune recogni-

tion and destruction undergo clonal expansion,

which ultimately leads to tumor recurrence that

is refractory to the previous immunotherapy.

One of the possible mechanisms that cancer

cells employ to overcome vigilant immunosur-

veillance and hostile attack involves expression

of HLA-G. A growing body of evidence has dem-

onstrated that direct interaction between HLA-G

and leukocyte immunoglobulin-like receptors,

LILRB1 (also known as LIR1/ILT2/CD85J) and

LILRB2 (LIR2/ILT4/CD85D), and between HLA-G

and KIR2DL4 (CD158D).42,43 LILRB1 and LILRB2

belong to a family of immunoreceptors that are

expressed on T cells, B cells, monocytes (macro-

phages), myeloid dendritic cells (DCs), and NK

cells, which upon ligand binding can inactivate

those immune effectors.44 On the other hand,

KIR2DL4 belongs to the gene family of killer 

cell inhibitory receptors, which upon binding to

HLA-G inhibit NK-cell-mediated cytolytic activ-

ity.45 Although these immunoglobulin-like recep-

tors also interact with other HLA class I ligands,

they show the highest binding affinity to HLA-G.46

HLA-G-binding ligands share a common cyto-

plasmic immunoreceptor tyrosine-based inhib-

itory motif sequence, which upon HLA-G binding

can recruit intracellular protein-tyrosine phos-

phatases and trigger an inhibitory signal cascade.

The negative signaling, in turn, downregulates the

activation of various immunoresponsive genes and

affects the cytokine/chemokine profiles secreted

by the effector cells. As a result, cell maturation

and clonal expansion of immunocompetent cells

are significantly reduced. Membrane-bound and

secreted forms of HLA-G are capable of upregu-

lating the expression levels of its binding ligands,

the immunoglobulin-like inhibitory receptors.47

Therefore, these effector cells become more sen-

sitive to the HLA-G-mediated inhibitory effects,

which results in immune tolerance of tumor

cells.

Tumor immunology consists of complex dia-

log between cancer cells and a variety of resident

immune effectors within the tumor microenviron-

ment. In the following sections, we briefly sum-

marize the receptors that are known to interact

with HLA-G, and the biological effects of HLA-G

on immune cells, including T-lymphocytes, NK

cells, DCs, and B-lymphocytes (Figure 2).

Interactions with T lymphocytes
In cell-mediated immunity, the interaction be-

tween antigen-presenting cells and T cells is a

crucial step in activating antigen-specific CD4+
T cells. The activated CD4+ T cells differentiate

into CD4+ T helper cells that can trigger activa-

tion and differentiation of CD8+ T cells into cyto-

toxic T cells. It is known that tumor antigen can

be presented by tumor cells in the form of HLA/

peptide complexes. However, T-cell-mediated tu-

mor rejection does not occur when tumor cells

express HLA-G. Studies with tumor tissues and

cell lines have demonstrated that HLA-G-positive

or HLA-G-transfected tumor cells are less suscep-

tible to recognition by CD4+ T cells and cytolytic

killing by CD8+ cells.10,48 How this can occur has

intrigued investigators for a long time, and it has

now become clear that several mechanisms are

involved in HLA-G-induced inactivation of T-cell

immunity. For example, it has been reported that

interaction between HLA-G and CD4+ T cells 

via LILRB1 and LILRB2 can reduce production of 

T-helper 1 (Th1) cytokines including IFN-γ, IL-2

and tumor necrosis factor-α but enhance pro-

duction of Th2 cytokines including IL3, IL-4 and

IL-10,49–51 which results in inactivation of cyto-

toxic T cells and reduction of antitumor antibody

secretion.

sHLA-G can also bind to CD8 and induce

apoptosis through activation of the Fas/FasL path-

way.52–55 Bahri et al have reported that HLA-G

can block cell cycle progression from G1 to G2/M

phase in T cells.56 A recent study has indicated
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that HLA-G1-transfected antigen-presenting cells

can reduce CD4+ T-cell proliferation by inducing

T-cell anergy or long-term unresponsiveness.57

Other studies have demonstrated that immune

tolerance mediated by HLA-G molecules can be

achieved by induction of immunosuppressive/

regulatory T cells.57–60 These cells have been found

to reduce T-cell activation and promote T-cell

death, thus facilitating immunosuppression and

long-term immune evasion or tolerance. Finally,

HLA-G expression can also abolish cytotoxic-

T-cell-mediated cell lysis through interaction of

HLA-E and the CD94/NKG complex. These events

lead to almost complete abortion of the immune

responses, and as a result, tumor cells are pro-

tected from T cell attack.

Interactions with NK cells
NK cells are responsible for detecting and elim-

inating cells that are undergoing malignant

transformation. Engineered expression of HLA-G

protein in MHC-class-I negative cells has been

demonstrated to inhibit cytolysis by NK cells.61–63

LIR-2 and KIR2DL4 on the cell surface of NK

cells appear as the main inhibitory receptors 

that interact with HLA-G, and both receptors,

upon HLA-G binding, are thought to mediate in-

hibitory effects on NK cells. Furthermore, HLA-G

might indirectly contribute to suppression of

NK-cell-mediated cytolysis through upregulation

of HLA-E.64 Besides, sHLA-G has been shown to be

involved in producing pro-angiogenic cytokines

in NK cells through KIR2DL4,65 which could con-

tribute indirectly to tumor development.

Interactions with DCs
DCs play a central role in regulating immune 

responses and maintaining peripheral toler-

ance.41,66,67 Previous reports have shown that 

the interaction between HLA-G and its receptors

Figure 2. Molecular mechanisms for how cancer cells downregulate immunosurveillance by expressing HLA-G. HLA-G
exerts negative immunoregulatory functions by interacting with leukocyte immunoglobulin-like inhibitory receptors
(LILRB1 or LILRB2) or killer cell immunoglobulin-like receptor (KIR2DL4) on a range of immune effector cells, including
T cells, natural killer cells, dendritic cells and B cells. Monomeric and dimeric HLA-G can inactivate/anergize the immune
effector cells, whereas dimerization of HLA-G can enhance the binding affinity toward the immunoglobulin-like receptors
and stabilize the binding complex.

Membrane-
bound HLA-G

Soluble
form HLA-G

Monomeric

Dimeric

Dimeric

Monomeric

Cancer cells

Immune
effector cells

HLA-G effects
on effector cells

T cells via LILRB1, LILRB2
(+) Fas/FasL induced apoptosis
 Th2 cytokine production
(–) Th1 cytokine production

NK cells via LILRB2, KIR2DL4
(+) Fas/FasL induced apoptosis
 Th2 cytokine production
 HLA-E expression
 VEGF production
(–) Th1 cytokine production

DC cells via LILRB1, LILRB2
(+) Cytokines for Ts cell induction
(–) Antigen presentation
 expression of B7.1 and B7.2
 IL-12 and CCRT production

B cells via LILRB1, LILRB2
(+) Fas/FasL induced apoptosis
 Th2 cytokine production
(–) Th2 cytokine production



J. Sheu, I.M. Shih

254 J Formos Med Assoc | 2010 • Vol 109 • No 4

(LILRB1 and LILRB2) on DCs results in inactiva-

tion of the MHC class II presentation pathway

and downregulation of co-stimulatory molecules,

B7.1 (CD80) and B7.2 (CD86).58,59,68 IL-12 pro-

duction and chemokine receptor CCR7 expres-

sion on these targeted DCs are also significantly

inhibited. All the above effects lead to suppres-

sion of DC maturation, which can further con-

tribute to failure or unresponsiveness of T-cell

activation and clone expansion in response to

tumor-antigen stimulation.

Interactions with B cells
The major function of B cells is to generate and

secret antibodies that directly target novel solu-

ble antigens or antigens on abnormal cells, thus

playing a central role in adaptive humoral immu-

nity. Until now, there has been a lack of evidence

to show the direct interaction between HLA-G and

the surface of B cells. However, the possibility of

such interaction exists because of the presence 

of LILRB1 and LILRB2 on B cells. The biological

effects of HLA-G in modulating B-cell functions

in human cancer remain to be determined.

New Treatments and Therapeutics

Against HLA-G Expression

Since HLA-G expression in tumor tissues is a

unique feature that negatively correlates with

clinical outcomes, HLA-G accordingly becomes

an attractive target for developing new interven-

tions against more invasive and metastatic cancer

cells. Given the fact that the main inhibitory 

effects of HLA-G are mediated by its interaction

with lymphocyte immunoglobulin-like receptors,

blocking the reaction by antagonistic recombinant

proteins or neutralizing antibodies should be

beneficial for treating HLA-G-expressing cancer

cells. By in vitro allostimulation assays, antibodies

against LIR-1 and LIR-2 have successfully restored

T-cell proliferation, which indicates the effective-

ness of such a therapeutic approach. Similar re-

sults can also be found when treating cancer 

cells with anti-FasL antibodies that block the

Fas/FasL pathway through binding of HLA-G to

LIR-1 or LIR-2. These data support a potential

application of using HLA-G blockers, such as

HLA-G neutralizing antibodies or soluble recom-

binant LILRB1, LIR-2 or Fas, as therapeutic agents

to minimize the inhibitory effects of HLA-G

molecules.

Conversely, sHLA-G serves as an ideal bio-

marker for cancer detection in body fluids.28 The

value of HLA-G expression in predicting clinical

outcome in certain cancers and the HLA-G tests

(e.g. immunohistochemistry or quantitative real-

time polymerase chain reaction) are expected 

to provide oncologists with a new molecular ap-

proach to manage their cancer patients better.28

Anti-HLA-G antibodies could also be utilized for

developing a cancer imaging system to monitor

the activity and location of tumor cells that have

been tolerated by the immune defense system.

Target-based chemotherapy can be achieved by

using antibody delivery methods to bring the 

cytotoxic drugs to the more aggressive tumor 

tissues. Small interfering RNA/small hairpin

RNA therapies could be also applied to HLA-G-

expressing cells by this antibody-oriented route.

Furthermore, enhancing the Th1 cytokine profile

in the host by boosting more potent immuno-

modulators or by immunization with cancer 

vaccine might also be feasible for changing the

microenvironment to reactivate host immune

surveillance. More studies need to be conducted

to evaluate the efficacy of each method in clini-

cal applications.

Several anticancer drugs have been found to be

inducers for cancer cells to express higher levels

of HLA-G proteins, which results in tumor eva-

sion of the host immune system. For example, 

5-aza-2’-deoxycytidine, a demethylating agent for

treating cancer patients during epigenetic therapy,

could reactivate expression of HLA-G protein in

all the cell lines tested. Similarly, IFN immuno-

therapy of malignant tumors can cause side effects

of immune evasion by upregulating the expres-

sion of HLA-G at the tumor sites. Screening of

tumor lesions for HLA-G expression might repre-

sent a useful strategy to identify the patients who
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are likely to benefit from epigenetic and IFN

therapy.
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