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Phosphodiesterase 4D (PDE4D) has been identified be a promising target which associate with stroke,

which is one of the top 3 leading of death and main leading cause of adult disability in US. In this study,

we applied virtual screening on the world’s largest traditional Chinese medicine (TCM) database

(http://tcm.cmu.edu.tw;1 C. Y. C. Chen, PLoS One, 2011, 6, e15939) for natural compounds that inhibit

PDE4D functions. Molecular docking and dynamics simulation were employed to investigate the

protein–ligand interactions of compounds with top two dock scores. During the simulation, the

divalent metal cations in PDE4D formed stable hydrogen bonds and electrostatic interactions between

ligand and binding site residues. Furthermore, the two top TCM candidates, 2-O-caffeoyl tartaric acid

and mumefural, formed additional steady hydrogen bond with binding site residue and active site

residue respectively. The additional hydrogen bonds further stabilize protein-ligand interaction at the

PDE4D binding site. To predict the bioactivity of the top TCM candidates, we built two prediction

models using multiple linear regression (MLR) and support vector machine (SVM). The predicted

pIC50 values suggest that 2-O-caffeoyl tartaric acid and mumefural are potential PDE4D inhibitors.
Introduction

Stroke and cerebrovascular diseases are the top 3 leading causes

of death in U.S. in last several years.2 Moreover, stroke is the

main leading cause of adult disability.3 Stroke is a multifactorial

disease that can have both genetic and environmental contribu-

tions. In the past few years, researchers have attempted to

explore the polygenic factors behind stroke by using genome-

wide association study; however, the immense amount of infor-

mation stored in human genome has presented arduous logistical

and technical challenges.

Recently, the Icelandic Decode group has identified a novel

stroke-related gene, phosphodiesterase 4D (PDE4D), by using

genome-wide association screen.4 Since the study from Gre-

tarsdottir, many replication studies have been conducted using

different population samples, including Staton,5 Sun,6,7

Nakayama,8 van Rijn,9 Saleheen,10 Nilsson-Ardnor,11 Bevan,12

and Brophy,13 in an attempt to examine the relationship between

PDE4D and stroke.
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PDE4D is a cyclic nucleotide phosphodiesterase which selec-

tively hydrolyzese cyclic AMP (cAMP) to control the concen-

tration of second messenger cAMP. The concentration of cAMP

influences various cellular metabolisms. Decreasing in cAMP

concentration could lead to increasing proliferation and migra-

tion of smooth muscle cell that subsequently could result in

development of atherosclerosis.4 Therefore, a PDE4D-targeting

drug which is designed to obstruct PDE4D activation can reduce

the risk of stroke, like the design shown in Fig. 1. This study
Fig. 1 Schematic diagram representing the proposed drug design

strategy. By inhibiting PDE4D activity, the cAMP concentration will rise

and hence prevent over proliferation of smooth muscle cell (SMC).

Thickening blood vessel wall that blocks blood flow and causes stroke

can hence be prevented by regulating SMC growth.
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focused on identifying potential lead compounds that could act

as PDE4D inhibitor.

Large structural diversity found in Chinese herbal ingredients

and natural products poses a very valuable resource for finding

novel lead compounds. Various natural compounds have been

shown to be useful in anti-cancer,14,15 anti-radical, anti-inflam-

matory and anti-platelet therapies.16 We, therefore, employed

a traditional Chinese medicine (TCM) database (http://

tcm.cmu.edu.tw)1 and natural compounds for virtual screening

by molecular docking. Molecular dynamics simulations were

performed after docking to study receptor-ligand interactions

and to determine stabilized conformations for the obtained

protein-ligand complexes. Currently, bioactivity prediction using

machine learning and building QSAR model is becoming

a routine process in drug design; some novel examples include

using support vector machine (SVM) for identifying bioactive

natural products17 and building quantitative structure–activity

relationship (QSAR) models for predicting inhibitory activity of

small molecules.18–27 To predict the bioactivities of TCM candi-

dates obtained from screening, we also constructed QSAR

models using both multiple linear regression approach and SVM

approach. The prediction resulted from multiple linear regres-

sion (MLR) and SVM can further support the efficacy of the

TCM candidates.

Materials and methods

Data set

The molecular simulations were performed by using Accelrys

Discovery Studio 2.5 (DS 2.5). A total of 20,000 TCM

compounds were downloaded from TCM database (http://

tcm.cmu.edu.tw/).1 All the downloaded TCM compounds had

been minimized in MM2 force field using Chem 3D Ultra 11.0.

The crystal structure of PDE4D (PDB ID: 3G4G)28 was obtained

from RCSB Protein Data Bank. Known PDE4D inhibitor, RS-

253344, which co-crystallized in the PDE4D cAMP binding

pocket, was used as a control.

Molecular docking

The docking simulation was performed in the force field of

CHARMm29 using LigandFit module30 in the Receptor-Ligand

Interactions package of DS 2.5. The compounds from TCM

Database were docked into the binding site of PDE4D which was

defined by the volume of RS-25344 present in the initial crystal

structure. Additionally, the inhibitor RS-25344 and cAMP, the

normal substrate for PDE4D, were used as controls. The

receptor was fixed in the docking protocol, but the ligands that

complement the binding site were initially flexible but were later

fixed for rigid-body energy minimization after docking. All

chemical compounds and their possible poses were evaluated by

scoring functions. In addition, top ranking compounds were

visually inspected for binding poses, binding location and

interacting residues. Our selection criteria specified the potential

candidates to have similar binding characteristics and locations

with the control molecules.

Dock Score that predicts ligand binding affinities by calcu-

lating ligand internal energy and receptor-ligand interaction

energy was used as the primary scoring function.30 Other scoring
4002 | Soft Matter, 2011, 7, 4001–4008
functions, PLP, PLP2 and PMF, were also calculated for addi-

tional references but were not used in selecting ligand and their

poses. The PLP and PLP2 stand for piecewise linear potentials

which predict protein-ligand binding affinities by calculating

hydrogen bond interaction.31 These two versions of pairwise

linear potentials differ in that PLP2 introduces atomic radii and

angular components. The PMF (potential of mean force)

predicts ligand binding affinities by summing all interatomic

pairwise interactions of the receptor-ligand complex.32
Molecular dynamics simulation

The molecular dynamics (MD) simulation was performed using

Standard Dynamics Cascade module and Dynamics (Produc-

tion) module in the Simulation package of DS 2.5 with

CHARMm.29 The complexes were created a 7 �A solvation shell

around the protein. Each system was also neutralized by addi-

tional sodium cations. Two cycles of minimization have been

performed, each using different system condition. First, the

minimization was performed with the atoms of protein

restrained. Afterwards, the minimization was performed without

restraint. The minimization was performed using both Steepest

Descent33 and Conjugate Gradient34 with maximum up to 6000

cycles. The SHAKE algorithm was applied to fix all bonds

involving hydrogen atoms throughout the MD simulation, and

the long-range electrostatics were treated with PME method. The

time step was set to 0.001 ps for all MD stages. After minimi-

zation, the protein-ligand complex was gradually heated to target

temperature of 310 K from 51 K over an interval of 50 ps. After

heating procedure and a 200 ps equilibration phase, the

production stage was performed for 20 ns using NVT canonical

ensemble. The temperature coupling decay time for the Berend-

sen thermal coupling method was 0.4 ps. Post processing of the

trajectory was done using Analyze Trajectory module at Simu-

lation package of DS 2.5.
Support vector machine and multiple linear regression

To predict the bioactivity of the TCM compounds, we built

activity prediction models using both SVM approach and MLR

approaches. These two approaches differ in that SVM utilizes

a non-linear feature mapping technique whereas MLR uses

linear evaluation. The SVM model in the present study was built

using LibSVM.35 Multiple linear regressions were performed

using MATLAB.

The 62 compounds used in building the predictive model were

complied from three different sources36–38 and were divided

randomly into training set and test. These compounds were

drawn using ChemBioOffice 2008 and prepared in Discovery

Studio 2.5 using the Prepare Ligand module to modify the

compound ionization state to physiological ionization setting.

The activity (IC50) data used in QSAR were converted to pIC50.

The molecular descriptors were calculated using Calculate

Molecular Properties in Discovery Studio 2.5, which could

calculate 552 different descriptors. To select molecular descrip-

tors that best represent the training set molecules, the genetic

function approximation (GFA)39 was used. The GFA algorithm

is based on genetic algorithm, which simulates a population of

strings based on the concept of natural evolution. In genetic
This journal is ª The Royal Society of Chemistry 2011



Table 1 Docking results of top TCM compounds, RS-25344, and cAMP

Name Dock Score PLP1 PLP2 PMF

2-O-Caffeoyl tartaric acid 1,013 39.69 34.42 170
Mumefural 1,009 �12.47 13.82 156
Cyclic AMPa 974 32.35 25.43 133
2-O-Feruloyl tartaric acid 948 22.77 39.86 187
Kainic acid 837 �4.26 �3.87 123
Gallic acid 698 28.72 33.29 98
3,5-Dihydroxycinnamic acid 686 16.93 23.24 102
Caffeic acid 686 16.93 23.24 102
2,3-Dihydroxycinnamic acid 676 3.09 8.13 110
Cinnamic acid 672 14.65 18.94 106
Ferulic acid 672 24.28 29.42 110
RS-25344a 250 97.29 73.57 164

a Control.

Fig. 2 The scaffolds of (a) 2-O-caffeoyl tartaric acid, (b) mumefural, (c)

cAMP, (d) RS-25344.
algorithm, selection, crossover and mutation events are itera-

tively simulated for a specified number of generations. By

applying genetic algorithm, the GFA searches all possible QSAR

models and then uses square correlation coefficient (R2) to esti-

mate the fitness of individual model. The cross validation test is

applied during building model.

Support vector machine (SVM) is a novel supervised machine-

learning method, widely used in bioinformatics.40–43 SVM mini-

mizes an upper bound of the generalization error on Vapnik-

Chernoverkis dimension. This convention of minimization is

superior in comparison to the traditional empirical risk mini-

mization (ERM), which only minimizes the training error. In

addition to binary classification, SVM can be used in regression

of continuous data.44 This is called support vector regression

(SVR). In our cases, the activities (pIC50) of inhibitors are

continuous. Hence, in order to build a model that can accurately

predict inhibitor activity, we used SVR instead of SVM.

The basic idea in SVR is to find the hyperplane that best

predicts data distribution by mapping the input data set into

a high-dimensional feature space using Kernel function. For

a given training data (x1, y1), ., (xl, yl) ˛ Rd � R where yi

denotes the output values of the input vectors yi and the data can

be expressed in the form of f(x) ¼ <w,x> + b, w ˛ Rd, b ˛ R, the

SVR finds w by introducing 3-insensitive loss function. This SVR

formulation is
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The prediction for new input, in terms of Kernel function, is

given by

f ðxÞ ¼
Xl

i¼1

ðai � a�i Þkðxi; xÞ þ b,s:t: 0 # a�i # C; 0 # ai # C (3)

The performance of SVR is significantly dependent on the

setting of parameters: C, 3, the kernel type (mapping function)

and the corresponding kernel parameters. In LibSVM, the

available kernel functions include linear, polynomial, radial basis

function, sigmoid function and precomputed kernel. We con-

structed the SVR model based on radial basis function, and for

our case, the key parameters are C cost, epsilon and gamma. The

C cost sets the parameter C in SVR. The epsilon parameter sets 3

in 3-insensitive loss function. The gamma parameter sets the g
This journal is ª The Royal Society of Chemistry 2011
value in kernel function. To find the optima values for C, epsilon,

and gamma, we used the gridregression.py program included in

the libsvm-2.91 package.
Results and discussion

Molecular docking

After virtual screening, the scoring function results of the top 10

compounds and the controls are listed in Table 1. The structures

of the top two candidates (2-O-caffeoyl tartaric acid and

mumefural) and the two controls (cAMP and RS-25344) are

shown in Fig. 2. Scoring functions, Dock Score,30 was used to

rank the docking results. 2-O-Caffeoyl tartaric acid and mume-

fural both scored higher Dock Score than cAMP and RS-25344

and were, therefore, selected for further analysis.

Two-dimensional representation of TCM ligand docking

conformations is shown in Fig. 3. In addition, the docking

diagrams showed two divalent metal cations, Zn2+ and Mg2+,

which have been suggested as cofactors in cAMP hydrolysis. As

illustrated in Fig. 3, both Zn2+ and Mg2+ ions acted as bridges for

coordinating ligand interaction to Asp367 and Asp484. All TCM

ligands and controls had electrostatic interactions to these two

divalent metal cations suggesting the importance of this inter-

action in ligand binding in PDE4D and the dependency of metal

ions in ligand inhibitory activity.

As shown in docking diagrams (Fig. 3), the TCM ligand, 2-O-

caffeoyl tartaric acid, and two controls had pi-pi interaction with
Soft Matter, 2011, 7, 4001–4008 | 4003



Fig. 3 Docking poses of (a) 2-O-caffeoyl tartaric acid, (b) mumefural, (c) cAMP, (d) RS-25344 in PDE4D cAMP binding site. Electrostatic interaction

is shown as dashed line, and pi-pi interaction is shown as solid line.
residue Phe538. This interaction kept 2-O-caffeoyl tartaric acid

close to key binding site residue Gln535, thereby hindering

binding of natural substrate to PDE4D (Fig. 3(a)). Moreover,

control RS-25344 had a hydrogen bond with Gln535, which

further supported the importance of blocking substrate from

interacting with this residue (Fig. 3(d)). The second ranking

TCM compound, mumefural, did not share pi-pi interaction as

observed in other compounds. However, mumefural had

a hydrogen bonding with catalytic residue His 326 (Fig. 3(b)).

This hydrogen bonding interaction, which completely blocks

catalytic process, suggests an alternate strategy of inhibiting

PDE4D, in addition to mechanism observed with 2-caffeoyl

tartaric acid.
Fig. 4 RMSD of PDE4D in complex with 2-O-caffeoyl tartaric acid,

mumefural, cAMP, and RS-25344 respectively (top), and ligand RMSD

of 2-O-caffeoyl tartaric acid, mumefural, cAMP, and RS-25344 respec-

tively (bottom).
Molecular dynamics simulation

After docking simulation, we performed molecular dynamics

simulation to further analyze the interactions between protein

and ligand. Root mean squared deviation (RMSD) was calcu-

lated to study atomic fluctuations during MD simulation. Fig. 4

shows the whole molecule RMSD values for the control-PDE4D

complexes and the two TCM ligand-PDE4D complexes. The

control-PDE4D complexes stabilized after 10 ns at 1.4 �A while

the 2-O-caffeoyl tartaric acid complex stabilized after 14 ns. The

mumefural-protein complex, in contrast, appears to remain

fluctuating even after 20 ns of simulation run. However,

comparison of binding site snapshots taken at different time

period showed that the position of the binding site residues were
4004 | Soft Matter, 2011, 7, 4001–4008
relatively unchanged (Fig. 5(a)) and that all receptor-ligand

interaction were conserved during simulation run. For these

reasons, we did not continue production run for mumefural-

PDE4D complex after 20 ns.

As for ligand RMSD, all ligands, except 2-O-caffeoyl tartaric

acid, stabilized after 3 ns (Fig. 4). Ligand 2-O-caffeoyl tartaric

acid had dramatic atom fluctuations from 15 ns to 17 ns.
This journal is ª The Royal Society of Chemistry 2011



Fig. 5 The docking poses of PDE4D with (a) mumefural, (b) 2-O-caf-

feoyl tartaric acid at different time points of MD simulation.

Fig. 6 The docking poses for PDE4D with (a) 2-O-caffeoyl tartaric acid,

(b) mumefural, (c) cAMP, (d) RS-25344 at 20 ns of MD. Yellow line

indicates electrostatic interaction with a distance less than 2.5 �A (except

for (d) which the distance between RS-25344 and Zn2+ is 2.72 �A). The

dashed line indicates hydrogen bond interaction and the solid line

represents pi-pi interaction.

Fig. 7 Distances of electrostatic bonds between Mg2+, Zn2+ and (a) 2-O-

caffeoyl tartaric acid, (b) mumefural, (c) cAMP and (d) RS-25344.
However, as shown in Fig. 5(b), this large atomic fluctuation was

due to intrinsic rotation of benzene substructure and did not

influence the existed electrostatic interactions and hydrogen

bonds.

Shown in Fig. 6 are snapshots of different receptor-ligand

complexes taken at the end of molecular dynamics simulation.

After 20 ns of simulation, only RS-25344 maintained the pi-pi

interaction to Phe538 (Fig. 6(a)); all other receptor-ligand pi-pi

interactions diminished (Video S1, Video S2). RS-25344 was co-

crystallized with PDE4D and therefore, could induce protein

conformation change prior to crystallography process to

accommodate for binding.

In contrast to pi-pi interaction, electrostatic interactions of

ligands to binding site residues, Asp367 and Asp484, through

divalent metal cations, were still retained after MD simulation

run (Fig. 6). Interactions of Zn2+ to Asp379 and Asp484 as well

as interaction of Mg2+ to Asp484 were conserved throughout the

MD simulation run (Video S1, Video S2). Furthermore, as

shown in Fig. 7, with the exception of RS-25344 to Mg2+,
This journal is ª The Royal Society of Chemistry 2011
electrostatic interactions of ligands to both cations were stabi-

lized and have only minor fluctuations.

For hydrogen bond interactions, the average length and

occupancy during the simulation run are summarized in Table 2.

The lengths of different hydrogen bonds with respect to time are

shown in Fig. 8. Although from analyzing ligand docking poses,

there was no interaction between cAMP or 2-O-cafeoyl tartaric

acid to Gln535, this interaction appears during the MD simula-

tion for these two compounds. With the exception of mumefural,

all compounds had hydrogen bond interaction to Gln535 (Fig. 8)

with an average distance of 3.0 �A. Although mumefural did not

have hydrogen bonding with Gln535, it established stable,

continuous hydrogen bonding with the key active site residue

His326 (Table 2). In addition to ligand hydrogen bonding to
Soft Matter, 2011, 7, 4001–4008 | 4005



Table 2 H-bond interactions of PDE4D with 2-O-caffeoyl tartaric acid, mumefural, cAMP, and RS-25344a

Ligand H-bond Ligand Atom Amino acid Max. distance Min. distance Average distance H-bond occupancy

2-O-Caffeoyl tartaric acid 1 O6 Asn375:HD22 5.94 1.70 2.24 91.36%
2 O28 Gln535:HE21 3.64 2.29 2.92 1.05%
3 O28 Gln535:HE22 3.99 2.08 3.03 6.24%
4 O31 Gln535:HE21 5.05 2.49 3.31 0.15%
5 O31 Gln535:HE22 4.10 2.14 2.83 8.84%

Mumefural 1 O13 TYR325:HH 5.42 1.75 3.30 37.06%
2 O17 TYR325:HH 4.34 1.92 3.20 8.39%
3 H10 HIS326:NE2 2.63 1.73 1.99 99.85%
4 H10 ASP367:OD2 3.11 2.20 2.68 11.24%

cAMP 1 O15 TYR325:HH 5.28 1.94 3.63 11.74%
2 N8 Tyr495:HH 3.29 2.16 2.75 10.84%
3 H29 Tyr495:OH 5.67 2.20 3.81 11.79%
4 H30 Tyr495:OH 4.54 2.15 2.96 34.17%
5 H29 Gln535:OE1 4.20 1.90 3.20 5.99%
6 H30 Gln535:OE1 4.04 1.79 2.86 29.72%

RS-25344 1 O21 Tyr495:HH 3.80 2.31 2.97 0.55%
2 O21 Gln535:HE22 3.56 2.01 2.53 46.15%

a H-bond occupancy cutoff: 2.5 �A.

Fig. 8 Distances of hydrogen bonds between 2-O-caffeoyl tartaric acid

and (a) Gln535 or (b) Asn375. Distances of hydrogen bonds between

mumefural and (c) Tyr325 or (d) Asp367, Distances of hydrogen bond

between cAMP and (e) Gln535 or Tyr325 or (f) Tyr495. Distances of

hydrogen bond between RS-25344 and (g) Gln535, (h) Tyr495.
Gln535 and His326, several hydrogen bonding were observed

between ligands and Tyr325, Asp367 and Asn375 (Table 2).

Fig. 8 shows that both mumefural and cAMP had fluctuated

hydrogen bond interactions with Tyr325 (Video S1) which could

hold ligand close to active site His326. Both controls formed

stable hydrogen bond interactions with Tyr495. In addition, 2-O-

cafeoyl tartaric acid formed strong hydrogen bond interaction

with Asn375 after a short period of molecular dynamics simu-

lation. These interactions were proposed to further stabilize the

two TCM ligands in PDE4D binding pocket.
Genetic function approximation, multiple linear regression and

support vector machine analysis

To select the most representative descriptors for building QSAR,

genetic function approximation was used. The selected
4006 | Soft Matter, 2011, 7, 4001–4008
descriptors were Dipole mag, Dipole Y, Jurs FNSA, Jurs PPSA3,

Jurs RASA, Jurs RNCG, Jurs TASA, Jurs WPSA3, shadow X

length and shadow Y length. The values of descriptors for the

training set and the test set were shown in Supplementary

Table S1.

These selected descriptors can be broadly divided into two

groups: the electronic descriptors and the spatial descriptors. The

spatial descriptors include Dipole mag (Dipole magnitude) and

Dipole Y (Dipole moment in Y dimension), which are both

dipole moment descriptors computed from partial atomic

charges and atomic coordinates.45 In our case, the numerical

values of the training set and the test were in the range of 0.55285

to 7.37706 for Dipole mag and in the range of �4.25548 to

6.024515 for Dipole Y. Most of the spatial descriptors are Jurs

descriptors, which is dependant on atomic partial charges and

solvent-accessible surface areas of individual atoms under

investigation.46 The Jurs RASA and Jurs TASA are related to

hydrophobic surface area whereas Jurs RNCG is related to

negative charge. The other three Jurs descriptors, Jurs FNSA3,

Jurs PPSA3 and Jurs WPSA3, are significantly dependent on

partial charge states. Both Shadow Xlength and Shadow Ylength

are shadow indices. These two descriptors stand for length of

molecule projected on X and Y dimension respectively.47

With these ten descriptors selected by GFA, an MLR model

was built using a training set of 51 compounds. A test set of 11

compounds was used to evaluate the built model. The following

linear model was obtained:

predicted IC50 ¼ �23:43þ 0:1383�Dipole mag þ 0:0921

�Dipole Y � 31:708� Jurs FNSA3� 0:2866� Jurs PPSA3

þ 28:543� Jurs RASAþ 20:607� Jurs RNCG � 0:0330

� Jurs TASAþ 0:691� Jurs WPSA3þ 0:428

�Shadow Xlengthþ 0:528� Shadow Ylength

The same training set and test set were used to build and to test

the SVM model. The statistical significances of the MLR and the

SVM model are shown in Fig. 9. The training set square
This journal is ª The Royal Society of Chemistry 2011



Fig. 9 The predicted models: (a) MLR and (b) SVM.
correlation coefficients (R2) were 0.8234 for MLR and 0.7854 for

SVM. The test set R2 were 0.8468 for MLR and 0.8584 for SVM.

Both models built by MLR and SVM predicted reasonable

bioactivities for the TCM ligands. The MLR model gives pre-

dicted pIC50 values of 10.239 and 9.0159 for 2-O-caffeoyl tartaric

acid and mumefural, respectively (Table 3). The SVM model, on

the other hand, gives predicted pIC50 values of 6.236 and 5.758

for top 1 and top2, respectively (Table 3). These predicted

activities are all better than the control cAMP and RS-25344.

However, since the predicted pIC50 values obtained from MLR

were based on linear extrapolation, the SVM model, which was

based on non-linear function, should yield a more accurate

prediction. Hence, the pIC50 values from SVM models should be
Table 3 Activity prediction of 2-O-caffeoyl tartaric acid, mumefural,
cAMP, and RS-25344 by SVM and MLR models

Predicted model Cyclic_AMP RS-25344

2-O-
Caffeoyl_
tartaric_acid Mumefural

SVM 5.571 5.433 6.236 5.758
MLR 8.305 6.454 10.239 9.016

This journal is ª The Royal Society of Chemistry 2011
a better representation of the two TCM compound bioactivities.

Nevertheless, these results further support 2-O-caffeoyl tartaric

acid and mumefural as potent PDE4D inhibitors.
Conclusion

PDE4D has been found as a stroke-related gene previously in

genome-wide association study. In this study, we report several

binding patterns observed from docking of TCM and natural

compounds and molecular dynamics simulation. We observed

that the divalent metal cations act as a linkage between ligand

and two of key residues, Asp367 and Asp484. This metal ion

dependency called for negative charged substructure for stable

interaction. In our case, all top TCM ligands have carboxylate

groups which formed stable electrostatic interactions. The ligand

hydrogen bonding interactions to key residue Gln535 or His326

could sufficiently hinder binding of natural substrate, thereby

inhibiting PDE4D function. Furthermore, hydrogen bonding

interaction between ligands to Tyr325, Asp367 and Asn375 were

suggested to strengthen and stabilize ligand inside PDE4D

binding site. To predict the bioactivity of the TCM ligands, we

also built MLR and SVM models. The top two TCM compounds

had reasonable pIC50 values. Overall, we suggest the above

mentioned binding characteristics could be important for ligand

inhibitory activity Hence, we propose the top two TCM candi-

dates, 2-O-caffeoyl tartaric acid and mumefural, as potential

PDE4D inhibitors.
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