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Background: Congenital adrenal hyperplasia (CAH) is an autosomal recessive disease of an inborn error of
steroid metabolism in humans. More than 90% of CAH cases are caused by mutations of the steroid 21-
hydroxylase (CYP21A2) gene, and approximately 75% of the defective CYP21A2 genes are generated through
an intergenic recombination with the neighboring CYP21A1P pseudogene.
Methods: A high-resolution melting (HRM) curve analysis was designed to characterize 11 mutation sites of
the CYP21A2 gene that commonly appeared in 21-hydroxylase deficiency. Among these 11 mutations, 9 were
found in CAH patients, and 2 were mutations created from normal individuals.
Results: From the HRM analysis using 6 fragments of amplicons, we have successfully identified these 11
common disease-causing mutations of the CYP21A2 gene, among which 3 showed 3 distinguishable melting
plots; the heteroduplexes showed an upcurved plot, a horizontal plot of homoduplexes of wild-type (WT),
and a downcurved plot of homoduplexes of compound mutations.
Conclusions: The HRM analysis is a 1-step of non-gel resolution technique which saves time and is a low-cost
41
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E
Cmethod to undertake such a program for screening CAH patients with the 21-hydroxylase deficiency caused

by intergenic conversions from the neighboring CYP21A1P pseudogene.
© 2011 Published by Elsevier B.V.
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1. Introduction

Congenital adrenal hyperplasia (CAH) is an autosomal recessive
disease of an inborn error of steroid metabolism in humans. It may
produce excessive or deficient sex steroids and can alter development of
primary and secondary sex characteristics. There are 6 enzymes,
cholesterol side-chain cleavage enzyme (CYP11A), CYP17 (17, 20-
lyase), steroid 21-hydroxylase (CYP21A2), steroid 11-beta-hydroxylase
(CYP11B1), steroid 18-hydroxylase (CYP11B2), and 17β-
hydroxylsteroid dehydrogenase, that are required for the synthesis of
steroid hormones. However, more than 90%–95% of all CAH cases are
caused by a CYP21A2 deficiency [1]. There are 3 forms of CAH: the
classical salt-wasting, classical simple virilizing, and non-classical forms
[2,3]. The incidence of the classical form of CAHdisease is reported to be
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1:10,000–1:18,000, depending on race [1,4] while the non-classical
form is milder and commonly occurs in the general population at a rate
of 1:1700 [3,5].

The gene coding for P450c21 is designated CYP21A2. A duplicate
copy designated CYP21A1P exists which shares 98% nucleotide
sequence homology with CYP21A2 in exons and 96% in non-coding
sequences [6,7]. These two genes are separated by 30 kb in
chromosome 6p21.3 adjacent to and alternating with the C4A and
C4B genes encoding the fourth component of the serum complement
and show great similarity. This seems the most likely reason for
misalignment and gene conversions to occur during meiosis [8].
Under this circumstance, genetic defects of the CYP21A2 gene in CAH
may commonly lead to 1 of 2 categories of (a) small-scale conversions
of the CYP21A1P sequence (commonly 1 of 11 mutations) [9] and (b)
chimeras of the chimeric CYP21A1P/CYP21A2 and TNXA/TNXB genes
[10–12]. The CYP21A1P is a nonfunctional gene which was thought to
carry 15 mutations [6,7]. However, a study of ethnic Chinese (i.e.,
Taiwanese) [13] indicated that not every healthy individual (n=100)
bears these mutations, which had an approximately 90% in the
population frequency [13], and 4 loci of the I2 splice (including nt
707–714del), I172N, cluster E6, and F306ΛL307insT were processed
by “complete” selective pressure in evolution [13]. The CYP21A2
HRM) analysis to establish CYP21A2 mutations converted from the
i:10.1016/j.cca.2011.06.033
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deficiency in our population (i. e., Taiwanese), approximately 81% of
which are defective CYP21A2 genes [14], is generated through an
intergenic recombination [9] with the neighboring CYP21A1P pseu-
dogene. Among them, the 3 most common mutations of the CYP21A2
gene in ethnic Chinese (i.e., Taiwanese) of 69% frequencies are the I2
splice (nt 655, IV2-12A/CNG) (34%, n=400 chromosomes), I172N
(23.5%), and R356W (11.8%) [14], which show high similar incidences
worldwide in different races [1,15,16]. The frequency of other
mutations such as Q318X, F306-L307insT, and cluster E6 are about
12% [14]. A mutation of V281L, the most common nonclassical disease
appearing in high frequency in patients in France, Austria, Italy, Spain,
Turkey, Argentine, and Portugal [15–17], was not found in Taiwanese
[18], Japanese [19], or Tunisian patients [20].

Polymerase chain reaction (PCR) amplification is an indispensable
tool for detecting a gene of interest in current molecular biology. The
molecular diagnosis of the CYP21A2 deficiency through direct analysis
of the CYP21A2 gene was proven to be feasible and accurate. To isolate
the CYP21A2 gene free from the CYP21A1P pseudogene, several
methods including 1-step [21,22] and 2-step methods [23–25] for
amplification of the CYP21A2 gene were developed. These PCR
products with either 1 or 2 fragments as a template are subject to
known or unknown mutational detection using more-practical
methods, such as PCR/ligase detection [24], single-stranded confor-
mation polymorphism (SSCP) [26], amplification-created restriction
site (ACRS) [27], real-time PCR [28], denaturing high-performance
liquid chromatography (DHPLC) [18], multiplex minisequencing [29],
laser desorption/ionization time-of-flight (MALDI-TOF) [30], and
multiple ligation-dependent amplification (MLPA) assay to detect
the CYP21A2 gene [31].

The aim of the present study was to use a high-resolution melting
curve (HRM) analysis to directly identify 11 nucleotide sequences
commonly appearing in the CYP21A1P gene, including p.P30L, the I2
splice, nt 707–714del, p.I172N, cluster E6, p.V281L, F306ΛL307inseT,
p.Q318X, and p.R356W and to establish such a rapid and precise
screening tool for CAH patientswhich account for 70%–80% of CAH cases.

2. Materials and methods

2.1. DNA samples

Genomic DNA was collected from 200 CAH patients in hospitals
across Taiwan from 1994 to 2006 [14]. All families requested an
extensive molecular diagnosis and provided informed consent. Among
theseCAHpatients, 9mutationswere from theunrelatedpatientswhich
accounted for about 81% of CAH cases [14] including the I2 splice where
G is substituted for A/C (designated B1), deletion of 8 base pairs (bps) in
exon 3 (nt707–714del, designated B2), isoleucine (ATC) at codon 172
substituted by asparagine (AAC) (p.I172N, designated C), cluster E6
(designated D), p.F306ΛL307insT (designated H2), glutamine (CAG) at
codon 318 substituted by a stop codon (TAG) (p.Q318X, designated J1),
and arginine (CGG) at codon 356 substituted by tryptophan (TGG)
(p.R356W, designated J2) (Fig. 1). The CYP21A2 mutations in these
patients were formerly determined by the ACRS method as previously
described [27]. In order to produce the heteroduplex DNA fragment for
the HRM analysis, patients with the haplotype of compound heterozy-
gous mutations in the CYP21A2 allele were selected. Because of no
patient with the p.P30L (CCGNCTG) (designated A) or p.V281L
(GTGNTTG) (designated H1) mutations (Fig. 1) were found in our
population [18], we created these 2mutations from a normal individual
as described previously [18].

2.2. A primary 3.5-kb differential PCR product of the CYP21A2 gene for
identifying 9 mutations converted from the CYP21A1P gene

To isolate the CYP21A2 free from the CYP21A1P genes, a 3.5-kb PCR
product covering 10 exons of the CYP21A2 gene was amplified with a
Please cite this article as: Lin Y-C, et al, High-resolution melting curve (
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differential paired primer, BF1/21BR (Fig. 1), as described previously
[21]. To identify the CYP21A2mutations converted from the CYP21A1P
gene, the 3.5-kb primary PCR products obtained from these CAH
samples were then used as templates to detect the 9 mutation sites.

2.3. A primary 3.0-kb PCR product containing a mixture of the CYP21A2
and CYP21A1P genes for creating P30L and V281L heterozygous
mutations in a normal individual

Because of no patient with the p.P30L or p.V281L mutations was
found in our population [18], a 3.0-kb PCR product was amplified with
a universal paired primer, CYP-270f/Ex10R [18] (Fig. 1), to create the
p.P30L and p.V281L heterozygous mutations in 1 normal individual as
previously described [18]. The 3.0-kb PCR product contained a
mixture of the CYP21A2 and CYP21A1P genes which present the
haplotype of compound heterozygous mutations with 11 defective
alleles as does the CYP21A1P gene [6]. The 3.0-kb PCR product was
then used as a template to identifymutations of p.P30L (designated A)
and p.V281L (designated H1) (Fig. 1).

2.4. Secondary PCR amplification of both the 3.5-kb and 3.0-kb PCR
products for the HRM analysis

The 3.5-kb PCR products amplified with the paired primer,
BF1/21BR, from these selected CAH samples and the 3.0-kb PCR product
amplified with the universal paired primer, CYP-270f/Ex10R, creating
p.P30L and p.V281L mutations from a normal individual were used as
templates for secondary PCR amplification byHRMprimers. Therewere
6 paired primers for the HRM analysis to detect 11 mutational loci. The
sequence and location of these HRM primers are listed in Table 1.

2.5. HRM analysis

TheHRManalysis included a PCR reaction, DNAmelting process, and
gene scanning fordata analysis. These 3programs canbeperformedona
single instrument. The LightCycler® 480 Real-time PCR system (Roche
Diagnostics, Penzberg, Germany) with 96- or 384-well closed-tube
platforms is operated by the LightCycler® 480 Gene Scanning Software
(Vers. 1.5) which is an integrated, high-throughput real-time PCR
instrument, and these 3 programs can be completed within 1 h.

For the PCR program, the reaction mixture for 6 secondary HRM
primer PCR amplifications contained a diluted primary PCR product
(3.5- or 3.0-kb PCR product), 10 μl of LightCycler®480 High Resolution
Melting Master (commercially supplied, which contains FastStart Taq
DNA polymerase, 2× reaction buffer, dNTP, and High Resolution
Melting Dye) (Roche Diagnostics), 0.25 μM of each primer, and
2.5 mM of MgCl2 in a final volume of 20 μl. The High Resolution
Melting Dye only strongly binds to double-stranded (ds)DNA and has
nothing to bind single-stranded (ss)DNA. The PCR conditions
consisted of 2 steps: a denaturation–activation step at 95 °C for
10 min, and followed by a 45-cycle program (denaturation at 95 °C for
15 s, annealing at 60 °C for 15 s, and elongation at 72 °C for 15 s with
reading of the fluorescence; by a single acquisition mode).

The melting program in this study includes 3 steps: denaturaliza-
tion at 95 °C for 1 min, re-naturation at 40 °C for 1 min and then
melting with a continuous fluorescent reading from 60 to 90 °C at 25
acquisitions per °C. The software system can “watch” the processes of
dsDNA with fluorescence to a dissociated nothing-bound ssDNA and
then processes the rawmelting curve data to form a different plot. The
plots obtained in the real-time stage with homozygous and
heterozygous samples, respectively, are significantly different. The
shapes of difference plot curves of each DNA sample must be
reproducible in terms of both shape and peak height.

Gene scanning of the data analysis by the Gene Scanning Software
was comprised of 3 steps: normalization of the melting curves,
equilibrating to 100% as the initial fluorescence and to 0% as the
HRM) analysis to establish CYP21A2 mutations converted from the
i:10.1016/j.cca.2011.06.033
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Fig. 1. Diagram of 11 CYP21A2 mutations converted from the neighboring CYP21A1 pseudogene and primer sequences, and locations of the amplification of the CYP21A2 and
CYP21A1P genes. The paired primers, BF1/21BR, were used to amplify a 3.5-kb PCR product of the CYP21A2 gene. The universal paired primers, CYP-270f/Ex10R, were used to amplify
a 3.0-kb PCR product of the mixture of the CYP21A2 and CYP21A1P genes. The structure of the CYP21A2 gene is indicated by a white box. Designations of A to J2 indicate the 11
mutation sites converted from the CYP21A1P pseudogene [18].
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fluorescence remnant after DNA dissociation, and shifting of the
temperature axis of the normalized melting curves to a point where
the entire dsDNA was completely denatured. Then the difference plot
analyzes differences inmelting curve shapes by subtracting the curves
from wild-type (WT) and mutated DNA (sequence variation),
therefore differences in the plots help cluster the samples into groups.

2.6. Confirmatory sequencing for secondary HRM PCR fragments

Before the HRM analysis, the secondary PCR products amplified
with the HRM paired primer (Table 1) (without using High Resolution
Melting Dye) for 11 mutation sites from unrelated patients were
confirmed by DNA sequencing (Supplemental Figs. 1, 2). The
sequence reaction was performed in a final volume of 10 μl including
1 μl of the purified PCR product, 0.8 μl of 2.5 μM of 1 of the PCR
primers, 2 μl of the ABI PRISM terminator cycle sequencing kit v3.1
(Applied Biosystems, USA), and 2 μl of 5× sequence buffer. The
sequencing programwas a 25-cycle PCR program (denaturation 96 °C
for 10 s, annealing 50 °C for 5 s, and elongation 60 °C for 4 min), and
sequence detection was performed in the ABI Prism 3130 Genetic
Analyzer (Applied Biosystems).

3. Results

3.1. Use of the 3.5- and 3.0-kb PCR products for secondary HRM PCR
amplification of 9 mutation sites in 9 unrelated patients and 2 created
mutation sites of P30L and V281L from a normal individual

To detect the 9mutation sites of B1, B2, C, D (cluster E6), H2, J1 and J2
(Fig. 1) from 8 unrelated CAH patients with compound heterozygous
U
N
C

Table 1
Primers for secondary PCR amplification and the HRM analysis of the CYP21A2 gene.

Designation Primer (5′–N3′) Location (nt)a Amplicon (bp

1A2 CTGCTGGCTGGCGCCCGCCT 31–50 182
C100 GAAGAAG GTCAGGCCCTC 602–619 226
E4r AGGCACCTTGATCTTGTCTCC 808–827
In3 TCTCCACAGCGCATGAGAGC 920–939 118
E4r GAGGCACCTTGATCTTGTCTCC 1016–1037
Ex6 TCATGCTTCCTGCCGCAGTTC 1304–1324 193
C8 TGCAAAAGAACCCGCCTCATAG 1475–1496
C9 TGCAGGAGAGCCTCGTGGCAGG 1573–1594 212
S7r GACGCACCTCAGGGTGGTGA 1764–1785
In7-1 In7-1 CACTCAGGCTCACTGGGTTGC 1890–1910 283
C12-1 ACCCTCGGGAGTCACCTGCTG 2152–2172

a Based on Higashi et al. [6].
b Designation of A to J2 is corresponding to Fig. 1.
c I2 splice, IVS2 −12A/CNG or nt 655.
d Cluster E6 represents I236N, V236E, and M239K.
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Omutations (Supplemental Figs. 1, 2), a 3.5-kb primary PCR product
(Supplemental Fig. 3A, lane 1) (data from only 1 patient) was generated
by the paired primers, BF1/21BR. The 3.5-kb PCR product used as the
templatewas subjected to a secondary PCR amplification (Supplemental
Fig. 3B) (data from only 1 patient) using the HRM paired primers
(Table 1) to produce 5 fragments of 226 bp (for loci B1 and B2
identification), 118 bp (for locus C identification), 193 bp (for cluster E6
identification), 212 bp (for locus H2 identification), and 283 bp (for loci
J1 and J2 identification). On the other hand, the 3.0-kb PCR fragments
(Supplemental Fig. 3A, lane 2) amplified with the paired primers, CYP-
270f/Ex10R, were derived from 1 normal individual to detect 2 created
mutation sites of P30L and V281L which included 2 fragments of 182 bp
(for locus A identification) and 212 bp (for locus H1 identification)
(Supplemental Fig. 3B) generated by the secondary amplification using
theHRMpairedprimers (Table1). TheHRManalysiswasperformedon6
different secondaryPCR fragments to cover these 11mutation sites using
a 96-well plate of the LightCycler 480 system. In addition, 6 different
secondary PCR products of the WT prepared from a normal individual
were treated the same as those of CAH patients (data not shown).

3.2. HRM analysis of 11 different mutations in 6 different PCR fragments

Because a heterozygous DNA sample with a heteroduplex has 2
different rates of separation temperatures and while homoduplex has
1, the shapes of the melting curves obtained from these 2 samples,
respectively, are significantly differed. The LightCycler® 480 Real-time
PCR system has the ability to monitor this process in high resolution
process to accurately document these changes. On the HRManalysis of
the 182-bp amplicon (Fig. 2A)with the createdheterozygousmutation
of p.P30L (CCG/CTG) from the normal individual (Sc) (Supplemental
) Detection locusb

p.P30L (A)
I2 splicec (B1) and In3R CTTACCTCACAGAACTCCTG808–827 707–714del (B2)

p.I172N (C)

Cluster E6d(D)

pV281L (H1) and pF306ΛL307insT (H2)

pQ318X (J1) and R356W (J2)

HRM) analysis to establish CYP21A2 mutations converted from the
i:10.1016/j.cca.2011.06.033
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Fig. 2.Normalized and temperature-shifted difference plots of the HRM analysis for detecting 11mutation sites of the CYP21A2 gene from different CAH patients. Sequences A to J are
designated in Fig. 1. Plot A represents a created heterozygous mutation of p.P30L in a normal individual (Sc). Plot B represents sample #81 with a heterozygous mutation of the I2
splice (B1), and sample #81 with a heterozygous mutation of 707–714del (B2). One sample with homozygous 707–714del mutations was included. Plot C represents samples #250
and #419 with a heterozygous mutation of p.I172N and sample #443 with a homozygous p.I172N mutation. Plot D represents sample #249 (D1) with a heterozygous mutation of
p.I236N combined with p.V237E and sample # 393 (D2) with a heterozygous mutation of p.I236N, and pV237E combined with p.M239K. In addition, 1 sample with a homozygous
mutation of p.I236N, and pV237E combined with p.M239K was included. Plot H represents a created heterozygous mutation of p.V281L in a normal individual (H1) (Sc) and sample
#C13 with a heterozygous mutation of p.F306ΛL307insT (H2). Plot J represents sample #708 with a heterozygous mutation of p.Q318X, and sample #579 with a heterozygous
mutation of p.R356W. One sample #89-1 with a heterozygous mutation of p.R316X was included. WT, wild-type subject; Sc, sample created; #, patient ID number.
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Fig. 1A), it showed that the difference plot of the created heterozygous
mutation of pP30L (CCG/CTG) (sample Sc) differentiated the one of
WT subjects (CCG/CCG) (WT) (n=3). Obviously, unambiguous
differences were present in the shapes of the melting curves for the
Please cite this article as: Lin Y-C, et al, High-resolution melting curve (
CYP21A1P in congenital adrenal hyperplasia, Clin Chim Acta (2011), do
heteroduplexes and homoduplexes. On analysis of the 226-bp
amplicon with mutations of the I2 splice (IVS2-12A/CNG) (B1) and
707–714del (B2) (Fig. 2B) from 2 unrelated CAH patients (Supple-
mental Figs. 1B1, 1B2), sample #81 was heterozygous for the I2 splice
HRM) analysis to establish CYP21A2 mutations converted from the
i:10.1016/j.cca.2011.06.033
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mutation which could easily distinguish it from WT subjects (n=12)
and heterozygous for the 707–714del mutation of sample #109. A
homozygous 707–714del was identified as a downcurved plot which
differed from the horizontal plot of the WT and sample #109 with an
upcurved plot. On analysis of the 118-bp amplicon with mutations of
p.I172N (Table 1), the HRM analysis (Fig. 2C) showed that sample
#250 (Supplemental Fig. 1C) (and sample #419) had a heterozygous
mutation of p.I172N distinguished by a downcurved melting plot of
the homozygous p.I172N mutation of sample #443 (sequencing data
not shown) and a horizontal plot of WT subjects (n=14). When
analyzing cluster E6 (I236, V237, and M239) (Fig. 1) of the 193-bp
amplicon (Fig. 2D), therewere 2mutational types shown in Taiwanese
CAH patients [14,32]. Sample #249 with heterozygous mutations of
p.I236N and p.V237E (Supplemental Fig. 1D1) and sample #393 with
heterozygous mutations of p.I236N, p.V237E, and p.M239K (Supple-
mental Fig. 1D2) showed different melting curves and were identified
as different groups from WT subjects (n=3) by the HRM analysis.
Obviously, these 2 different samples (samples #249 and #393) with 1
nucleotide difference at M239 could be distinguished. From the 212-
bp amplicon for the p.V281L and p.F306ΛL307insT (Table 1) HRM
analysis (Fig. 2E), the created heterozygous mutation of p.V281L of
sample Sc (Supplemental Fig. 2H1) and heterozygous mutation of
p.F306ΛL307insT of sample #C13 (Supplemental Fig. 2H2) could easily
be distinguished from WT subjects (n=21), and different groups
could be identified from each other. When analyzing p.Q318X and
p.R356W in the exon 8 region (Fig. 1) of the 283-bp amplicon
(Table 1), sample #708 with heterozygous mutations (Supplemental
Fig. 2 J1) of p.Q318X and sample #579with heterozygousmutations of
p.Q318X (Supplemental Fig. 2 J2) presented upcurved plots which
differed from the horizontal plot of WT subjects (n=12) as different
groups from each other using the HRM analysis (Fig. 2F).

Obviously, the HRM analysis of the CYP21A2 gene with 11 different
mutations converted from the CYP21A1P pseudogene showed 3
distinguishable melting plots which included the heteroduplexes
that showed an upcurved plot, a horizontal plot of homoduplexes of
WT, and a downcurved plot of homoduplexes of compound
mutations. In addition, polymorphic sites which influenced the
heteroduplex form in the collected amplicon (Table 1) for identifying
the CYP21A2 gene are listed in Table 3

4. Discussion

CAH is a term that describes several inheritable disturbances in
steroid hormonemetabolism. Gene conversion, i.e., changing part of 1
gene to the sequence of a nearby homologous gene (often its
pseudogene), is often the cause of genetic defects and the issue of
small-scale conversions generating the defective CYP21A2 gene is the
most frequent of the 21-hydroxylase deficiencies in CAH. The wide
range of CAH phenotypes is associated with multiple mutations
known to affect 21-hydroxylase enzymatic activity. Clinically, muta-
tions of the I2splice, 707–714del, the cluster E6 (I236N and V237E)
[33], F306ΛL307insT, Q318X, and R356W produce a picture of the
classic salt-wasting form in most patients and I172N produces the
classic simple virilizing form in patients [34].

To date, PCR amplification provides the majority of samples for
throughput mutational analyses. Methods for detecting a single
nucleotide substitution for positional determination include ASO,
PCR/ligase, ACRS, and MLPA while the SSCP and DHPLC analyses are
used for non-positional detection; all of these except in the MLPA
method require an agarose or PAGE preparation, and the result relies
on a gel-staining or labeling process. Although direct DNA sequencing
is considered the gold standard method for mutation analysis, it
entails significant costs and labor and does not show the absolute
sensitivity or specificity for detecting tuberous sclerosis (TSC) patients
with somatic mosaicism in low-level mutant alleles [35,36]. The HRM
analysis is a non-positional technique and a non-gel-based system in a
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closed-tube to detect mutations including polymorphisms and
epigenetic differences in dsDNA samples existing in heteroduplexes
and homoduplexes. Additional applications such as quantitative
analysis of copy number variants, purity of PCR products, and clone
identity determinations make HRM a versatile multipurpose analyt-
ical tool [37]. Compared to DNA sequencing, the HRM analysis offers
cost-effectiveness for larger-scale gene screening such as DMD with
79 exons which cost €140 per patient, compared to a total of ~€800
using a direct sequencing analysis [37].

The HRM analysis was successfully applied to analyze more than
50 genes documented in the literature [38]. However, it has never
been applied to detect mutations of the CYP21A2 gene. The
dependence of the scanning accuracy on the PCR product length
was studied, and more errors were reported to occur as the length
increases above 400 bp [39]. For high sensitivity, fragments of 150–
250 bp are generally used. However, there was a successful case of
scanning BRCA1 mutations up to a 600-bp amplicon [40]. Because
large fragments may have more than 1 melting domain, this increases
the chance that not all variants are detected. For this, the HRM
analysis for CYP21A2 mutations used a 217-bp PCR fragments on
average (Table 1). In addition, SNP existing in the target gene might
interfere with genotyping as described elsewhere [41]. We have
pointed out that the most polymorphic region between the CYP21A2
and CYP21A1P genes is located in intron 2 (IVS2) which shows an
11.2% (31/278) rate of sequence polymorphism [18]. From DNA
sequencing (Supplemental Figs. 1, 2) and the TaqI analysis of the 3.5-
kb PCR product (data not shown), sample #81 with the I2 splice and
sample #109 with 707–714del mutations did not have a TaqI site
[TCGA] at nt −198 [6]. This indicates that these 2 mutations
independently resulted from an intergenic conversion. As described
in another study [9], mutation of the I2 splice (IVS2 −12A/CNG) in
combination with 707-714del (without the P30L mutation) was
caused by multiple gene deletions (~30-kb deletion). Therefore, these
polymorphic sites of nts 620, 624, 629–630, S108 (TCCNTCG), and
S113 (TCCNTCT) (Table 2) in IVS2 were not presented in the 226-bp
amplicon (Table 1) amplified with the paired primers, C100/In3R, and
did not influence the HRM analysis (Table 2). In addition, the HRM
profile (Fig. 2D) of the cluster E6 mutation in 2 (D1, I236N and V237E,
sample #249) and 3 (D2, I236N, V237E, and M239K, sample #393)
mutated sites showed two different melting plots. This indicated that
the sequence with the heterozygous variant might show either an
upcurved (sample #393) or a downcurved (sample #249) plots in this
case. We are not sure that whether the polymorphic site of D234
(GATNGAC), which is always bounded (Supplemental Fig. 1, D1, D2),
can be attributed to the production of 2 different melting types. The
polymorphic sites of nts 1420 (ANG) and 1421(CNT) not being
included (data of DNA sequencing not shown) indicates that the
occurrence of the intergenic conversion did not extend to these 2
polymorphic sites in these 2 mutation types.

In addition, the influence of different template concentrations in
the HRM analysis should be considered in our study. In order to
separate the CYP21A2 gene from the CYP21A1P pseudogene, a primary
3.5-kb primary PCR product of the CYP21A2 gene should be amplified
first, and then the primary PCR product can be used as a template for
the secondary PCR amplification by the HRM analysis. A nested PCR
was carried out to identify mutations of the CYP21A2 gene, and the
concentration of the primary PCR product was difficult to calculate. It
was reported that a deviating curve can occasionally occur due to
input of a higher amount of DNA (2.5×) that might give rise to a false-
positive result [42].

In conclusion, a rapid, sensitive, and reliable strategy for mutation
scanning of the CYP21A2 gene using an HRM analysis was documen-
ted. As indicated above, we established a standard profile for the most
common 11 mutation sites of the CYP21A2 gene. This protocol can be
used as a tool for screening most patients with CAH caused by defects
of the CYP21A2 gene converted from the CYP21A1P pseudogene.
HRM) analysis to establish CYP21A2 mutations converted from the
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Table 2t2:1

Polymorphic sites influencing the heteroduplex form in a specific fragment of the
CYP21A2 gene using the HRM analysis.

t2:2
t2:3 Mutational

locus
Fragment
(paired
primer
amplification)

Polymorphic site
(exon/nucleotide)a

Interchange

t2:4 CYP21A2 CYP21A1P

t2:5 P30L 1A2/1AR L39 (TTG) (CTG) ?
t2:6 P45 (CCA) (CCC) ?
t2:7 I2 spliceb C100/In3R nt 620 (A) (G) No
t2:8 nt 624 (G) (T) No
t2:9 nt 629/630 (C/A) (G/G) No
t2:10 707–714 del C100/In3R S108 (TCC) (TCG) Yes
t2:11 S113 (TCC) (TCT) Yes
t2:12 I172N In3-1/E4r – – –

t2:13 Cluster E6 c Ex6/C8 D234 (GAT) (GAC) Yes
t2:14 nt 1420/21 (A/C) (G/T) No
t2:15 V281L, C9/S7r – – –

t2:16 F306ΛL307insT C9/S7r – – –

t2:17 Q318X In7-1/C12-1 – –

t2:18 R356W In7-1/C12-1 – – –

a Based on Higashi et al. [6].t2:19
b I2 splice, IVS2 −12A/CNG, or nt 655.t2:20
c Cluster E6 represents I236N, V237E, and M239K.t2:21
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Supplementarymaterials related to this article can be found online
at doi:10.1016/j.cca.2011.06.033.
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