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Abstract—This paper presents the implementation of a battery-
less CMOS SoC with low voltage pulsed radio-frequency (PRF)
stimulation. This implantable SoC uses 402 MHz command signals
following the medical implanted communication system (MICS)
standard and a low frequency (1 MHz) for RF power transmis-
sion. A body floating type rectifier achieves 84% voltage conver-
sion ratio. A bi-phasic pulse train of 1.4 V and 500 kHz is delivered
by a PRF driver circuit. The PRF parameters include pulse dura-
tion, pulse frequency and repetition rate, which are controllable via
402 MHz RF receiver. The minimal required 3 V RF ��� and 2.2
V ���� is achieved at 18 mm gap. The SoC chip is fabricated in
a 0.35 � CMOS process and mounted on a PCB with a flexible
spiral antenna. The packaged PRF SoC was implanted into rats
for the animal study. Von Frey was applied to test the mechanical
allodynia in a blinded manner. This work has successfully demon-
strated that implanted CMOS SoC stimulating DRG with 1.4 V,
500 kHz PRF could significantly reduce spinal nerve ligation (SNL)
induced mechanical allodynia for 3–7 days.

Index Terms—Batteryless, dorsal root ganglion, implantable,
pain control, pulsed radio frequency.

I. INTRODUCTION

A LTHOUGH pain is interpreted as the fifth vital sign, the
presence of different degrees of pain significantly affects

quality of life for many patients, especially the elderly [1]. Low
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back pain (LBP) is also the fifth most common reason for all
physician visits in the U.S. [2], [3]. Approximately 40% of LBP
sufferers have neuropathic pain [4], which may result from in-
flammation of the dorsal root ganglia (DRG) due to compres-
sion by herniated intervertebral disc disease or intervertebral
foramen stenosis [5]–[7]. Electrical stimulation to the central or
peripheral neural conduction paths has been utilized in clinics
to achieve effective pain relief [8], such as electroacupuncture
therapy, interferential wave therapy, peripheral electrical nerve
stimulation (PENS) [9] transcutaneous electrical nerve stimula-
tion (TENS), etc.

The conventional continuous radio-frequency (CRF) pain
therapy uses thermal coagulation to permanently damage
nerves by high-temperature ablation of nerve tissues. This
destructive method can cause severe side effects, such as the
de-aferentation pain [8]. Thus, repeated surgery is needed.
In 1988, the pulsed radio frequency (PRF) was developed to
replace the conventional CRF [10]. Instead of the thermal
lesion, electrical stimulation was applied to minimize thermal
damage. The basic principal of electrical stimulation is based
on “gate theory” [11], blocking the signal of pain conduction
with nondestructive spinal cord stimulation.

It is found that repetitive burst-like electrical stimulation
of A-delta fibers caused depression of synaptic activation by
C-fiber for several hours [12]. Pulsed radio-frequency (PRF)
may inhibit C-fiber excitatory responses [13]. And the anal-
gesic action of PRF involves the enhancement of noradrenergic
and serotonergic descending pain inhibitory pathways [14].
It was suggested that radicular pain is caused by irritation of
DRG. Many clinical reports have largely involved treatment
of neuropathic pain condition, with treatment regimens using
PRF applied close to the DRG [15]–[17]. Clinical experiments
have reported pain relief sustains for weeks to months after
PRF treatment. It was also reported the clinical effectiveness of
PRF up to 90% [18]. Yet, the overall clinical evidence of PRF
is still weak and the duration of maintaining the effectiveness
is short. The LBP recurred every 3–6 months in average after
PRF therapy [19]–[21], which caused the chronic LBP patient
troublesome.

Thus, PRF is known for its inconvenience of short-term ef-
fectiveness on pain relief. Hence, an implantable PRF treatment
is proposed to overcome this issue in this paper. The conven-
tional implantable system requires a battery for operation, often
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Fig. 1. DRG stimulation for pain relief.

accounting for over 2/3 of the entire device volume. Therefore, a
non-destructive and batteryless method using PRF for pain con-
trol is the key for implantable systems. This work proposes a
novel batteryless implantable pain control SoC that is effective
in pain relief, using a low voltage stimulation e which avoids
causing thermal damage to dorsal root ganglion (DRG) tissue.
As illustrated in Fig. 1, this system provides the self-controlled
analgesia for low back pain through adjustment of PRF param-
eters by external handheld device. An animal study of neuro-
pathic pain was previously designed with PRF parameters to
control tissue temperature at C via an external func-
tion generator [21]. Here, this work presents for the first time
the implementation of such functionality on a complementary
metal–oxide semiconductor (CMOS) system-in-a-chip (SoC).
Its effectiveness is demonstrated by observing the behavior of
rats receiving localized bipolar low-voltage stimulus to the DRG
of lumbar spine.

II. SYSTEM ARCHITECTURE

A. Circuit Blocks

Fig. 2 shows a system block diagram of the proposed CMOS
SoC consisting of a radio frequency to direct current (RF-dc)
circuit, a voltage limiter, regulators, an RF receiver, a clock re-
generator, a logic controller and a PRF driver. This implantable
SoC uses 402 MHz command signals following the medical-im-
planted communication system (MICS) standard and a low fre-
quency (1 MHz) spiral antenna size for easy user alignment and
increased penetration depth. The RF-dc circuit receives power
from an external 1 MHz RF power source located outside the
skin. This circuit converts the RF signal into a dc voltage .
The following voltage limiter limits the dc voltage to a max-
imum of 5 V, which can be regulated by two regulators. One
regulates for the digital circuit, which is adjusted by an
external resistor. One regulates to 1.8 V for the analog
circuit. The clock regenerator, which is a Schmitt trigger circuit,
regenerates the 1 MHz as system clock. It extracts the clock
signal from the RF source for the logic controller. The PRF
generator of logic controller makes default biphasic PRF wave-
forms for the PRF drivers. In addition to the default parameters

(a pulse train with a period of 50 ms modulated by a 500-kHz
carrier), users can specify a custom stimulation protocol in the
logic controller via a handheld device. To generate the biphasic
PRF waveform, the output of the PRF generator is split into two
paths. One signal of the paths is delayed by one clock cycle.
The PRF drivers, each consisting of three cascaded inverters that
increase driving capability, can generate output voltages in the
range of 1.4 V to 3.3 V. Both electrodes are placed into the sur-
gically exposed L5 nerve of the lumbar region for stimulus in
the animal studies. Furthermore, the RF on-off keying (OOK)
receiver receives external commands from a personal computer
(PC) or personal data assistant (PDA) and directs the logic con-
troller to output the specified PRF waveform.

B. RF-DC

The RF-DC is a conventional two-way rectifier circuit com-
posed of 2 nMOS and 2 pMOS [23]. The nMOS transistors
(10000 m/0.5 m) perform current switching function, which
achieve low power loss due to the low of nMOS, when recti-
fying. However, an nMOS switching network can’t coexist with
a pMOS switching network. Because a switch conducts current
in both directions, it would generate an unwanted reverse current
when switching. By using the diode connected pMOS transis-
tors to pass current directionally as shown in Fig. 3, the reverse
current is stopped. Note that the nMOS transistors are tied to
gound via substrate resistor . The bodies of the 2 pMOS
transistors are weakly tied to by the additional resistor

.
If the body of the diode connected pMOS transistor is di-

rectly connected to the without , the MOS diode is
in the same direction parallel with the intrinsic body diode. By
proper connections as shown in Fig. 4, the individual IV charac-
teristics of the MOS diode and the body diode were measured.
It shows that the MOS diode has lower cut-in voltage than the
body diode. Although the body diode has a better conductivity
for larger current, it also suffers from severe reverse recovery
current when switching. The reverse recovery current not only
degrades the efficiency but also generates power supply noise at

. Besides, the needed operating current for the following
circuit is less than 5 mA. The MOS diode will dominate the con-
ducting current. Hence, and are connected to
by (10 ) to avoid body diodes. 1 MHz sine wave with 5
V amplitude was rectified to be 4.2-V dc output with
and . The voltage conversion ratio of the
individual RF-dc circuit is about 84% [24].

C. Voltage Limiter and Regulator

As shown in Fig. 5(a), is a virtual resistor representing the
load from the implanted device via the coupling spiral antenna.
If the resistive load in the secondary side is , the feedback
input impedance from the primary side is derived

(1)
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Fig. 2. System block diagram of the implantable DRG stimulator for pain control.

Fig. 3. Schematic of proposed full-wave rectifier.

Fig. 4. IV curve comparison of MOS diode and body diode.

If resonating in the secondary part, . The
is reduced as

(2)

where N is defined as the ratio of and . If and
, becomes equal to and vanishes. Note that

the real part of , which is defined as , is proportional to
value.

Fig. 5. (a) Inductive coupling circuit model of the voltage limiter. (b)
Schematic diagram of voltage limiter.

Fig. 6. Schematic diagram of the regulators which generate�� and�� .

The voltage sensor in the voltage limiter is composed of 5 se-
rial connection diodes and a 200-k resistor, which is plotted
in Fig. 5(b). When the input voltage exceeds 5 V, it will turn on
the nMOS transistor to pull down the current from the power
source. Since the pulled down current could be large, the size of
the MOS is up to 4000 m/0.35 m. As shown in Fig. 5(a), it
causes short-circuit load on the secondary side. With this, zero

is fed back, becomes zero that limits the RF power im-
mediately and suppresses the received voltage.

If the rectified is lower than 5 V, the voltage limiter is
quiescent and the following voltage regulator uses this voltage
to generate a regulated operating voltage for analog and digital
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Fig. 7. Schematic diagram of the OOK receiver [25].

circuits as shown in Fig. 6. The digital and analog regulators use
the same bandgap reference [19]. The analog circuit is mainly
composed of a low-voltage RF receiver circuit, which operates
at 1.8 V. Since the rectified still carries large RF power
noise, a large external 100 F, is necessary to filter out
the RF power noise. Besides, this large output capacitor also
helps compensating the stability of regulator. As to the digital
circuit, it is not sensitive to the RF power noise, a large is
unnecessary for the digital regulator. A default is also 1.8
V without the external discrete resistor . In order to study
the effect of the PRF operating voltage, the is adjustable
by adding additional .

D. RF Receiver

This system provides not only a self-controlled analgesia for
the low back pain, but also the therapy of PRF parameters is also
controllable. The self-therapy PRF parameters defined by the
user are wirelessly transmitted at 402 MHz. Conventionally, an
implantable device can use the same inductively power coupling
path to carry data. In this system, we propose separate power and
data path so that the data transmission distance can be longer
once a battery is equipped. Fig. 8 defines the format of the self-
therapy PRF parameters data packet in which the first byte is
N/R/D ID and the following byte defines N/R/D data, which
are responsible for pulse frequency, repetition rate and pulse
duration parameters. The last byte is the sum of previous two
bytes and defined as Checksum. The parameters are set in the
handheld device, which UART is almost available. In general,
TX is kept at high voltage when standby. In order to save power
consumption, the TX output is inverted first and then sent to
RF OOK transmitter. Therefore, RF transmitter is OFF when no
data is sent and TX is in standby. If those parameters are not
available in the implanted device, the hard-wired default N/R/D
in the logic controller will activate for normal operation.

When the parameters are set and activated in the handheld
device, a 3-B data packet is formed and sent via UART TX port
and the following RF transmitter.

Due to the low data rate and short transmission distance, a
simple OOK modulation scheme is chosen for low power con-
sumption and small size [26]. The OOK receiver always listens
to 402 MHz for the incoming packet. This RF block is fed by

which is regulated at 1.8 V. As shown in Fig. 7, the first
stage in the integrated OOK receiver is a resistive shunt-shunt
feedback amplifier with high input impedance, which is con-
nected to an external matching/filtering network. The following

Fig. 8. Format of self-therapy PRF parameters data packet.

Fig. 9. Schematic diagram of clock regenerator.

gain stage is an eight-stage cascaded CMOS amplifier. These
two amplifiers provide 60-dB gain in total. The data are demod-
ulated by the envelope detector and the low-pass filter, which is
composed of an integrated 1-k resistor and a 10-pF capacitor.
The final inverters are used to shape the modulated signal into
digital output. Once the RF signal is received by the RF receiver,
it is directly demodulated into the digital packet and handheld
by UART RX. The serial data are then converted to parallel by
the S/P circuit and is used to calculate the checksum. If the se-
rial data are verified correct, the MUX would pass the N/R/D
data to the relative N/R/D registers according to the N/R/D ID.
Once these parameters are available in the registers, the PRF
generator would immediately process data and change the PRF
waveform.

E. Logic Circuits for PRF Generator and PRF Drivers

The 1-MHz system clock of a logic controller is captured
from the RF power signal by the clock regenerator, which is a
Schmitt trigger as shown in Fig. 9. It offers better noise immu-
nity and noise margin. Moreover, its operating voltage can be as
low as 1.7 V.
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Fig. 10. (a) Block diagram of the PRF generator. (b) PRF waveform and parameters definition.

The basic PRF parameters consist of pulse frequency, repeti-
tion rate and pulse duration, which are defined in Fig. 10(b). The
base frequency originates from the regenerated clock .
The programmable divider circuit divides the by N and
generates the pulse frequency output. If N is not set by the ex-
ternal RF signal command, the default N is 2 and the default
pulse frequency is 500 kHz. As shown in Fig. 10(a), the PRF
output waveform is shaped by the pulse-shaping output, which
is the result of AND gate. The repetition rate of the pulse train is
default 2 Hz with default 100. Pulse duration is controlled
by programmable delay D, which delays the output of the rep-
etition rate output by D times the predivider output clock. The
default 10 generates 50-ms delay. All three programmable
parameters can be reset by the RF receiver.

The ready PRF waveform is then delivered to PRF drivers.
In order to double the stimulating voltage, the differential PRF
outputs can be easily produced by the 3-stage and 4-stage in-
verter chains as shown in Fig. 11(a). However, the nonzero dc
level in the quiescent period of PRF is observed. It causes a long
period of dc current passing through the nerve and may bring
thermal damage. Besides, the dc level in the course of the pulse
train is zero and is different from the quiescent period. Conse-
quently, charges in the nerve become unbalanced between pulse
train and quiescent time. The charge unbalance did cause the
rat leg jerking. Only the operated side of the leg jerked with the
frequency of 2 Hz, which is the same with the repetition rate. Al-
though this inverting-type driver has an unsafe effect for living
creatures, it helps the surgery to have a visible response for po-
sitioning.

The charge balance stimulation is achieved in Fig. 11(b). It
shows that the positive node leads the negative node by one
clock cycle. Thus, the dc level would be almost zero in the
whole period of stimulation. This delay type driver did not cause
jerking. As shown in Fig. 11(c), the inverter chain is an effec-
tive and easy circuit to drive the PRF waveform for nerve stim-
ulation. The geometric ratio of the inverter size is 2. Unlike
the analog driving circuit, the digital inverter can deliver a con-
stant voltage of but not a constant current. The voltage
across the nerve would be positive or negative alterna-
tively. Hence, it is square waveform stimulation. Therefore, the
most part of the current flowing through the nerve is dc cur-
rent. Hence, the imaginary part of the nerve is ignored. Since

Fig. 11. (a) Inverting-type PRF driver. (b) Delayed-type PRF driver. (c) Current
flow of biphasic PRF.

the impedance of the stimulated nerve is uncertain, the max-
imal current must be limited for safety. Two 50- resistors are
connected between the output node and the source of transis-
tors. The measured the output current with respect to the
is plotted in Fig. 12. A common is around 1 k . If the

is 1 k and is regulated at 1.4 V, the measured
output current is 1.22 mA. In case becomes 10 unex-
pectedly, the output current would be limited at 12.5 mA.

III. MEASURED RESULTS

This pain control chip is fabricated in a 0.35- m CMOS
process. Fig. 13 shows the die micrograph of the proposed
pain control chip whose size is 2.1 mm 2.2 mm. Over half
of the size is occupied by the rectifier in order to enhance its
efficiency and reduce thermal effect. This chip is mounted on
a printed-circuit board (PCB), which is connected to a flexible
spiral antenna. Fig. 14 shows the stimulator module, whose
dimension is cm wide cm long mm high. While the
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Fig. 12. PRF driving current with respect to different impedance values.

Fig. 13. Micrograph of the pain control IC.

flexible spiral antenna is folded, the module becomes half-size,
which is as small as a U.S. quarter.

Before implantation, the operating temperature was measured
by an infrared (IR) thermal imager to ensure the thermal bio-
compatibility for the in vivo experiment. When the thermog-
raphy was taken, the DRG stimulator was placed under the coil
of PA without any vertical gap and horizontal offset. The IR ther-
mography in Fig. 14 shows that the highest temperature 39
occurs in the chip. These two IR thermography and photograph
with a blue light-emitting diode (LED) lightning were taken at
the same time. Since this coupling is the closest condition, the
operating temperature of the module should be below the max-
imal 39 C when implanted. Besides, the temperature of these
two spiral antennas is also observed that heat is also generated
by the antennas. It arises from the low Q spiral antennas, whose
Q was also measured at about 5.5 at 1 MHz by a network ana-
lyzer.

In order to study the RF powering, rectified was mea-
sured with respective to the inductive contact alignment when
the VDD of Class-E PA was 6 V. Fig. 15 shows that the highest
rectified is 4.5 V when using the direct contact without
any gap. degrades with the increase of the gap distance.
The minimal required is 2.2 V, which corresponds to the
maximal 18-mm gap distance. This distance is enough for im-
planting under the skin. In addition, versus the horizontal

Fig. 14. DRG stimulator module and its measured IR thermography when ac-
tivated.

Fig. 15. Rectified � with respect to the vertical and horizontal offset.

offset was also measured with a 10-mm distance of the gap. That
means when the module implantation is 10 mm deep, the max-
imal alignment offset of the antenna center is about 8 mm.
To achieve the minimal operating 1.4 V, the minimal
input amplitude should be larger than 3 V to deliver a rec-
tified 2.2 V with 2.7-mA operating current. When con-
nected to a 1.6 k resistive load, which was the measured DRG
impedance, the PRF driver delivers an output 1.3-V PRF wave-
form, which is lower than 1.4 V due to the current protec-
tion resistor . PRF waveforms with different periods (0.05 to
1.25 s) and different modulation frequencies (4 kHz to 1 MHz)
can be measured successfully. Table I summarizes the character-
istics of the proposed SoC, along with those of other implantable
electrical stimulators [27]–[30].

IV. ANIMAL STUDY METHOD AND RESULTS

The whole module was packaged by PDMS for water proof
and humidity sealing. Besides, it was coated with biocompatible
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TABLE I
SUMMARY OF THE MEASURED PERFORMANCE

��� : functional electrical stimulation; ��� : brain computer interface; ��� : deep brain stimulation; N/A: not available

Fig. 16. Demonstration during PRF treatment.

Parylene C for implantation. The packaged PRF chip was then
implanted into rats for the animal study. The LED inside the rat
is lit once an external power source is close to the rat, demon-
strating that external power is delivered to the SoC successfully
as shown in Fig. 16. The animal study flowchart is shown in
Fig. 17. Before the implantation, L5 nerve of the lumbar re-
gion was exposed to induce neuropathic pain by ligation. The
electrode was penetrated into the transverse process and placed
beside the DRG as shown in Fig. 18. Rats were grouped into
a control group (2 rats) without applying PRF and an experi-
mental group (4 rats) with a low PRF stimulation voltage of 2.8
V (biphasic), in contrast to the conventional 40 V (monophasic),
for a duration of 5 min. Besides, the default 500-kHz pulse fre-
quency, 2-Hz repetition rate, and 50-ms pulse duration were
applied. Von Frey (VF) monofilaments with different bending
forces were utilized to stimulate the plantar surface of the foot

Fig. 17. Flowchart of the animal study.

to test the mechanical allodynia. Specifically, when the force
was applied, the animal did not withdraw its foot until it felt
pain. The VF scores are defined as the average threshold force in
grams when a rat withdraws its foot. The paw was pressed with
one of a series of VF hairs with logarithmically incrementing
stiffness (0.6, 1, 1.4, 2, 4, 8, 10, 15 and 26 g, presented per-
pendicular to the plantar surface (5–6 s for each hair). The 50%
withdrawal threshold was determined using Dixon’s up-down
method [31].

Therefore, a high VF score indicates high pain tolerance.
All animals were tested before surgery to collect their baseline
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Fig. 18. Placement of stimulation electrodes on the L5.

Fig. 19. Experimental results of VF score change before and after PRF stimu-
lation to DRG.

values and were allowed to recover from surgical trauma be-
fore resuming the test on days 1, 2, 3, 5, and 7 to evaluate the
threshold values of both groups. The baseline values of both
groups were around 20 g before surgery and decreased after
surgery (Fig. 19). Since the L5 nerve of the lumbar region was
exposed to induce neuropathic pain by ligation for both groups,
the baseline of VF drops after surgery. However, the experi-
mental group with PRF stimulation consistently had higher pain
tolerance than the control group without PRF stimulation. Ex-
perimental results clearly demonstrate the 3–7 days effective-
ness of PRF treatment for pain relief on the DRG.

V. CONCLUSION

This paper has successfully demonstrated that implanted
CMOS SoC stimulating DRG with 1.4-V, 500-kHz PRF could
significantly reduce SNL-induced mechanical allodynia for
3–7 days. To the best of our knowledge, this device is the
only batteryless SoC-based implantable stimulator whose ef-
fectiveness is demonstrated by an animal study. It is assumed
that the electric field rather than temperature is responsible for
the pain relief observed in clinical practice. Its effectiveness
is demonstrated by observing the behavior of rats receiving
localized biphasic stimulus to the DRG of the lumbar nerve.

The implantation rat has lived for six months. Moreover, the
direct evidence can prove the effectiveness of PRF is under
study by means of immunohistochemistry.
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