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Structure-based and ligand-based drug design for microsomal prostaglandin E
synthase-1 inhibitors

Chia-Ling Lia†, Tung-Ti Changa†, Mao-Feng Sunb†, Hsin-Yi Chenc, Fuu-Jen Tsaicd, Mark Fishere,

Calvin Yu-Chian Chencfg*, Chun-Lin Leeh, Wen-Chang Fangh and Yung-Hao Wongf

aDepartment of Chinese Pediatrics, China Medical University Hospital, Taichung, Taiwan, ROC; bDepartment of Acupuncture, China
Medical University Hospital, Taichung, Taiwan, ROC; cDepartment of Bioinformatics, Asia University, Taichung 41354, Taiwan, ROC;
dDepartment of Medical Genetics, Pediatrics and Medical Research, China Medical University Hospital and College of Chinese
Medicine, China Medical University, Taichung 40402, Taiwan, ROC; eHarvard-MIT Division of Health Sciences and Technology, 77
Massachusetts Avenue, Cambridge, MA 02139, USA; fLaboratory of Computational and Systems Biology, School of Chinese Medicine,
China Medical University, Taichung 40402, Taiwan, ROC; gComputational and Systems Biology, Massachusetts Institute of Technology,
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Microsomal prostaglandin E synthase-1 (mPGES-1) has been regarded as an attractive drug for inflammation-related
diseases. In search of new mPGES-1 inhibitors, we performed virtual screening using our traditional Chinese medicine and
natural products database (http://tcm.cmu.edu.tw/) and constructed comparative molecular field analysis (CoMFA) and
comparative molecular similarity indices analysis (CoMSIA) using a training set of 30 experimentally tested mPGES-1
inhibitors. The CoMFA and CoMSIA models derived were statistically significant with cross-validated coefficient values of
0.808 for CoMFA and 0.829 for CoMSIA and non-cross-validated coefficient values of 0.829 for CoMFA and 0.980 for
CoMSIA. Docking and de novo evolution design gave three top derivatives, 2-O-caffeoyl tartaric acid-Evo_2, glucogallin-
Evo_1 and 3-O-feruloylquinic acid-Evo_7 that have higher binding affinities than the control, glutathione. These three
derivatives have interactions with Arg70, Arg73, Arg110, Arg126 and Arg38, which all are mPGES-1 key active site
residues. In addition, these derivatives fit well into the CoMFA and CoMSIA models, with hydrophobic, hydrophilic and
electropositive substructures mapped onto corresponding contour plots. Hence, we suggest that these three de novo
compounds could be a starting basis for new mPGES-1 inhibitors.

Keywords: microsomal prostaglandin E synthase-1; QSAR; docking traditional Chinese medicine; database

1. Introduction

In the prostaglandin (PG) biosynthetic pathway, arachi-

donic acid is converted to PG H2 (PGH2) by

cyclooxygenase (COX). PGE2 synthase catalyses the

conversion of PGH2 to PG E2 (PGE2), the most abundant

PG in the body. PGE2 is an important product of the COX

pathway and has been considered as a mediator of

inflammation, pain, fever and cancer [1,2]; it is also known

to regulate physiological functions in the gastrointestinal

tract, in the kidney and in the immune and nervous

systems.

Three major isoforms of PGE2 synthases have been

identified: cytosolic PG E synthase (cPGES), microsomal

PGES 1 (mPGES-1) and mPGES-2 [3,4]. Both cPGES and

mPGES-2 are constitutively expressed in various cells

and tissues, while mPGES-1 is localised to microsomal

compartment of the cell. Recently, mPGES-1 has attracted

much attention as a potential drug target for

inflammation and pain [5], tumorigenesis, arthritis and

atherosclerosis [6], stroke [7,8], cancer [9,10] and tissue

repair [11].

Inflammations are related to many diseases, including

cancer, arthritis and atherosclerosis. Specifically, mPGES-1

is induced by pro-inflammatory agents and is functionally

coupled to COX-2 in various models of inflammation.

Previous studies using mPGES-1 knockout mice have

shown that mPGES-1 contributes to the inflammatory

production of PGE2. Hence, mPGES-1 is a potential drug

target for inflammation-related diseases.

Previously, we have investigated mPGES-1 pharma-

cophore features by Catalyst HypoGen [12], and as a

continuation of the project, we applied 3D quantitative

structure–activity relationship (3D-QSAR) analysis and

molecular docking to search for novel inhibitors for

mPGES-1. Both 3D-QSAR and docking techniques are
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disciplines of computer-aided drug design (CADD) that

have been used in pharmaceutical industry and in our lab

for drug development process [13–26].

Aside from employing CADD technologies, we

introduced a traditional Chinese medicine (TCM) and

natural product database (http://tcm.cmu.edu.tw/) in

the virtual screening process. Herbal medicines and

natural products have been used in many cultures for

hundreds of years, and some have been recently studied to

identify the biological activity of the principal components

[27–36]. Hence, our goal is to identify natural compounds

that possess potential inhibitory activity towards mPGES-

1 and that could be further modified for better

pharmacological activity.

Table 1. Molecular structure of the training set and the test set

R4

R5

R6

N

R1

R3

R2

.

Compound R1 R2 R3 R4 R5 R6

Training set
1 CH2(4-Cl-Ph) COO– S-tBu iPr H
2 H COO– S-tBu iPr H
3 Me COO– S-tBu iPr H
4 CH2(CHdCH2) COO– S-tBu iPr H
5 (CH2)3Ph COO– S-tBu iPr H
6 CH2(4-Cl-Ph) CO2Me S-tBu iPr H
7 CH2(4-Cl-Ph) CONH2 S-tBu iPr H
8 CH2(4-Cl-Ph) COO– Ph iPr H
9 CH2(4-Cl-Ph) COO– OPh iPr H
10 CH2(4-Cl-Ph) COO– CH2(4-tBu-Ph) iPr H
11 CH2(4-Cl-Ph) COO– CO(2-Me-Ph) iPr H
12 CH2(4-Cl-Ph) COO– COCH2S-tBu iPr H
13 CH2(4-Cl-Ph) COO– COCH2-tBu iPr H
14 CH2(4-Cl-Ph) COO– Me iPr H
15 CH2(4-Cl-Ph) COO– Me H iPr
16 CH2(4-Cl-Ph) COO– Me H H
17 CH2(4-Cl-Ph) COO– Me F H
18 CH2(4-Cl-Ph) COO– Me tBu H
19 CH2(4-Cl-Ph) COO– Me Ph H
20 CH2(4-Cl-Ph) COO– Me (3-Ph)-Ph H
21 CH2(4-Cl-Ph) COO– Me (4-Ph)-Ph H
22 CH2(4-Cl-Ph) COO– Me (3-Cl,4-Ph)-Ph H
23 CH2(4-Cl-Ph) COO– Me (3-F,4-Ph)-Ph H
24 CH2(4-Cl-Ph) COO– Me [3-F,4-(2-MeO–Ph)]-Ph H
25 CH2(4-Cl-Ph) COO– Me [3-F,4-(2-Cl-Ph)]-Ph H
26 CH2(4-Cl-Ph) COO– Me [3-F,4-(2-F-Ph)]-Ph H
27 CH2(4-Cl-Ph) COO– Me [3-F,4-(2-MeCO–Ph)]-Ph H
28 CH2(4-Cl-Ph) COO– Me [3-F,4-(2-Me-Ph)]-Ph H
29 CH2(4-Cl-Ph) COO– Me [3-F,4-(3-Me-Ph)]-Ph H
30 CH2(4-Cl-Ph) COO– Me [3-F,4-(4-Me-Ph)]-Ph H

Test set
31 CH2(4-Cl-Ph) CO2H COCH2S-tert-Bu 2-Methyl H
32 CH2(4-Cl-Ph) CO2H COCH2-tert-Bu 2-Methyl H
33 CH2(4-Cl-Ph) CO2H Me 2-Methyl H
34 CH2(4-Cl-Ph) CO2H Me H Iso-propyl
35 CH2(4-Cl-Ph) CO2H Me tert-butyl H
36 CH2(4-Cl-Ph) CO2H Me Ph H
37 CH2(4-Cl-Ph) CO2H Me Ph H
38 CH2(4-Cl-Ph) CO2H Me Ph F H
39 CH2(4-Cl-Ph) CO2H Me 2-MeO–Ph F H
40 CH2(4-Cl-Ph) CO2H Me 2-Cl-Ph F H
41 CH2(4-Cl-Ph) CO2H Me 2-MeCO–Ph F H
42 CH2(4-Cl-Ph) CO2H Me 3-Me-Ph F H
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2. Materials and method

2.1 3D quantitative structure–activity relationship

We used SYBYL7.3 (Tripos Inc., St. Louis, MO, USA) to

build 3D-QSAR models. Forty-two mPGES-1 inhibitors

used in our study were taken from previous literatures

[37,38]. The structures of 42 compounds are shown in

Table 1. The 2D and 3D structures of these compounds

were drawn using ChemBioOffice 2008 (CambridgeSoft

Inc., Cambridge, MA, USA) (compound structures shown

in Table 1). Structure optimisation was carried out using

the MM2 force field. These 42 inhibitors were further

divided into the training set and the test set.

The steric and electrostatic energies investigated in

comparative molecular field analysis (CoMFA) were

calculated by using a carbon probe and a positive charge.

Hydrophobic and hydrogen bond donor and acceptor fields

were computed in comparative molecular similarity

indices analysis (CoMSIA) in addition to steric and

electrostatic fields.

2.2 Partial least squares

Partial least squares (PLS) analyses were utilised to

analyse the 3D-QSAR models. All CoMFA and CoMSIA

fields were regarded as independent variables. By using

the leave-one-out method, the value of cross-validation

coefficient, q 2, was further employed for non-cross

validation to acquire the highest non-cross validation

coefficient, r 2, the lowest standard error of estimate, and

F-value. The final analysis of the non-cross validation was

used to predict the test set activity and to derive the contour

maps of CoMFA and CoMSIA.

R4

R5

R6(a) R1

N

R3

R2

(b)

Figure 1. (a) Alignment scaffold for the training set and test set.
The core atoms are labelled in bold face blue and (b) the
alignment of training set molecules (colour online).

Table 2. PLS statistics of CoMFA and CoMSIA.

Cross validation Non-cross validation

CoMFA CoMSIA ONC q 2
cv r 2 SEE F

ONC 4 A 5 0.052 0.414 1.008 3.391
q 2
cv 0.808 E 5 0.466 0.909 0.398 47.715

SEE 0.199 H 6 0.790 0.996 0.088 890.823
r 2 0.976 S 6 0.819 0.976 0.210 154.122
F 255.493 A þ D 4 0.077 0.359 1.043 3.493

A þ E 4 0.574 0.900 0.409 56.098
A þ H 5 0.822 0.967 0.241 138.623
A þ S 4 0.818 0.936 0.326 91.982
E þ S 5 0.726 0.969 0.231 151.323
H þ S 6 0.818 0.996 0.082 1028.592
A þ D þ E 6 0.475 0.947 0.310 68.447
A þ D þ H 6 0.799 0.973 0.219 140.365
A þ D þ S 5 0.818 0.938 0.327 73.193
A þ E þ S 5 0.743 0.968 0.234 147.395
A þ E þ H 6 0.721 0.982 0.181 207.163
A þ H þ S 5 0.829 0.980 0.187 232.362
D þ E þ S 4 0.668 0.937 0.325 92.306
E þ H þ S 4 0.784 0.977 0.196 265.398
A þ D þ E þ H 5 0.680 0.968 0.234 146.716
A þ D þ E þ S 5 0.702 0.959 0.267 112.268
A þ D þ H þ S 4 0.808 0.948 0.293 114.981
A þ E þ H þ S 6 0.793 0.988 0.145 327.459
A þ D þ H þ E þ S 6 0.761 0.986 0.161 264.192

Notes: ONC, optimal number of component; SEE, standard error of estimate; F, F-test value; PLS, partial least squares; S, steric; E, electrostatic; H, hydrophobic; D, hydrogen
bond donor; A, hydrogen bond acceptor
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2.3 Docking

Our TCM and natural compound database (http://tcm.cmu.

edu.tw/index.php) were used in the docking process. All

compounds were drawn using ChemBioOffice 2008

(CambridgeSoft Inc., Cambridge, MA, USA) and

energetically minimised in the MM2 forcefield.

All molecular simulations were performed by Discovery

Studio 2.5 (Accelrys Inc., San Diego, CA, USA) and

CHARMm (Chemistry at Harvard macromolecular mech-

anics). The protein structure of mPGES-1 was obtained from

Protein Data Bank (PDB ID: 3DWW) [39] and employed in

the docking study with our laboratory database. The docking

procedure first defined the ligand binding site in a receptor

before docking ligands into the specified site. LigandFit

docking program and scoring functions (DockScore,

piecewise linear potential (PLP), potential of mean force

(PMF) and LigScore) were used to evaluate the receptor–

ligand binding affinity of all compounds and their possible

poses. PF-9184 [40], 4-benzo[b]thiophen-2-yl-3-bromo-5-

hydroxy-5H-furan-2-one (BTH) [41] and glutathione were

taken as controls for filtering molecules.

2.4 Ligand de novo evolution

In de novo evolution, derivatives were generated based

on existing scaffolds. The Ludi algorithm was used to

Table 3. CoMFA and CoMSIA prediction results of mPGES-1.

CoMFA CoMSIA

Compound pIC50 exp pIC50 pred Residual pIC50 pred Residual

1 5.796 5.793 0.003 5.835 -0.039
2 5.000 4.944 0.056 4.781 0.219
3 5.000 4.901 0.099 4.981 0.019
4 5.174 5.146 0.028 5.297 2 0.123
5 5.495 5.688 2 0.193 5.671 2 0.176
6 5.143 5.334 2 0.191 5.068 0.075
7 5.000 5.195 2 0.195 4.897 0.103
8 5.194 5.350 2 0.156 5.397 2 0.203
9 6.187 5.676 0.511 6.156 0.031
10 6.538 6.651 2 0.113 6.561 2 0.023
11 6.046 6.047 2 0.001 6.166 2 0.120
12 6.585 6.554 0.031 6.787 2 0.202
13 6.602 6.620 2 0.018 6.634 2 0.032
14 5.959 6.056 2 0.097 5.957 0.002
15 5.367 5.175 0.192 5.184 0.183
16 5.495 5.577 2 0.082 5.645 2 0.150
17 5.585 5.591 2 0.006 5.601 2 0.016
18 6.481 6.213 0.268 6.109 0.372
19 6.222 6.285 2 0.063 6.302 2 0.080
20 6.796 6.780 0.016 6.796 0.000
21 7.796 8.101 2 0.305 8.009 2 0.213
22 7.658 7.897 2 0.239 7.662 2 0.004
23 8.155 8.183 2 0.028 8.191 2 0.036
24 8.301 8.101 0.201 7.980 0.321
25 8.398 8.125 0.273 8.050 0.348
26 8.097 8.072 0.025 8.093 0.004
27 8.222 8.194 0.028 8.324 2 0.102
28 8.523 8.198 0.325 8.273 0.250
29 7.481 7.654 2 0.173 7.638 2 0.157
30 7.509 7.704 2 0.195 7.760 2 0.251
31 6.585 6.152 0.433 6.655 2 0.070
32 6.602 6.839 2 0.237 6.788 2 0.186
33 5.959 6.600 2 0.641 6.455 2 0.496
34 5.367 5.580 2 0.213 5.286 0.081
35 6.481 6.996 2 0.515 6.899 2 0.418
36 6.222 6.737 2 0.515 6.486 2 0.264
37 6.796 6.938 2 0.142 6.914 2 0.118
38 8.155 8.209 2 0.054 8.254 2 0.099
39 8.301 8.245 0.056 8.250 0.051
40 8.398 8.639 2 0.241 8.411 2 0.013
41 8.222 8.217 0.005 8.174 0.048
42 7.481 6.999 0.482 6.803 0.678

Notes: pIC50 exp is experimental pIC50; pIC50 pred is predicted pIC50.
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evaluate fragments that best complement the receptor.

These fragments are fused onto the molecule scaffold,

generating a collection of molecules with high Ludi score.

Top candidates from previous docking study were taken

for de novo evolution, and the resultant derivatives were

first screened by the Lipinski’s rule of five before being

docked back to the mPGES-1 active site again for

evaluating binding poses and binding affinity.

3. Results and discussion

3.1 3D-QSAR analysis

In this study, we used a training set of 30 compounds to

develop our CoMFA and CoMSIA models. All 30

compounds were aligned to core atoms shown in blue in

Figure 1(a). The alignment of the training set molecules is

shown in Figure 1(b).

PLS analyses of the training set gave a cross-validated

coefficient (q 2) value of 0.808, a non-cross-validated

coefficient (r 2) of 0.976 and an standard error of estimate

(SEE) value of 0.199 for CoMFA (Table 2). As for

CoMSIA, the best model (A þ H þ S) showed a q 2 value

of 0.829, an r 2 value of 0.980 and an SEE value of 0.187

(Table 2). The high r 2 and q 2 values and the low SEE value

indicate that the 3D-QSAR models are reasonable and

should have a good predictive ability.

The predictive ability of the 3D-QSAR models was

further verified with an external test set of 12 compounds.

The predicted activities of the training and test set

molecules were compared with the experimental obser-

4

5
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7

8

9

10

Pr
ed

ic
te

d

R2 = 0.976

R2 = 0.980

4

5
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10(a)

(b)

4 5 6 7 8 9 10

Observed

4 5 6 7 8 9 10

Observed

Pr
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d

Training set
Test set

Training set
Test set

Figure 2. Plot of observed activities versus predicted activities
for the training (V) and test set (B) compounds based on
prediction of (a) CoMFA and (b) CoMSIA.

Figure 3. (a) CoMFA contour map. Steric field: favour (green)
and disfavour (yellow). Electropositive field: favour (blue) and
disfavour (red) and (b) CoMSIA contour map. Hydrophobic field,
favour (green) and disfavour (yellow); hydrogen bond acceptor,
favour (white) and disfavour (blue); hydrogen bond donor, favour
(red) and disfavour (purple) (colour online).
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vations (Table 3). As illustrated in Figure 2, the predicted

activities for both training and test set compounds showed

high correlation with the experimental activities and gave

a correlation value (R 2) of 0.976 for CoMFA and 0.980

for CoMSIA. These statistical results suggest that both

CoMFA and CoMSIA have good predictions for the

training and the test set compounds.

3.2 Contour map analyses of CoMFA

The contour maps of CoMFA and CoMSIA models are

shown in Figure 3. The most active training set compound

(28) is superimposed onto the CoMFA and CoMSIA

contours for references. In the CoMFA model (Figure

3(a)), the steric contour maps are represented in green and

yellow for favoured and disfavoured contribution,

respectively. The large green contour region surrounding

the terminal phenyl ring (R4 group) suggests that the steric

bulk group could enhance biological activity in this region.

This is in good agreement with the experimental results for

compounds 19–30, which all have a terminal phenyl group

in this region and all have IC50 less than 40 nM. The

electrostatic contour maps are shown in red for

electronegative contribution and in blue for electropositive

contribution. The red contours are found surrounding the

terminal phenyl group (R1 group), suggesting that an

addition of electronegative substituents could increase

biological activity. On the other hand, the blue contours are

concentrated near the carboxylate group (R2 group),

favouring modification to electropositive group.

3.3 Contour map analyses of CoMSIA

In CoMSIA model, hydrophobic and hydrogen bonding

interaction were included in addition to steric and

electrostatic field descriptors. In Figure 3(b), the hydro-

phobic contour maps are shown in green or in yellow for

favoured or disfavoured contribution. The hydrogen bond

acceptor contour maps are indicated in white for favoured

contribution and in blue for the opposite. The contour maps

are shown in red or in purple for region favouring or

disfavouring hydrogen bond donor. The green contour near

the terminal phenyl group (R1 group) indicates that a

hydrophobic group in this region is favourable. The yellow

contour region near the carboxylate group (R2 group)

indicates that a hydrophilic group is favoured. Hence, to

enhance the compound activity, we could introduce

hydrophobic groups to the terminal phenyl group found at

the R1 position and hydrophilic groups to the carboxylate

group at the R2 position.

3.4 Docking and de novo evolution analysis

In the docking study, the binding affinity between ligands

and the receptor was calculated using scoring functions.

The DockScores for controls, PF-9184, BTH and

glutathione, were 53.466, 54.757 and 66.787, respectively.

Preliminary docking experiments resulted in 81 com-

pounds that have DockScores higher than the controls

(Table 4; only the top 20 compounds are shown). The top

three candidates are 2-O-caffeoyl tartaric acid, chicoric

Table 4. Docking results.

Compound D.S PLP1 PLP2 PMF LigS1 LigS2

2-O-Caffeoyl tartaric acid 215.079 68.06 90.04 224.93 6.64 5.88
Chicoric acid 206.092 117.44 123.46 256.74 7.05 6.05
Mumefural 201.985 72.59 87.65 198.04 6.23 4.96
2-O-Feruloyl tartaric acid 198.739 70.84 83.36 224.55 6.19 5.13
Salvianolic acid B 156.923 110.76 123.01 133.86 7.59 6.83
Rosmarinic acid 148.434 81.92 101.21 223.61 6.79 5.88
Quinic acid 143.961 49.97 60.81 164.90 5.28 4.62
Genipinic acid 142.772 53.24 57.96 195.62 5.65 5.05
Digallic acid 142.547 64.37 81.51 207.53 6.35 5.57
5-O-Feruloylquinic acid 142.462 90.73 101.31 225.85 6.77 5.73
3-O-Feruloylquinic acid 140.488 91.52 106.21 218.68 6.98 5.86
Lithospermic acid 140.305 73.86 111.21 243.55 5.94 3.45
Isochlorogenic acid 140.272 71.80 80.80 228.69 6.45 5.47
Gallic acid 140.219 44.47 53.19 119.23 4.45 4.16
2, 3-Dihydroxycinnamic acid 139.170 42.33 52.25 121.93 4.92 4.29
1-Caffeoylquinic acid 139.057 86.48 92.77 227.00 6.19 5.16
Protocatechuic acid 137.016 38.80 45.62 119.88 4.29 4.18
Shikimic acid 136.811 43.34 50.65 137.44 4.51 4.16
4-O-Caffeoylquinic acid 136.713 81.41 100.12 208.58 6.68 5.50
5-O-Caffeoylshikimic acid 136.493 72.33 89.63 184.15 5.66 4.65
PF-9184 53.466 93.82 100.17 175.53 5.27 6.21
BTH 54.757 61.90 59.57 103.39 4.39 4.76
Glutathione 66.787 102.17 98.17 193.40 7.02 6.28

Notes: D.S, Dock score; LigS1, LigScore1; LigS2, LigScore2; only the top 20 candidates and controls are shown.
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Figure 4. Binding conformation of (a) Glutathione, (b) 2-O-Caffeoyl tartaric acid-Evo_2, (c) Glucogallin-Evo_1 and (d) 3-O-
Feruloylquinic acid-Evo_7 at the mPGES-1 binding site.

Table 5. Docking results for de novo products.

Compound D.S PLP1 PLP2 PMF LigS1 LigS2

2-O-Caffeoyl tartaric acid-Evo_2 222.198 87.60 98.80 196.39 6.24 5.43
Glucogallin-Evo_1 169.762 86.96 107.38 243.42 7.03 6.14
3-O-Feruloylquinic acid-Evo_7 167.056 95.10 111.99 234.69 7.13 6.09
1-Caffeoylquinic acid-Evo_3 165.916 94.30 101.14 240.61 6.62 5.12
3-O-Feruloylquinic acid-Evo_5 159.929 96.61 116.46 250.69 7.27 5.99
Capillartemisin B-Evo_4 152.081 90.53 101.68 216.51 6.28 4.17
Capillartemisin B-Evo_1 151.803 94.49 106.10 222.5 6.30 4.02
Capillartemisin B-Evo_6 150.856 84.49 95.74 213.4 6.25 4.14
Gentisic acid-Evo_1 146.487 57.94 60.68 151.53 4.90 4.83
3-O-Feruloylquinic acid-Evo_2 145.552 87.65 97.85 248.49 6.17 5.08
O-Coumaric acid-Evo_2 145.117 63.83 71.65 155.32 5.64 4.98
Capillartemisin B-Evo_5 144.76 87.00 94.31 203.15 5.46 3.84
Capillartemisin B-Evo_2 144.719 87.51 96.51 200.48 5.49 3.83
O-Coumaric acid-Evo_1 144.069 64.43 73.19 148.43 5.64 5.04
Picrocrocinic acid-Evo_1 141.492 93.51 110.13 242.07 6.18 3.96
3-O-Feruloylquinic acid-Evo_3 141.444 86.44 99.14 237.14 7.15 5.86
O-Coumaric acid-Evo_5 141.085 58.98 65.56 142.49 5.46 4.76
Caffeic acid-Evo_1 140.641 37.91 52.82 133.02 4.88 4.63
3,5-Dihydroxycinnamic acid-Evo_1 139.832 37.91 52.82 131.04 4.88 4.63
Ferulic acid-Evo_5 139.070 56.55 67.36 151.75 5.91 5.16

Note: The top 20 candidates are shown here.
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acid and mumefural, and their DockScores are 215.079,

206.092 and 201.985, respectively.

A total of 408 derivatives were generated based on

the top compounds obtained from the previous docking

step. Only 50 derivatives that passed Lipinski’s rule of five

were docked back to the mPGES-1 binding site. The top 20

de novo compounds, ranked in order of their DockScores,

are shown in Table 5. The top three de novo compounds

are 2-O-caffeoyl tartaric acid-Evo_2, glucogallin-Evo_1

and 3-O-feruloylquinic acid-Evo_7, and their DockScores

are 222.198, 169.762 and 167.056, respectively.

The binding conformation of glutathione (control) and

the top three derivatives are illustrated in Figure 4, which

shows ligands forming hydrogen bond interactions with

residues Arg70, Arg73, Arg110, Arg126 and Arg38. All

these residues have been identified as key active site

residues in previously published studies [42–45]. A

summary of the number of hydrogen bonds formed

between the ligands and mPGES-1 residues is shown in

Table 6. All the top three derivatives have greater number

of hydrogen bonds than the control, thus providing a

possible explanation for their elevated DockScores.

3.5 CoMFA and CoMSIA mapping

The top three derivatives mapped onto the CoMFA and

CoMSIA models are shown in Figures 5 and 6. The

common features of the three derivatives are shown in

Figure 7, with red circles indicating characteristics

noticed from CoMFA and blue circles for features

obtained from CoMSIA. Red circle 1 indicates the site

having electropositive features, and red circle 2 indicates

the region favouring steric bulk group. Blue circle 1

indicates the region having hydrophobic features, and

blue circle 2 represents the site favouring hydrophilic

features. As shown in the docking results, all substruc-

tures circled by blue circle 2 could form strong hydrogen

bonding interactions with the receptor. Therefore, the

presence of hydrophilic groups could be a big influence

for mPGES-1 inhibitor activity. In addition, the

hydrophobic substructure of these three derivatives

(circled by blue circle 1) could form hydrophobic inter-

actions with other surrounding residues which further

strengthen binding interactions. Based on these findings,

these functional groups are suggested to be key factors in

designing mPGES-1 inhibitors.

4. Conclusions

Several novel anti-cancer or anti-inflammatory com-

pounds were investigated from TCM [46–48]. So, we

introduced a TCM database (http://tcm.cmu.edu.tw/) into

our research. Derivative, 2-O-Caffeoyl tartaric acid-

Evo_2, has the highest DockScore of the 50 de novo

Figure 5. Mapping of de novo compounds to CoMFAmodel. The
selected compounds are (a) 2-O-Caffeoyl tartaric acid-Evo_2, (b)
Glucogallin-Evo_1 and (c) 3-O-Feruloylquinic acid-Evo_7. Steric
field, favour (green) and disfavour (yellow); electropositive field,
favour (blue) and disfavour (red) (colour online).

Table 6. Number of hydrogen bonds formed between ligands and mPGES-1 active site residues.

Compound Arg70 Arg73 Arg110 Arg126 Gln134 Tyr28 Arg38 Lys42

Glutathione 1 1 1 1 1 – – –
2-O-Caffeoyl tartaric acid-Evo_2 3 1 – 3 – – 5 2
Glucogallin-Evo_1 4 2 1 – – 2 3 –
3-O-Feruloylquinic acid-Evo_7 2 1 1 1 – 2 2 –

Molecular Simulation 233

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
h
e
n
,
 
C
a
l
v
i
n
 
Y
u
-
C
h
i
a
n
]
 
A
t
:
 
1
5
:
2
5
 
3
 
M
a
r
c
h
 
2
0
1
1



products, and its original compound (2-O-Caffeoyl tartaric

acid) also ranks first in the preliminary docking. The top

three derivatives, 2-O-caffeoyl tartaric acid-Evo_2,

glucogallin-Evo_1 and 3-O-feruloylquinic acid-Evo_7,

interact with five key mPGES-1 residues, Arg70, Arg73,

Arg110, Arg126 and Arg38, respectively. These deriva-

tives mapped well onto the CoMFA and CoMSIA models,

and four common chemical features could be observed

Figure 6. Mapping of de novo compounds to CoMSIA model.
The selected compounds are (a) 2-O-Caffeoyl tartaric acid-Evo_2,
(b) Glucogallin-Evo_1 and (c) 3-O-Feruloylquinic acid-Evo_7.
Hydrophobic field, favour (green) and disfavour (yellow); hydrogen
bond acceptor, favour (white) and disfavour (blue); hydrogen
bond donor, favour (red) and disfavour (purple) (colour online).
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Figure 7. Common features observed among the top
derivatives: (a) 2-O-Caffeoyl tartaric acid-Evo_2, (b)
Glucogallin-Evo_1 and (c) 3-O-Feruloylquinic acid-Evo_7. Red
circle 1 indicates electropositive characteristics; red circle 2
indicates steric favour region. Blue circle 1 indicates hydrophobic
features; blue circle 2 indicates hydrophilic features. The red
circles are features observed from CoMFA ligand mapping, while
the blue circles are obtained from CoMSIA ligand mapping
(colour online).
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from these three derivatives. Overall, we hope that the

above findings will provide a constructive idea for

designing mPGES-1 inhibitors.
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