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Abstract 

Chitosan (CS)-based complexes have been considered as a vector for DNA delivery; 

nonetheless, their transfection efficiency is relatively low.  An approach by incorporating 

poly(γ-glutamic acid) (γ-PGA) in CS/DNA complexes was developed in our previous study 

to enhance their gene expression level; however, the detailed mechanisms remain to be 

understood.  The study was designed to investigate the mechanisms in cellular uptake and 

intracellular trafficking of CS/DNA/γ-PGA complexes.  The results of our molecular 

dynamic simulations suggest that after forming complexes with CS, γ-PGA displays a free 

γ-glutamic acid in its N-terminal end and thus may be recognized by γ-glutamyl 

transpeptidase in the cell membrane, resulting in a significant increase in their cellular 

uptake.  In the endocytosis inhibition study, we found that the internalization of CS/DNA 

complexes took place via macropinocytosis and caveolae-mediated pathway; by 

incorporating γ-PGA in complexes, both uptake pathways were further enhanced but the 

caveolae-mediated pathway played a major role.  TEM was used to gain directly 

understanding of the internalization mechanism of test complexes and confirmed our 

findings obtained in the inhibition experiments.  After internalization, a less percentage of 

co-localization of CS/DNA/γ-PGA complexes with lysosomes was observed when compared 

with their CS/DNA counterparts.  A greater cellular uptake together with a less entry into 

lysosomes might thus explain the promotion of transfection efficiency of CS/DNA/γ-PGA 

complexes.  Knowledge of these mechanisms involving CS-based complexes containing 

γ-PGA is critical for the development of an efficient vector for DNA transfection. 

 

Keywords: lysosome; macropinocytosis; caveolae-mediated pathway: transfection 

efficiency; cellular uptake 
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1. Introduction 

Chitosan (CS), a cationic polysaccharide, is biodegradable, non-toxic and tissue 

compatible [1,2].  It has the potential to condense anionic DNA into a compact structure 

(CS/DNA complexes) through electrostatic interactions and has been considered as a 

non-viral vector for gene delivery [3,4].  Although advantageous for DNA packing and 

protection, CS-based complexes may lead to difficulties in DNA release once arriving at the 

site of action intracellularly, thus limiting their transfection efficiency.  To overcome this 

problem, an approach that can modify the internal structure of CS/DNA complexes by 

incorporating a negatively charged poly(γ-glutamic acid) (γ-PGA) was developed in our 

previous study [5]. 

Analysis of the internal structure of CS/DNA/γ-PGA complexes by small angle X-ray 

scattering (SAXS) revealed that CS formed complexes with DNA and γ-PGA separately and 

yielded two types of domains, leading to the formation of “compounded nanoparticles” [5].  

With this unique internal structure, the compounded nanoparticles might disintegrate into a 

number of even smaller subparticles after cellular internalization, thus improving the 

dissociation capacity of CS and DNA and enhancing the efficacy of gene expression [5].  In 

addition to improving the release of DNA intracellularly, the incorporation of γ-PGA in 

CS/DNA complexes markedly increased their cellular uptake.  Similar observations were 

also reported by Kurosaki et al. [6], using cationic complexes coated with γ-PGA.  

However, the detailed mechanisms in endocytosis and intracellular routing of complexes 

incorporating with γ-PGA remain to be understood.  Understanding the role of test 

complexes on their cellular uptake and intracellular fate is essential for the rational design of 

non-viral delivery devices. 

The study was therefore designed to investigate the potential internalization mechanism 

of CS/DNA complexes with or without the incorporation of γ-PGA, using transmission 

electron microscopy (TEM) and the inhibitors specific to various endocytotic pathways.  

The role that γ-PGA may play in the cellular uptake of test complexes was modeling by 

molecular dynamic (MD) simulations.  The intracellular routing of test complexes was 

*Manuscript
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observed by a confocal laser scanning microscope (CLSM).  Additionally, test complexes 

were characterized using dynamic light scattering (DLS), and their efficacy in gene 

expression was determined by luminance spectrometry and flow cytometry. 

 

2. Materials and Methods 

2.1. Plasmid DNA 

The plasmid DNAs used in the study were pEGFP-N2 (4.7 kb, coding an enhanced 

green fluorescence protein reporter gene, Clontech, Palo Alto, CA, USA) and pGL4.13 (4.6 

kb, coding a firefly luciferase reporter gene, Promega, Madison, WI, USA).  pEGFP-N2 and 

pGL4.13 were amplified using DH5α and purified by Qiagen Plasmid Mega Kit (Valencia, 

CA, USA) according to the manufacturer’s instructions.  The purity of plasmids was 

analyzed by gel electrophoresis (0.8% agarose), while their concentration was measured by 

UV absorption at 260 nm (Jasco, Tokyo, Japan). 

2.2. Preparation of test complexes 

The charge ratio (N/P/C) of test complexes was expressed as the ratio of moles of the 

amino groups (N) on CS to the phosphate groups (P) on DNA and the carboxyl groups (C) 

on γ-PGA.  Test complexes at N/P/C molar ratios of 10/1/0 (CS/DNA complexes) and 

10/1/4 (CS/DNA/γ-PGA complexes) were prepared by an ionic-gelation method 

[7].  Briefly, an aqueous DNA (pEGFP-N2 or pGL4.13, 33 μg) was mixed with an aqueous 

γ-PGA (20 kDa, 0 or 51.2 μg, Vedan, Taichung, Taiwan) with a final volume of 100 

μl.  Test complexes were obtained upon addition of the mixed solution, using a pipette, into 

an aqueous CS (15 kDa, with a degree of deacetylation of 85%, 0.2 μg/μl, 100 μl, pH 6.0, 

Challenge Bioproducts, Taichung, Taiwan) and then thoroughly mixed for 30–60 s by vortex 

and left for at least 1 h at room temperature.  The morphology of the obtained complexes 

was examined by TEM (JEOL, Tokyo, Japan) [8]. 

2.3. In vitro transfection 

HT1080 (human fibrosarcoma) cells were cultured in DMEM media supplemented with 

2.2 g/l sodium bicarbonate and 10% fetal bovine serum (FBS).  Cells were subcultured 
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according to ATCC recommendations without using any antibiotics.  For transfection, cells 

were seeded on 12-well plates at 2 × 10
5
 cells/well and transfected the next day at 50–80% 

confluency.  Prior to transfection, the media were removed and cells were rinsed twice with 

transfection media (DMEM without FBS, pH 6.0).  Cells were replenished with 0.6 ml 

transfection media containing test complexes at a concentration of 2 μg DNA/well. 

At 2 h post transfection, the transfection media containing test complexes were 

removed, the cells rinsed twice with transfection media and refilled with FBS-containing 

media until analysis at 48 h after transfection.  Cells were then observed under a 

fluorescence microscope (Carl Zeiss Optical, Chester, VA, USA) to monitor any 

morphological changes and to obtain an estimate of the transfection efficiency.  Cells 

transfected with Lipofectamine
TM

 2000 (Invitrogen, Carlsbad, CA, USA) were used as a 

positive control and those without any treatment were used as a negative 

control.  Transfection efficiencies were presented by two numeric indicators: percentage of 

cells transfected and gene expression level [9]. 

2.4. Percentage of cells transfected 

The percentage of cells transfected was quantitatively assessed at 48 h after transfection 

by flow cytometry.  Cells were detached by 0.025% trypsin-EDTA.  Cell suspensions were 

then transferred to microtubes, fixed by 4% paraformaldehyde and determined the 

transfection efficiency by a flow cytometer (Beckman Coulter, Fullerton, CA, USA) 

equipped with a 488-nm argon laser for excitation.  For each sample, 10,000 events were 

collected and fluorescence was detected.  Signals were amplified in logarithmic mode for 

fluorescence to determine the EGFP positive events by a standard gating technique.  The 

percentage of positive events was calculated as the events within the gate divided by the total 

number of events, excluding cell debris. 

2.5. Gene expression level 

The gene expression levels of cells were assayed by quantifying the expressions of 

EGFP or luciferase.  The expression level of EGFP was quantified by comparing mean 

fluorescence of 2 × 10
5 

cells.  Briefly, cells were treated with test complexes containing 
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pEGFP-N2.  After 48 h, cells were detached and analyzed by flow cytometry as described in 

Section 2.4. 

For the expression of luciferase, cells were plated on 24-well plates (with a seeding 

density of 1 × 10
5 

cells) and transfected as described in Section 2.3 with the exception that 1 

μg pGL4.13 was used.  The cells transfected were lysed by 100 μl of passive lysis buffer 

(Promega).  The cell lysate was transferred into a 1.5-ml microtube, while the cell debris 

was separated by centrifugation (14,000 rpm, 5 min).  Subsequently, a 100 μl of the 

luciferase assay reagent (Promega) was added to a 20 μl of the supernatant and the relative 

luminescence of the sample was determined by a microplate luminometer (Berthold 

Technologies, Bad Wildbad, Germany) and normalized to the total cell protein concentration 

by the Bradford method. 

2.6. Fluorescent complex preparation and flow-cytometry analysis 

Cy3-labeled CS (Cy3-CS) and FITC-labeled CS (FITC-CS) were synthesized as per the 

methods described in the literature [10,11].  To remove the unconjugated Cy3 and FITC, the 

synthesized Cy3-CS and FITC-CS were dialyzed in the dark against deionized (DI) water 

and replaced on a daily basis until no fluorescence was detected in the supernatant.  The 

resultant Cy3-CS and FITC-CS were lyophilized in a freeze dryer.  Cy3- and FITC-labeled 

complexes were then prepared as described in Section 2.2. 

To quantify the cellular uptake of test complexes, cells were plated on 12-well plates 

and transfected with FITC-labeled complexes at a concentration of 2 μg DNA/well for 2 

h.  After transfection, cells were detached by 0.025% trypsin-EDTA and transferred to 

microtubes.  Subsequently, cells were resuspended in phosphate buffered saline (PBS) 

containing 1mM EDTA and fixed in 4% paraformaldehyde.  Finally, the cells were analyzed 

by flow cytometry as described in Section 2.4. 

2.7. MD simulations 

 MD simulations of the self-assembly of CS and γ-PGA in complexation were 

performed by a MD method [12].  MD simulations were accomplished with the program 

NAMD [13] using parameters adapted from the CHARMM 27 force field [14].  The 
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models were minimized to remove unfavorable contacts, brought to 310 K by velocity 

rescaling and equilibrated for 1 ns.  Before any MD trajectory was run, 40 ps of energy 

minimization were performed to relax the conformational and structural tensions.  This 

minimum structure was the starting point for the MD simulations.  For this purpose, the 

molecule was embedded into a cubic simulation box of 80 Å.  A cutoff distance of 12 Å 

was employed for the nonbonded and electrostatic interactions.  The heating process was 

performed from 0 to 310 K through Langevin damping with a coefficient of 10 ps
-1

.  A time 

step of 2 fs was employed for rescaling the temperature.  After 20 ps heating to 310 K, 

equilibration trajectories of 1 ns were recorded, which provided the data for the structural 

and thermodynamic evaluations.  The equations of motion were integrated with the Shake 

algorithm with a time step of 1 fs.  Figures displaying atomistic pictures of molecules with 

hydrogen bondings were generated using UCSF Chimera [15]. 

2.8. Endocytosis inhibition 

To study the effect of various inhibitors on the uptake of test complexes, cells were 

pre-incubated with the following inhibitors individually at concentrations which were not 

toxic to the cells: 10 μg/ml of chlorpromazine [16], 50nM wortamannin [17], 5 μg/ml 

cytochalasin D [18], 5 μg/ml filipin [19] or 200μM genistein [19,20]; the MTT assay [16] 

was employed to confirm their toxicity.  In the study, the group without any treatment was 

used as a background in the flow cytometry analysis, while the groups in the presence of test 

complexes but without inhibitor treatment were used as controls and their fluorescence 

intensities were expressed as 100%.  Following pre-incubation for 30 min, the inhibitor 

solutions were removed, and the freshly prepared test complexes (FITC-labeled) in media 

containing inhibitors at the same concentrations were added and further incubated for 2 

h.  Subsequently, cells were washed three times with PBS, collected according to the 

methods described above and analyzed by flow cytometry. 

2.9. Examination of internalization of test complexes by TEM 

To directly observe the mechanism of cellular internalization, cells were incubated with 

test complexes at 37°C.  After washing three times with PBS, cells were fixed for 30 min at 
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room temperature in 2% paraformaldehyde and 2.5% glutaraldehyde in 0.1M cacodylate 

buffer at pH 7.4.  The cells were rinsed twice in the same buffer with 6.8% sucrose and 

subsequently postfixed in 1% OsO4.  After rinsing followed by dehydration in graded 

alcohol series, the cells were embedded in Spurr resin and polymerized at 70°C 

overnight.  Ultrathin sections were then cut with a diamond knife and loaded onto TEM 

grids.  The sections were examined by a Philips CM10 electron microscope at accelerating 

voltage of 120 kV and micrographs were taken [21]. 

2.10. Intracellular trafficking 

To study the intracellular trafficking, cells were treated with the Cy3-labeled test 

complexes in the serum-free medium.  After incubation for 1.5 h, cells were washed twice 

with the pre-warmed PBS and then treated with 50nM Lysotracker (HCK-123, Invitrogene, 

Carlsbad, CA, USA) for 30 min at 37°C following the supplier’s protocol and examined 

using CLSM (TCS SL, Leica, Germany). 

2.11. Statistical analysis 

Comparison between groups was analyzed by the one-tailed Student’s t-test (SPSS, 

Chicago, Ill, USA).  All data are presented as a mean value with its standard deviation 

indicated (mean ± SD).  Differences were considered to be statistically significant when the 

P values were less than 0.05. 

 

3. Results and Discussion 

CS/DNA complexes (a binary system) generally transfect cells more efficiently than 

naked DNA but less than commercially available liposome formulations [22].  It has been 

suggested that the strength of electrostatic interactions between CS and DNA prevent their 

dissociation within cells, thus precluding transcription of DNA and resulting in low 

transfection [1,2].  In a previous study, we demonstrated that after the incorporation of 

γ-PGA in CS/DNA complexes (a ternary system), the percentage of cells transfected and 

their gene level expressed were significantly enhanced [5].  Additionally, Kurosaki et al. 

reported that cationic complexes coated with the negatively charged γ-PGA not only reduced 
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their cytotoxicity but also significantly improved their efficiency in gene expression [6].  

Generally, anionic complexes are not taken up well by cells because of the electrostatic 

repulsion induced by the negatively charged cell membranes.  Therefore, the ternary 

complexes containing γ-PGA must have different mechanisms in cellular uptake and 

intracellular fate from their binary counterparts. 

3.1. Characterization of test complexes 

In the study, test complexes were prepared with an N/P/C ratio of 10/1/0 (binary 

CS/DNA complexes) or 10/1/4 (ternary CS/DNA/γ-PGA complexes).  The binding capacity 

of CS with DNA prepared at various N/P ratios was evaluated in our previous study using 

the gel retardation assay [5].  The results showed that as the N/P ratio was increased to 10/1, 

the migration of DNA was retarded completely.  By incorporating γ-PGA in CS/DNA 

complexes, no significant DNA release was observed.  However, as the amount of γ-PGA 

incorporated was increased to a critical value (N/P/C ratio of 10/1/6), the transfection 

efficiency of CS/DNA/γ-PGA complexes started to drop appreciably [5]. 

TEM was used to examine the morphology of test complexes.  As shown in Fig 1, the 

binary CS/DNA complexes had an irregular shape, while the ternary CS/DNA/γ-PGA 

complexes were spherical in shape.  Our previous SAXS results indicated that test 

complexes formed by the ternary system were composed of two types of domains containing 

CS/DNA and CS/γ-PGA complexes [5], as schematically illustrated in Fig 1.  The particle 

size and zeta potential of CS/DNA (CS/DNA/γ-PGA) complexes measured by DLS were 

140.2 ± 7.7 nm (152.5 ± 5.1 nm) and 31.7 ± 0.8 mV (28.7 ± 1.2 mV), respectively (n = 5 

batches).  The encapsulation efficiencies of DNA in test complexes for both studied groups 

were about the same and approached 100%. 

3.2. Cellular uptake and transfection efficiency 

After pre-incubation of the cells with test complexes for different time periods (i.e., 

distinct durations of internalization or transfection), their successful expression of delivered 

DNA at 48 h post transfection was reflected by luciferase gene expression levels.  As 

shown in Fig. 2a, cells transfected with CS/DNA or CS/DNA/γ-PGA complexes produced a 
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gradient increase of luciferase expression as the internalization time progressed.  The 

luciferase gene expression levels for cells incubated with CS/DNA/γ-PGA complexes were 

consistently higher than their CS/DNA counterparts throughout the entire time course of the 

study (P < 0.05). 

To visualize the cellular uptake, CS was fluorescently labeled with FITC.  The 

percentage of cells that internalized the FITC-labeled test complexes (Fig 2b) and their 

fluorescence intensity (Fig. 2c) were quantified by flow cytometry at 2 h after transfection.  

Compared to those transfected with CS/DNA complexes, the percentage of fluorescent cells 

and their fluorescence intensity in the group treated with CS/DNA/γ-PGA complexes were 

significantly enhanced (P < 0.05), an indication of a greater cellular uptake. 

To determine the percentage of cells that actually expressed the transgene, we counted 

the number of EGFP-positive cells using flow cytometry at 48 h post transfection.  As 

shown in Fig. 2d, 15% of the cells produced EGFP when transfected with CS/DNA 

complexes.  By incorporating γ-PGA in complexes (CS/DNA/γ-PGA), an approximately 

4-fold increase in the percentage of EGFP-positive cells was found (55%, P < 0.05). 

3.3. MD simulations 

MD simulations were performed in a full-atom model to gain insight into the role that 

γ-PGA may play in assisting the cellular uptake.  Both CS and γ-PGA molecules 

considered in the MD simulations contained 10 monomer units.  The present atomistic 

simulation would allow the capture of the self-assembly of CS and γ-PGA in complexation.  

The methodology adopted has recently been applied to enable simulations of the 

self-assembly of protein and detergent into mixed micelles [23,24].  As shown in Fig. 3a, 

free γ-PGA forms an intramolecular hydrogen bonding between the amine group (−NH2) of 

the N-terminal glutamyl unit and the carbonyl group (−C=O) on its neighboring unit; thus, 

the terminal amine group on γ-PGA is hidden.  In contrast, after forming complexes, the 

amine groups on CS may form intermolecular hydrogen bondings with the carbonyl groups 

of γ-PGA; therefore, the hidden amine group in the N-terminal γ-glutamly unit on γ-PGA is 

exposed (Fig. 3b). 
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The exposure of the free N-terminal γ-glutamly unit of γ-PGA on the surface of 

CS/γ-PGA complexes (Fig. 3b) may enhance its interaction with the enzyme γ-glutamyl 

transpeptidase (GGT), which is localized in the cell membrane and exerts the only specificity 

to those substrates containing free γ-glutamic acids in their N-terminal ends [25].  It has 

been reported that GGT can use a wide variety of γ-glutamyl compounds as substrates [26].  

The most popular case of GGT substrates is glutathione; GGT may cleave the γ-glutamyl 

bond of extracellular glutathione, enabling the cell to use extracellular glutathione as a 

source of cysteine to increase the synthesis of intracellular glutathione [27].  In CS/γ-PGA 

complexes, γ-PGA displays a free γ-glutamic acid in its N-terminal end and thus may be 

recognized by GGT in the cell membrane, resulting in a significant increase in their cellular 

uptake (Fig. 2b and 2c).  The detailed mechanism may need further investigation. 

The results discussed in Sections 3.2 and 3.3 suggest that with the incorporation of 

γ-PGA, the cellular uptake and transgene expression of CS/DNA complexes were 

significantly enhanced.  In a previous study, we demonstrated that there are different 

pathways involved in the internalization of CS/DNA and CS/DNA/γ-PGA complexes; the 

former is trypsin concentration-independent and the latter trypsin concentration-dependent 

[5].  However, their exact mechanisms in endocytosis and intracellular trafficking remain to 

be understood.  Understanding the fate of complexes with respect to their uptake pattern 

and the intracellular localization is crucial in designing a new genetic or drug carrier [28]. 

3.4. Endocytosis pathways of CS/DNA and CS/DNA/γ-PGA complexes 

A variety of forms of endocytosis have been demonstrated to be involved in the cellular 

uptake of polyplexes [16,20].  Current evidences suggest that endocytosis is the main mode 

of CS-based complexes entering into the cells [29].  To elucidate their potential cellular 

uptake pathways, the interactions between CS/DNA or CS/DNA/γ-PGA complexes and cell 

membranes were investigated by treating cells with different chemical inhibitors of 

clathrin-mediated endocytosis, caveolae-mediated endocytosis and macropinocytosis and 

then analyzed by flow cytometry.  It has been reported that a narrow concentration range of 

specific inhibitory function and nonspecific toxicity exists [16].  We therefore first 
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determined the cytotoxicity of the concentration of each inhibitor used in the subsequent 

transfection experiments.  As shown in Fig. 4, the concentration of each inhibitor used in 

the study did not significantly reduce the cell viability (> 94% of control).  These data 

ensure that the reductions in cellular uptake to be discussed in Fig. 5a and 5b are specific to 

the inhibitors, rather than the cytotoxicity of inhibitors. 

Fig. 5a and 5b presents the results of the internalization of CS/DNA and 

CS/DNA/γ-PGA complexes by cells in the presence of various inhibitors; their counterparts 

in the absence of inhibitors were used as controls.  The inhibition of clathrin-mediated 

uptake was tested by using the cationic amphiphilic drug chlorpromazine, which causes 

clathrin to accumulate in late endosomes, thereby inhibiting coated pit endocytosis [20,30].  

Compared with the controls, the cellular uptake of both test complexes increased relatively 

in the presence of chlorpromazine (Fig. 5b).  Increase in cellular uptake after inhibitor 

treatment has also been reported by other investigators [20].  It is possible that other 

cellular uptake pathways that are not normally involved may be up-regulated in the presence 

of inhibitors.  These results indicate that the clathrin-mediated pathway was not involved in 

the internalization of CS/DNA and CS/DNA/γ-PGA complexes. 

Wortmannin is a phosphatidyl inositol-3-phosphate inhibitor [17], while cytochalasin D 

can inhibit actin polymerization and membrane ruffling [20]; both are known to be involved 

in macropinocytosis.  Relative to the control, the reduction in internalization of CS/DNA 

complexes by cells pre-treated with wortmannin (cytochalasin D) was 3% (8%), implying 

that a minor fraction of test complexes could be internalized via micropinocytosis.  In 

contrast, a greater degree of inhibition in cellular uptake of CS/DNA/γ-PGA complexes was 

observed (20% and 30% for the cells pre-treated with wortmannin and cytochalasin D, 

respectively, P < 0.05), suggesting that the incorporation of γ-PGA in CS/DNA complexes 

significantly enhanced their internalization by macropinocytosis. 

Caveolae, a specialized type of lipid rafts, are flask-shaped invaginations in the plasma 

membrane enriched in proteins as well as cholesterol and spingolipids [31,32].  To discern 

any role that caveolae-mediated endocytosis may play in cellular uptake, two inhibitors, 
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filipin and genistein, were used.  Filipin (a sterol-binding pentaene macrolide antibiotic) 

selectively inhibits caveolae invagination by the formation of cholesterol precipitates, while 

genistein (a tyrosine kinase inhibitor) is used to block lipid raft-mediated endocytosis [16].  

It has been reported that cholesterol and lipid rafts are involved in membrane trafficking 

[19,33]. 

As shown in Fig. 5a and 5b, treating cells with fillipin prior to incubation with CS/DNA 

or CS/DNA/γ-PGA complexes increased their cellular uptake.  In contrast, cells pretreated 

with genistein resulted in a significant inhibition of the number of cells internalized [55% 

reduction for CS/DNA complexes and an enhanced reduction of 90% with the incorporation 

of γ-PGA (CS/DNA/γ-PGA)].  These data suggest that the internalization of both test 

complexes was caveolae-dependent and related with the lipid raft-mediated route, but not 

through the inhibition of invagination of caveolae. 

The aforementioned results clearly show that the internalization of CS/DNA complexes 

took place by a combination of mechanisms, macropinocytosis and caveolae-mediated 

pathways at least; by incorporating γ-PGA in complexes (CS/DNA/γ-PGA), both uptake 

pathways were further enhanced.  To further determine the effect of the internalization 

pathway on their transgene expression, the transfection efficiencies of CS/DNA/γ-PGA 

complexes (EGFP gene) in the presence of distinct inhibitors were studied.  As shown in 

Fig. 5c, in the presence of wortmannin and cytochalasin D (macropinocytosis inhibitors), the 

transfection efficiencies of CS/DNA/γ-PGA complexes were reduced by 55% and 75%, 

respectively, while their transfection efficiency was suppressed by 90% when using a 

caveolae-mediated-pathway inhibitor, genistein (P < 0.05).  These data suggest that 

caveolae-mediated pathway played a major role in the cellular uptake of CS/DNA/γ-PGA 

complexes and their subsequent transgene expression. 

TEM was used to gain directly understanding of the mechanisms of internalization of 

CS/DNA and CS/DNA/γ-PGA complexes.  As shown in Fig. 6a, macropinocytosis exerted 

its influence on the internalization of CS/DNA complexes.  During macropinocytosis, 

membrane ruffling occurs; that is, the rims of the membrane folds extending from the 
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surface fuse back with the plasma membrane [34].  Additionally, TEM micrographs 

revealed flask-shaped caveolae in the plasma membrane (Fig. 6b and 6c), an indication of 

caveolae-dependent endocytosis [31].  Similar pathways were observed in the 

internalization of CS/DNA/γ-PGA complexes: the formation of lamellipodia (Fig. 6d and 6e) 

and caveolae-derived endocytic vesicles (Fig. 6f).  These findings were consistent with 

those observed in the inhibition experiments (Fig. 5a and 5b). 

3.5. Intracellular trafficking of test complexes 

To track test complexes following their uptake, cells were treated with Cy3-labeled 

CS/DNA and CS/DNA/γ-PGA complexes individually and subsequently stained with 

Lysotracker; the intracellular localization of test complexes was followed by CLSM.  At 2 h 

after transfection, accumulation of Cy3-lableded complexes (red dots) was observed in most 

of the incubated cells in both studied groups (Fig. 7a); some complex aggregates were found 

entrapped within the lysosomal vesicles (green dots).  The co-localization of test complexes 

with lysosomes produced a yellow fluorescence in the merged images.  Interestingly, 

although there were more red dots (a greater cellular uptake) seen in the cytoplasm in the 

group treated with CS/DNA/γ-PGA complexes when compared with that transfected with 

CS/DNA complexes, a less percentage of their co-localization with lysosomes (yellow dots) 

was observed (50% for CS/DNA complexes vs. 30% for CS/DNA/γ-PGA complexes, Fig. 

7b). 

Degradation of complexes in lysosomes is one of the barriers for non-viral vectors 

mediated gene delivery [35].  It has been reported that macropinosomes can acidify but do 

not intersect with lysosomes, thus representing a potential alternative cell entry route of gene 

transfer for the avoidance of lysosomal degradation [36].  Additionally, the 

caveolae-mediated pathway has been proposed to be advantageous over the 

clathrin-mediated pathway for transfection DNA due to its possible avoidance of lysosomal 

degradation [35].  Some pathogens that use caveolae as their portal of entry escape delivery 

to and digestion in lysosomes [37]; it is thought that caveosomes lack the proper signal 

molecules required for interaction with other cellular compartments [38].  Compared with 
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their CS/DNA counterparts, a greater cellular uptake together with a less entry into 

lysosomes might explain the promotion of transfection efficiency of CS/DNA/γ-PGA 

complexes (Fig. 8). 

 

4. Conclusions 

The cellular uptake of CS-based complexes was significantly enhanced via the 

incorporation of γ-PGA.  CS/DNA complexes were internalized via macropinocytosis and 

caveolae-mediated pathway.  By incorporating γ-PGA in complexes (CS/DNA/γ-PGA), 

both pathways were significantly enhanced; however, the caveolae-mediated pathway played 

a major role.  After internalization, the percentage of CS/DNA/γ-PGA complexes entry into 

lysosomes was significantly less than their CS/DNA counterpart and thus had an enhanced 

gene expression level.  Knowledge of these mechanisms is critical for the development of 

efficient vectors for DNA transfection. 
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Figure Captions 

Figure 1. TEM micrographs of CS/DNA and CS/DNA/γ-PGA complexes; schematic illustrations of their internal 

structures obtained by small angle X-ray scattering (SAXS), modified from our previous study [5]. CS: 

chitosan; γ-PGA: poly(γ-glutamic acid). 

Figure 2. (a) Kinetics of CS/DNA and CS/DNA/γ-PGA complexes mediated luciferase gene expressions (n = 3, *P 

< 0.05); (b) percentages of cellular uptake of FITC-labeled CS/DNA and CS/DNA/γ-PGA complexes (n = 

3, *P < 0.05) and (c) their intracellular fluorescence intensities; (d) percentages of EGFP-expressing 

cells (n = 3, *P < 0.05). Lipofectamine: positive control; Control: the group without any treatment; CS: 

chitosan; γ-PGA: poly(γ-glutamic acid). 

Figure 3. Results obtained by the molecular dynamic simulations showing the presence of (a) intramolecular 

hydrogen bondings in γ-PGA (the N-terminal amine group in γ-PGA is hidden) and (b) intermolecular 

hydrogen bondings between chitosan and γ-PGA (the N-terminal amine group in γ-PGA is exposed). 

Figure 4. Viability of the cells after being treated with distinct inhibitors, determined by the MTT assay (n = 5). 

Control: the group without any inhibitor treatment. 

Figure 5. Effects of inhibitors on the internalization of test complexes: (a) fluorescence intensities and (b) mean 

fluorescence intensities of intracellular uptake (n = 3, *P < 0.05); (c) EGFP intensities of cells pretreated 

with distinct inhibitors and then transfected with test complexes, determined by flow cytometry at 48 h 

after transfection (n = 3, *P < 0.05). Control: the group treated with test complexes only. CS: chitosan; 

γ-PGA: poly(γ-glutamic acid). 

Figure 6. TEM images showing the internalization pathways of test complexes. Arrowheads indicate test 

complexes; black arrows macropinocytosis; and while arrows caveolae-mediated pathway. CS: chitosan; 

γ-PGA: poly(γ-glutamic acid). 

Figure 7. (a) Images of the intracellular trafficking of test complexes observed by a confocal laser scanning 

microscope (scale bar: 8 μm); (b) quantitative analysis of Cy3-labeled test complexes colocalized with 

Lysotracker. CS: chitosan; γ-PGA: poly(γ-glutamic acid). 

Figure 8. Schematic illustrations of potential mechanisms of internalization of (a) CS/DNA complexes and (b) 

CS/DNA/γ-PGA complexes. CS: chitosan; γ-PGA: poly(γ-glutamic acid). 
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