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A Novel Fuzzy Pain Demand Index Derived From
Patient-Controlled Analgesia for Postoperative Pain
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Abstract—A multilayer hierarchical structure for an intelligent
analysis system is described in this paper. Four levels (patients’,
measurement, Web-based, and interpreting) are used to collect
massive amounts from clinical information and analyze it with
both traditional and artificial intelligent methods. To support this,
a novel fuzzy pain demand (FPD) index derived from the interval
of each bolus of patient-controlled analgesia (PCA) is designed
and documented in a large-scale clinical survey. The FPD index is
modeled according to a fuzzy modeling algorithm to interpret the
self-titration of the drug delivery. A total of 255 patients receiving
intravenous PCA using morphine (1 mg/ml) tested this index by
offline analysis from this system. We found the FPD index modeled
from a fuzzy modeling algorithm to interpret the self-titration
of the drug delivery can show the patients’ dynamic demand
and past efforts to overcome the postoperative pain. Moreover, it
could become an online system to monitor patients’ demand or
intent to treat their pain so these factors could be entered into a
patient’s chart along with temperature, blood pressure, pulse, and
respiration rates when medical practitioners check the patients.

Index Terms—Fuzzy modeling algorithm, fuzzy pain demand
(FPD) index, intelligent analysis system, intent to treat, multilayer
hierarchical structure, patient-controlled analgesia (PCA).

I. INTRODUCTION

THE need for a reliable and valid tool to measure pain
is essential for any clinical practice or trial associated

with pain treatment. However, the subjective feeling of pain is
extremely hard to quantify [1]–[5]. The current patient-con-
trolled analgesia (PCA) method provides the patient with a
pain-driven button that activates a pump to administer a bolus
dose of analgesic at a fixed time interval (i.e., lockout time).
And, the most commonly used measures of pain intensity,
including visual analog scales (VASs), numerical rating scales
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(NRSs), and verbal rating scales (VRSs) have been shown to
have adequate sensitivity to changes in pain associated with
treatment across many populations and settings. However,
these conventional methods have a number of limitations for
measuring pain. First, all these scales require intervention by
other people (i.e., medical doctors or nurses) to ask the patient
about results, which not only requires excess effort and time,
but also may not detect some perceivable changes in pain that
might occur just before interventions. This means that the
timing for determining the patient’s pain is very difficult to
synchronize with the staff asking for their VAS, NRS, or VRS.
Secondly, these methods are not responsive to postoperative
efforts of the patient. Although these values from clinical eval-
uation may be quite similar, the results of pressing of buttons
are dramatically different. This means that VASs, NRSs, and
VRSs can only show static pain but not dynamic pain, which
is related to the accumulated previous efforts. Third, these
methods are not practical for online analysis of postoperative
pain intensity.

In the search for a useful adjuvant to self-reported pain in-
tensity, the PCA device is an important means to develop a re-
liable, objective, continuous, and online index. In conventional
PCA systems, consenting patients are provided with a hand-held
pushbutton and are instructed to trigger the button when they re-
quire pain relief. A bolus of constant size of an analgesic drug
is given in response to each legitimate pushing of the button.
The size of the bolus is set by the medical staff, and there is
a “lockout” period following each bolus administration during
which time no further bolus can be delivered. Moreover, based
on the design of PCA, patients are requested to reduce their
pain to a minimum (i.e., VAS ). Thus, all patients are the-
oretically maintained at pain-free status in the long run regard-
less of their efforts. However, the demand for better pain relief
varies remarkably among each individual and it fluctuates with
time. Accordingly, these individual and fluctuating demands are
stored inside the PCA device to show the different pain pattern
of patients related to either analgesic drugs or surgical opera-
tions and to present specific characteristics with clinical impli-
cations [6], [7]. Hence, how to model this pain pattern to be more
objective and reliable in order to continuously monitor this fifth
vital sign is the most important aspect of the pain measurement
since pain has recently become the “fifth vital sign” to be en-
tered into a patient’s chart along with temperature, blood pres-
sure, pulse, and respiration rates [8], [9].

Modeling a system is very important because it is related to
process characterization and design studies. In the past, it has
been thought that a complicated mathematical approach could
model a system more accurately. For example, pharmacokinetic
and pharmacodynamic models have been applied for modeling
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Fig. 1. Multilayer hierarchical structure of i-pain system.

pain [10], [11]. However, this still has problems when ill-de-
fined, complicated, and nonlinear systems are encountered. To
solve this problem, fuzzy logic has been applied, as indicated by
a recent survey on its use in medicine and healthcare [12]. Fuzzy
logic not only accommodates uncertainty by dealing with im-
precise, qualitative terms such as low, medium and high, but also
provides rules that are easy to understand and modify for discus-
sion with experts. Using verbalization or linguistics through in-
teraction with the human operator or domain expert, the system
can be modeled effectively [13], [14].

The present study had two primary goals. The first was to
build a multilayer hierarchical structure for an intelligent anal-
ysis system that is able to collect the postoperative records of a
PCA device and patients’ basic information uploaded to a Web
server PC using standard Web-based TCP/IP. The Web server
acts as a database for multimodal electronic patient record in-
formation, storing and intelligent analyzing patient data. Under
this multilayer hierarchical system, the second goal of this paper
was to propose a novel fuzzy pain demand (FPD) index derived
from the interval of each bolus of PCA using fuzzy modeling
algorithm. We wish to know how the rule base of the FPD index
is generated from experts (i.e., anaesthetists) and how this rule
base is related to FPD index perturbed by different generated
rule bases. We also examine the relationship of FPD index in
comparison with conventional parameters, standard mean drug
consumption (MDC), demand/delivery ratio (D/D ratio), and
clinical observation pain using the visual analog scale (VAS)
measured at most pain and rest pain.

II. MULTILAYER HIERARCHICAL STRUCTURE OF THE

-PAIN SYSTEM

A multilayer hierarchical structure of the -pain (where
means information and intelligence) system for data collection
and interpretation includes the four levels of patients, measure-
ment, Web-based, and interpreting, as shown in Fig. 1.

A. Level 1: Patients (i.e., Patient Level)

This study was approved by the Shin Kong Wu Ho-Su Memo-
rial Hospital Ethics Committee. A total of 255 patients classed
as American Society of Anesthesiologist physical status 1, 2, or
3 for upper and lower abdominal, spinal, and extremity proce-
dures using an analgesic dosage of morphine (1 mg/ml) alone
were screened from the -pain database and entered into this
study. Patients were excluded from the study if they were mor-
bidly obese, unable to understand the use of the PCA or had
a history of allergy to morphine. According to routine clinical
practice, patients were instructed on the correct use of the PCA
pump and given standardized PCA education by a PCA team
nurse.

B. Level 2: Measuring Patients’ Demand and Inputting
Patients’ Basic Information (i.e., Measurement Level)

PCA has become an established procedure for clinical pain
relief. A number of studies have shown the advantages of PCA
over regularly scheduled and as-required administration of anal-
gesics [15]. The basic concept of the PCA design is to reduce
patients’ pain to a minimum (i.e., VAS ) and to maintain
them at pain-free status in the postoperative period regardless
of their efforts. That is why a significant improvement in satis-
faction score was seen after the introduction of an acute pain ser-
vice [16]. The PCA machine provides a system where the patient
operates a hand-held button interfaced to a microprocessor that
drives an infusion pump delivering intravenous analgesic. Fur-
thermore, the pain demand and delivery of patients stored inside
the PCA device may represent different degrees of pain relief.
Hence, the second level is a measuring level that involves an in-
strument device (i.e., Abbott AIM Plus pump), which collects all
the patient demands and delivers a bolus to the patient when they
require pain relief. The collected information is in two modules,
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Fig. 2. Block diagram modeling the proposed pain system to interpret the pain measurement: (a) Conventional PCA system; (b) PCA+FPD system.

which provide basic information input and items, and data re-
trieving from the PCA machine. A basic module provides the in-
formation inputs and items, such as the patient height, weight,
and age; doctor’s and nurse’s name; the drug’s name, dosage,
and concentration, …, etc. In addition, the clinical observation
pain using the VAS was measured at most and rest pain during
medical visits by anaesthetists or nurse anaesthetists, as shown
in Fig. 1. The data-retrieving module from the PCA machine
provides the number of demands and delivery, the bolus volume,
the continuous infusion volume, and the total drug consumption
for each day. Then, the patients’ basic information and postoper-
ative records of the PCA device are transmitted to a PC to create
a comprehensive file in the PC-based -pain system.

C. Level 3: Constructing a Web-Based -Pain System to
Collect Large Scale Clinical Data (i.e., Web-Based Level)

With the large-scale clinical data input from a PCA device via
an RS232 communication port, we constructed a comprehensive
Web-based -pain platform to encompass the high-throughput
data acquisition. Hence, level 3 is a Web-based level that in-
volves all data files, which are merged offline and uploaded
to a Web server PC using standard TCP/IP. The Web-based
-pain system acts as a database for multimodal electronic pa-

tient record information and storing for conventional data anal-
ysis (e.g., the MDC, D/D ratio, and VAS) and further intelligent
analysis (e.g., the FPD index as shown in Fig. 1).

D. Level 4: Data Mining of the Pain Database (i.e.,
Interpreting Level)

In order to encompass the high-throughput data analysis to
yield evidence-based medical information, the data mining of
the database is like an interpreting level that involves inter-
preting patients’ pain demand to obtain a delivery pattern, and
then interpreting the pain pattern to a FPD index. In addition,
the conventional patients’ MDC, D/D ratio, and VAS are also
calculated and measured. In order to show the change of all
these values, our clinical analysis data are divided into six
periods after the start of PCA: period 1 (0–4 h), period 2 (4–8
h), period 3 (8–12 h), period 4 (12–16 h), period 5 (16–20 h),
and period 6 (20–24 h).

1) Fuzzy Pain Demand Index Using the Fuzzy Modeling Al-
gorithm: Fig. 2 shows the conventional PCA and the PCA+FPD
structure for modeling patient demand or intent to treat their
pain via a PCA device. The current PCA method as shown in
Fig. 2(a) provides the patient with a pain-driven button that ac-
tivates the pump to administer a bolus dose of analgesic at no
less than a fixed time interval (i.e., lockout time). In contrast, the
proposed PCA+FPD structure in Fig. 2(b) is used to interpret
the pain demand (i.e., intent to treat) derived from the button-
pressing profile. It does so more accurately and better reflects the
patients’ dynamic demand and past efforts to overcome postop-
erative pain. According to a previous study of cancer pain relief
[17], adequate relief was defined not by asking patients what de-
gree of relief they perceived as acceptable, but by their no longer
requiring additional opioid doses as rescue medication. There-
fore, a more reliable, objective, continuous, and online monitor
of dynamic demand for pain relief like the vital signs would be
possible from this PCA+FPD structure.

Definition and Calculation of Pain Pattern: To obtain the dif-
ferent pain pattern from the patient’s button-pressing profile, the
big pain (BP), small pain (SP), and zero pain (ZP) levels of pain
pattern were defined as follows. In this definition, delivery was
the successfully completed demand that was met by administra-
tion of the drug, and demand was the request made by a patient
by pushing the PCA button.

a) BP: at least two deliveries have been pushed during four
lockout intervals;

b) SP: one delivery has been pushed during four lockout
intervals;

c) ZP: no delivery has been pushed during four lockout
intervals.

Since the four lockout intervals act as a data window segment
obtained by breaking the data sequence into equal lengths, the
segments of data may overlap or they may be disjoint. However,
if the segments are made to overlap, more segments can be taken
from the same sequence [18]. In this study, an overlap of 75%
has been recommended, as shown in the example of Fig. 3 for a
data sequence with ten lockout intervals. Also, the individual
pain pattern within four consecutive lockout intervals can be
calculated, as shown in the example for Fig. 4. The pain pattern
of Fig. 4 is therefore calculated as BP (100%), SP (0%), and
ZP (0%) of Fig. 4(a) and BP (25%), SP (50%), and ZP (25%)
for Fig. 4(b). Although the total drug consumption is the same
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Fig. 3. Data sequence with ten lockout intervals broken into segments with four
lockout intervals each, yielding seven 75% overlapping segments (star indicates
a button has been pressed in the lockout interval).

Fig. 4. Example of calculations for pain pattern of same delivery amount (i.e.,
3 ml) in different patterns: (a) first pattern and (b) second pattern.

(i.e., 3 ml) during these seven intervals, the pain pattern is totally
different.

Fuzzy Pain Demand Index Derived From Pain Pattern
According to Fuzzy Modeling Algorithm: Fig. 5 shows a
fuzzy modeling structure for interpretation of the FPD index
according to the pain pattern derived from the PCA device.
Model rules, membership functions, fuzzy inference engine,
and defuzzification are the essential elements in the fuzzy
modeling algorithm. To perform fuzzy inference and describe
this fuzzy modeling system, we chose the three inputs of BP,
SP, and ZP, with the single output of FPD index. In order
to fuzzify the inputs and output, the BP, SP, and ZP values
were divided into the following nine levels: zero (Z), between
zero and small (ZS), small (S), between small and medium
(SM), medium (M), between medium and big (MB), big (B),
between big and big plus (BB ), and Big plus (B ). And, the
FPD index was divided into 11 levels: zero (Z), between zero
and small (ZS), small (S), between small and medium (SM),
medium (M), between medium and medium plus (MM ),
medium plus (M ), between medium plus and big (M B),
big (B), between big and big plus (BB ), and big plus (B ).
There is no negative fuzzy set because this is not possible for
pain intensity. Here we use eleven levels instead of nine levels
because this will increase the resolution of FPD index. There
are many shapes of possible membership functions, such as
triangle, trapezoid, etc., that can be used for the fuzzy modeling
[19]. For simplicity, the common triangular shape is used, and
a 25% overlap for contiguous fuzzy sets is considered [20]
for three inputs (i.e., BP, SP, and ZP) and one output (i.e.,
FPD index). The inference engine works using the method of
Gupta et al. [21], which involve the decomposition of a multi-
variable fuzzy system into a set of one-dimensional systems.
This method has the following advantages. First, by virtue of

the decomposition, a relatively simple structure is obtained.
Second, the necessary amount of computer memory is reduced
so the computer implementation algorithm is fast, flexible, and
unified. Third, it is possible to evaluate the contribution of each
component to the overall performance of the system. Hence,
this method has been previously used in the control of depth of
anaesthesia studies [22], [23]. There are two main methods for
defuzzification procedures: the mean of maximum (MOM) and
the center of area (COA) [24]. The latter procedure has been
adopted here because it gives smoother signals.

Obviously, the derivation of fuzzy rules is a common bot-
tleneck in the application of fuzzy logic controllers (FLC).
Conventionally, these fuzzy rules are derived by emulating the
control actions of experts (i.e., medical specialists). Hence, the
initial rule-base of 20 rules for FPD was derived from anaes-
thetists’ experience as shown in Table I. In addition, the ranges
of linguistic level for BP, SP, and ZP are shown in Table II.
However, there are still many gray areas that cannot be decided
by their rules because the maximal rules for this system are 729
(i.e., 9 9 9). To determine whether or not these 20 rules are
enough to interpret the FPD index, we map this rule base of
20 rules to a lookup table for 729 (i.e., 9 9 9) FPD index
values, as shown in Fig. 6(a). In this study, the normalized
values of FPR index were chosen between . These
values were aimed at providing a sensitive pain demand index
similar to the VAS value. However, from Fig. 6(a), we see many
repeated FPD values with different levels of BP, SP, and ZP.
This implies that the rule base of 20 rules may not be sufficient
to interpret the FPD index. So, we count the occurrences of dif-
ferent FPD values, and then sort them according to descending
frequency, as shown in Fig. 7(a). If we choose the number of
occurrences as greater or equal to 18 (i.e., two intervals of SP)
for these FPD values as shown in Fig. 7(a), there still remain 16
values of FPD satisfying this condition and which need to be
further modified to increase the resolution of this lookup table.
Hence, after consultation with medical experts an additional
16 fuzzy rules (indicated by “ ” in Table I) were added to the
previous rule base so there are 36 rules in the rule base, as
shown in Table I. Similarly, we map this rule base of 36 rules
to a lookup table for 729 (i.e., 9 9 9) FPD index values,
as shown in Fig. 6(b). The overall curve is much smoother
than Fig. 6(a). We also count the occurrences of different FPD
values and then sort them according to descending frequency,
as shown in Fig. 7(b). Now, there are only three values of FPD
where the number of the occurrences is greater than or equal
to 18. Moreover, if we want to increase the resolution of this
lookup table and choose the occurrences’ number greater than
or equal to 9 (i.e., one interval of SP) for these FPD values,
an additional 19 fuzzy rules [i.e., as shown in Fig. 7(b)] must
be added to the rule base of 36 rules, for a total of 55 rules in
the rule base. Once again, we map this rule base of 55 rules
to a lookup table for 729 (i.e., 9 9 9) FPD index values
as shown in Fig. 6(c). Consistently, the overall curve is much
smoother than either Fig. 6(a) or (b). Similarity, we count
the occurrences of different FPD values, and then sort them
according to descending frequency, as shown in Fig. 7(c). Now,
there are only seven values of FPD where the number of occur-
rences is greater or equal to 9. Through this procedure, we can
gradually modify this rule base to provide higher resolution,
although more rules added to the rule base will make it more
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Fig. 5. Block diagram of fuzzy modeling algorithm to interpret the FPD index derived from a PCA machine.

difficult to handle and detached from the knowledge that the
expert applies in his/her routine.

2) Mean Drug Consumption: Dosage was calculated by
summing the total volume of opioid administered during each
period and expressing the dose as milliliters per hour.

3) Demand/Delivery Ratio: Demand was the mean number
of times every period that the patient made a request by pushing
the PCA button. In addition, delivery was the number of suc-
cessfully completed demands, i.e., demands that were met by
administration of the drug. Hence, the D/D ratio is the ratio
of demands to completed deliveries. A low ratio suggests that
the patient’s demands were frequently met by the drug delivery,
whereas a high ratio suggests that the patient made frequent de-
mands during the lockout interval, when the drug could not be
delivered.

4) Visual Analog Scale Score: The visual analog scale is
a 10-cm line with the endpoints labeled “no pain” and “max-
imum pain” [25]. The patient marks the line at the distance cor-
responding to the intensity of present pain. The routine protocol
for analgesia assessment was evaluated two or three times every
day by a specially trained nurse with no knowledge of the treat-
ment procedure. Each patient rated pain on a VAS graded from
0 (i.e., no pain) to 10 cm (i.e., maximum pain) during rest (i.e.,
for rest pain) and movement (i.e., for most pain).

5) Statistical Analysis: Kruskal–Wallis test was used to find
statistically significant differences in the median FPD index
across perturbations of the anaesthetists’ rule base (i.e., 20,
36, and 55 rules) [26]. For this, was considered
statistically significant. Moreover, the Pearson product-moment
correlation coefficient [26] was used to assess the relationship
of two indexes (i.e., FPD versus MDC, D/D ratio, or VAS).

III. RESULTS

A total of 255 patients (i.e., 146 female and 109 male), with
upper and lower abdominal, spinal, and extremity procedures
using analgesic dosage of morphine (1 mg/ml) alone were en-
tered into the study. The mean age was 56.7(15.4) years, mean
height was 154.8(12.8) cm, and mean weight was 58.7(9.9) kg.

In addition, the mean lockout time was 8.0(2.0) min, and mean
time for PCA use was 5.2 (2.5) days. Table III shows the data of
pain pattern of delivery (i.e., BP, SP, and ZP), FPD index, MDC,
D/D ratio, and VAS score at most pain and rest pain.

In order to perturb the anaesthetists’ rule base, the 20, 36, and
55 rules were tested in simulation to see what effect they have on
the FPD index. Since the rules have been decided, combining all
rules produces a three-input and one-output lookup table of 729
possible values (i.e., 9 9 9) for interpreting the FPD index.
Fig. 6 is the comparison of FPD index at different rule base of
20, 36, and 55 rules from the upper left corner to the lower right
corner of the lookup table. The FPD values in the lookup tables
with rule bases of 36 and 55 rules are smoother than the rule
base of 20 rules. Although the continuity of a rule base of 55
is smoother than with the rule base of 36 rules, there were no
significant differences ( ) using Kruskal–Wallis test for
these three rule bases in terms of FPD values at each interval.
Obviously, adding more rules into rule base will make it more
difficult to handle and detached from the original knowledge
that the expert applies in his/her routine. Hence, in this study, we
use 36 rules for this rule base in order to overcome the resolution
problems without departing too much from the experts’ thought.

From a large-scale clinical study via an -pain system, all
patients’ pain intensities were assessed on a routine base with
respect to their most pain and rest pain. As shown in Fig. 8,
we found that most patients’ pain intensity was maintained at
a very low level (i.e., VAS ) when the system was prop-
erly used and careful titration and instruction. Moreover, the
Pearson product-moment correlation coefficients calculated be-
tween FPD and VAS score at rest pain and most pain as shown
in Fig. 9 was 0.0098 and 0.0027, respectively. Thus, pain in-
tensity is not the outcome measurement that the FPD index was
designed to correlate. The value of FPD index does not act to
predict the pain intensity but rather as a real time index to assess
patients’ intention to relieve the pain at any specific time point.
In order to compare FPD index with conventional parameters of
MDC and D/D ratio, the Pearson product-moment correlation
coefficients of FPR index with MDC and D/D ratio were 0.629



2128 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 54, NO. 12, DECEMBER 2007

TABLE I
ANESTHESIOLOGISTS’ RULE BASE OF ORIGINAL AND ADDED RULES FOR

FPD INDEX (� INDICATES THE ADDED 16 RULES)

and 0.277, respectively. This result indicates that FPD index has
some relationship with MDC, but it has a very weak relationship
with D/D ratio. That is because the D/D ratio (or VAS) is not en-
tirely determined by the nociceptive stimuli but rather as a result
of both sensory-discriminative and emotional-cognitive compo-
nents of patients’ suffering. Although the FPD index has a mild
relationship with MDC (i.e., Pearson coefficient of 0.629), this
is because FPD index was derived from four deliveries as shown
in Fig. 3. However, in terms of dynamic phenomena to show
the patients’ demand or intent to treat their pain, two patients
were selected from the -pain system to demonstrate that the
FPD index was dramatically different, although MDC was quite
similar as shown in Fig. 10. This means the MDC can show only
the past cumulative pain efforts, but the FPD index can show the
past dynamic efforts to overcome the postoperative pain. Fur-
thermore, in order to show that the FPD index can show dynamic

Fig. 6. Comparison of FPD index for different rule bases from the left top
corner to the right bottom corner of the lookup table: (a) 20 fuzzy rules;
(b) 36 fuzzy rules; and (c) 55 fuzzy rules. (X axis: number of the left top
corner to the right bottom corner of the lookup table; Y axis: FPR index).

pain but will be smoothed out when many patients are averaged
together, we calculate the FPD index for 1, 10, 50, 100, and 200
patients, as shown in Fig. 11. Theoretically, one may expect a
decreasing trend in FPD index from time 0 to 24 h postopera-
tively as the intensity of nociceptive input associated with in-
cision wound clearly attenuates over time. However, our study
demonstrated a biphasic pattern of FPD index, i.e., the curve
moves downward over the first 20 hours and increased in the last
hours of day. The diurnal cycle and postoperative activities are
two major factors contributing to the discrepant results. First, all
our patients were recruited under schedule operations, i.e., from
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Fig. 7. Comparison of frequency rank order of FPD index values for different
rule bases: (a) 20 fuzzy rules; (b) 36 fuzzy rules; and (c) 55 fuzzy rules. (X axis:
frequency number of FPD index; Y axis: rank order of FPD index).

8:00 to 16:00. The postoperative time 0 h relatively ranged from
afternoon to evening (between 10:00 and 18:00), while the post-
operative time 16–20 h was over the midnight and early morning
(ranging between 2:00 and 8:00). Therefore, most of our pa-
tients spent their night sleeping time between 8 16 h after
the operation. As the day–night cycle is well known to modu-
late pain intensity, patients’ demand dropped when patients fell
asleep and remained inactive in rest. The sensitized wound was
left undisturbed during sleep but was profoundly irritated after
being woken up in the morning for numerous activities (such as
changing dressing, toileting, and nursing). Consequently, their
demands to treat pain dropped into sleep hour but resurged at
the postoperative 16 24 h as a result of more frequent activi-
ties involved. Once again, our results demonstrate that FPD can

TABLE II
RANGES OF LINGUISTIC LEVEL FOR BP, SP, AND ZP

Fig. 8. VAS score (most and rest pain) during clinical interview of patients
(data are plotted means �SD for the VAS scores in this figure).

serve as a sensitive and real-time index to reflect patients’ dy-
namic demand and past efforts to overcome the postoperative
pain. Hence, the dynamic phenomena of the FPD index is the
most beneficial for clinical assessment of pain management be-
cause a doctor wants to know the patient’s dynamic pain and
past efforts to overcoming pain suffering when checking this
patient. Then, the doctor can judge what kinds of settings of
PCA parameters (e.g., lockout interval, drug type, and dosage
amount) will be suitable to this patient.

IV. DISCUSSION

For this paper, we built up a multilayer hierarchical struc-
ture of -pain system to collect the patients’ daily medical in-
formation into major server since 2003. At present, a total of
eight medical centers in Taiwan have joined to share the -pain
system. Cumulative evidence from our preliminary results has
yielded fruitful implication that, in turn, can provide immediate
feedback for daily practice [27]. With the large scale of clinical
data input, we have successfully constructed a comprehensive
platform to encompass the high-throughput data acquisition and
systemic analysis to yield a series of evidence-based medical
evaluations for modern acute pain service.
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TABLE III
DATA FOR PAIN PATTERN OF DELIVERY (i.e., BP, SP, AND ZP), FPD INDEX, MDC, D/D RATIO AND VAS SCORE FOR MOST PAIN AND REST PAIN (DATA ARE

PRESENTED AS MEDIAN (25th–75th PERCENTILES) FOR PAIN PATTERN, FPD, MDC AND D/D RATIO, AND MEANS (SD) FOR VAS SCORE IN TABLE

Fig. 9. Relationship between FPD value and VAS score: (a) most pain and
(b) rest pain.

Moreover, using a fixed rule base then modified by calcula-
tion of its frequency and rank order via offline analysis from
the -pain system, we have demonstrated that fuzzy logic is ap-
propriate for modeling the patients’ demand or intent to treat
their pain in the postoperative pain via PCA. However, it can
be generated by the self-organizing fuzzy modeling (SOFM) al-
gorithm [28] according to routine clinical PCA in postopera-
tive pain service. The SOFM algorithm is derived from a tradi-
tional SOFLC algorithm [29]. It can automatically obtain rules
from input and output data and has been applied to controlling

Fig. 10. Comparison of FPD index and MDC during six intervals selected from
two patients of i-pain system: (a) FPD index and (b) MDC.

the depth of anaesthesia via auditory evoked response [30]. Al-
though an SOFM can provide wider and more accurate rules for
rule base, there is still much room to achieve even better model
performance. Not only the fuzzy rule base but also the member-
ship functions, the fuzzy inference engine, and defuzzification
can be adapted to those of their parameters or methods via arti-
ficial intelligence techniques for each individual patient.

Furthermore, from the clinical point of view, not only the VAS
but also the side effects must be considered in comparison with
the FPD index, MDC, and D/D ratio. Recently, we used an elec-
tronic diary using a personal digital assistant (PDA) as the data
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Fig. 11. Comparison of FPD index for different numbers of patients: (a) 1;
(b) 10; (c) 50; (d) 100; and (e) 200 patients.

collection platform for recording the VAS and side effects when
medical doctors or nurses interviewed patients [31]–[33]. This

PDA is like a messenger that not only records VAS scores and
side effects but also collects the PCA data via the RS232 port at
time of medical staff visits. All data files are merged offline and
uploaded to a Web server PC using standard Web-based TCP/IP.
Then, further data is mined by a Web server using intelligent
analysis and can be obtained in order to determine the relation-
ship between PDA (i.e., VAS and side effects) and PCA (i.e.,
FPD index, MDC , and D/D ratio) data.

In the current study, the FPD index is only calculated from
pain delivery via a fuzzy modeling algorithm to interpret the
self-titration of the drug delivery. However, since many studies
have demonstrated that pain has at least two dimensions, sen-
sory and affective, the popularity of scales that represent pain as
a single dimension is disturbing [34]. Hence, the trigger of PCA
is driven by both sensory-discriminative and emotional-cogni-
tive components of patient’s pain. In order to build a more ob-
jective and comprehensive approach to assess the need for pain
relief or intent to treat (ITT), the demand (i.e., not pain delivery
only) for pain relief should be considered in a FPD index. There-
fore, using the hybrid intelligent approach to model patients’
demand or intent to treat their pain may provide an alternative
method for the recent advocacy that a patient’s pain rating scores
be treated as the fifth vital sign.

ACKNOWLEDGMENT

The authors would like to thank the Taiwan branch of the
Abbott Laboratories Services Corporation for supporting this
research.

REFERENCES

[1] D. C. Turk, T. E. Rudy, and B. A. Sorkin, “Neglected topics in chronic
pain treatment outcome studies: Determination of success,” Pain, vol.
53, pp. 3–16, 1993.

[2] R. Melzack, “The McGill pain questionnaire: Major properties and
scoring methods,” Pain, vol. 1, pp. 277–299, 1975.

[3] R. Melzack, “The short form McGill pain questionnaire,” Pain, vol. 30,
pp. 191–197, 1987.

[4] R. L. Daut, C. S. Cleeland, and R. C. Flanery, “Development of the
Wisconsin brief pain questionnaire to assess pain in cancer and other
diseases,” Pain, vol. 17, pp. 197–210, 1983.

[5] T. D. Walsh, “Practical problems in pain measurements,” Pain, vol. 19,
pp. 96–98, 1984.

[6] R. Ohrbach and S. F. Dworkin, “Five-year outcomes in TMD: Rela-
tionship of changes in pain to changes in physical and psychological
variables,” Pain, vol. 74, pp. 315–326, 1998.

[7] X. M. Mueller, F. Tinguely, H. T. Tevaearai, J. P. Revelly, R. Chiolero,
and L. K. von Segesser, “Pain pattern and left internal mammary artery
grafting,” Ann. Thorac. Surg., vol. 70, pp. 2045–2049, 2000.

[8] M. McCaffery and C. L. Pasero, “Pain ratings: The fifth vital sign,”
Amer. J. Nurs., vol. 97, no. 2, pp. 15–16, 1997.

[9] M. K. Merboth and S. Barnason, “Managing pain: The fifth vital sign,”
Nurs. Clin. Nor. Amer., vol. 35, no. 2, pp. 375–383, 2000.

[10] M. R. Checketts, C. J. Gilhooly, and G. N. C. Kenny, “Patient-main-
tained analgesia with target-controlled alfentanil infusion after cardiac
surgery: A comparison with morphine PCA,” Br. J. Anaesthes., vol. 80,
pp. 748–751, 1998.

[11] J. S. Shieh, L. W. Chang, M. S. Wang, Y. P. Wang, Y. P. Yang, and
W. Z. Sun, “Pain model and fuzzy logic patient-controlled analgesia
in shock wave lithotripsy,” Med. Biolog. Eng. Comput., vol. 40, pp.
128–136, 2002.

[12] M. F. Abbod, D. G. von Keyserlingk, D. A. Linkens, and M. Mahfouf,
“Survey of utilization of fuzzy technology in medicine and healthcare,”
Fuzzy Sets Syst., vol. 120, pp. 331–349, 2001.



2132 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 54, NO. 12, DECEMBER 2007

[13] J. S. Shieh, Y. S. Chang, C. T. Chuang, and X. Wang, “Design a hier-
archical system for monitoring mobility changes of the elderly using
intelligent analysis,” Biomed. Eng. Appl. Basis Commun., vol. 17, no.
4, pp. 207–214, 2005.

[14] J. S. Shieh, D. A. Linkens, and J. E. Peacock, “A computer screen-
based simulator for hierarchical fuzzy logic monitoring and control
of depth of anaesthesia,” Math. Comput. Simul., vol. 67, no. 3, pp.
251–265, 2004.

[15] T. J. Wasylak, F. V. Abbott, M. J. English, and M. E. Jeans, “Re-
duction of postoperative morbidity following patient-controlled mor-
phine,” Can. J. Anaesth., vol. 37, no. 7, pp. 726–731, 1990.

[16] M. U. Werner, L. Soholm, P. Rotboll-Nielsen, and H. Kehlet, “Does an
acute pain service improve postoperative outcome?,” Anesth. Analg.,
vol. 95, pp. 1361–1372, 2002.

[17] J. T. Farrar, R. K. Portenoy, J. A. Berlin, J. L. Kinman, and B. L.
Strom, “Defining the clinically important difference in pain outcome
measures,” Pain, vol. 88, pp. 287–294, 2000.

[18] S. D. Stearns and R. A. David, Signal Processing Algorithms in
MATLAB. Englewood Cliffs, NJ: Prentice-Hall, 1996.

[19] J. Dombi, “Membership function as an evaluation,” Fuzzy Sets Syst.,
vol. 35, pp. 1–21, 1990.

[20] B. Kosko, Neural Networks and Fuzzy Systems. Singapore: Prentice-
Hall Int., 1991.

[21] M. M. Gupta, J. B. Kiszka, and G. M. Trojan, “Multivariable structure
of fuzzy control systems,” IEEE Trans. Syst., Man, Cybern., vol. 16,
no. 5, pp. 638–656, Sep. 1986.

[22] J. S. Shieh, D. A. Linkens, and J. E. P. Peacock JE, “Hierarchical rule-
based and self-organizing fuzzy logic control of anaesthesia,” IEEE
Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 29, no. 1, pp. 98–109,
1999.

[23] J. S. Shieh, D. A. Linkens, and A. J. Asbury, “A hierarchical system
of on-line advisory for monitoring and controlling the depth of anaes-
thesia using self-organizing fuzzy logic,” Eng. Appl. Artif. Intell., vol.
18, no. 3, pp. 307–316, 2005.

[24] M. Braae and D. A. Rutherford, “Fuzzy relation in a control setting,”
Kybernetes, vol. 7, pp. 185–188, 1978.

[25] E. C. Huskisson, “Visual analogue scales,” in Pain Measurement and
Assessment, R. Melzack, Ed. New York: Raven Press, 1983, pp.
33–37.

[26] S. A. Glantz, Primer of Biostatistics, 6th ed. Singapore: McGraw-
Hill, 2005.

[27] J. S. Shieh, L. Y. Chen, Y. R. Wen, J. Y. Chen, and W. Z. Sun, “The
relationship of evoked parameters versus VAS and side effects using
an evoked pain stimulation (EPS) algorithm,” in Annu. Meeting Chi-
nese Assoc. for The Study of Pain on ‘Advances in Management of In-
tractable Pain’, Tainan, Taiwan, R.O.C., Mar. 19–20, 2005, p. 132.

[28] D. A. Linkens, J. S. Shieh, and J. E. Peacock, “Hierarchical fuzzy mod-
elling for monitoring depth of anaesthesia,” Fuzzy Sets Syst., vol. 79,
pp. 43–57, 1996.

[29] T. J. Procyk and E. H. Mamdani, “A linguistic self-organizing process
controller,” Automatica, vol. 15, pp. 15–30, 1979.

[30] M. Elkfafi, J. S. Shieh, D. A. Linkens, and J. E. Peacock, “Fuzzy logic
for auditory evoked response monitoring and control of depth of anaes-
thesia,” Fuzzy Sets Syst., vol. 100, pp. 29–43, 1998.

[31] A. A. Stone, S. Shiffman, J. E. Schwartz, J. E. Broderick, and M.
R. Huskisson, “Patient compliance with paper and electronic diaries,”
Control Clinic. Trials, vol. 24, pp. 182–199, 2003.

[32] T. M. Palermo, D. Valenzuela, and P. P. Stork, “A randomized trial of
electronic versus paper pain diaries in children: Impact on compliance,
accuracy, and acceptability,” Pain, vol. 107, pp. 213–219, 2004.

[33] E. G. VanDenKerkhof, D. H. Goldstein, W. C. Blaine, and M. J.
Rimmer, “A comparison of paper with electronic patient-completed
questionnaires in a preoperative clinic,” Anesth. Analg., vol. 101, pp.
1075–80, 2005.

[34] W. C. Clark, J. C. Yang, S. L. Tsui, K. F. Ng, and S. B. Clark, “Uni-
dimensional pain rating scales: A multidimensional affect and pain
survey (MAPS) analysis of what they really measure,” Pain, vol. 98,
pp. 241–247, 2002.

Jiann-Shing Shieh (M’07) received the B.Sc. and
M.Sc. degrees in chemical engineering from the
National Cheng Kung University, Taiwan, R.O.C.,
in 1983 and 1986, respectively, and the Ph.D. degree
in automatic control and systems engineering from
the University of Sheffield, U.K., in 1995.

He was a Postdoctoral Research Associate in
the Department of Automatic Control and Systems
Engineering at the University of Sheffield from 1995
to 1996, working on a hierarchical fuzzy logic-based
support system project. He was also a Postdoctoral

Research Associate in the Center for Biomedical Engineering, College of
Medicine, National Taiwan University, Taipei, from 1996 to 1998, working
on an anesthesia systems engineering and its clinical applications. Currently,
he is Professor of Mechanical Engineering at the Yuan Ze University, Taiwan,
R.O.C. His current research interests include intelligent analysis and control,
bio-signal processing, critical-care medicine monitoring and control, pain
model and control, medical automation, and medical simulator design.

Chun-Yi Dai received the B.Sc. degree in me-
chanical engineering from the Yuan Ze University,
Taiwan, R.O.C., in 2004 and the M.Sc. degree
in mechanical engineering from National Central
University, Taiwan, R.O.C., in 2007.

He was a Teaching Assistant in mechanical engi-
neering at the National Central University and a Re-
search Assistant at Taipei Veterans General Hospital
from 2004 to 2005. After that, he was a Research
Assistant with the Department of Mechanical Engi-
neering at the National Central University from 2005

to 2006, running an orthopedic C-arm navigation system project supported by
the National Science Council. His current research interests include medical
image, orthopedic navigation system, pain management and control, and artifi-
cial intelligence.

Yeong-Ray Wen received the M.D. degree from the
Medical School, China Medical University, Taiwan,
R.O.C., in 1990.

He completed his resident and subspecialist
training in the Department of Anesthesiology,
National Taiwan University Hospital, from 1991 to
1995. He became a Postdoctoral Research Fellow
in the Sensory Plasticity Laboratory of the Pain
Research Center, Department of Anesthesiology,
Brigham and Women’s Hospital, Harvard Medical
School, Boston, MA, form 2004 to 2005. Currently,

he is an attending doctor in the Department of Anesthesiology, Shin-Kong
Wu Ho-Su Memorial Hospital, Taipei, Taiwan, R.O.C., where he specializes
in clinical anesthesia; pain managements, including postoperative pain and
neuropathic pain; and hospice care. He also participates in basic pain research
covering the fields of various animal pain models, mechanisms of acupuncture
analgesia, spinal nociceptive sensitization, spinal glia activation, and morphine
tolerance.

Wei-Zen Sun received the M.D. degree from the
College of Medicine in National Taiwan University,
Taiwan, R.O.C., in 1984.

He completed his residency training in the De-
partment of Anesthesiology at National Taiwan
University Hospital from 1986 to 1990 and served
as the attending physician thereafter. Currently, he
is the Chair and Professor of the Department of
Anesthesiology, College of Medicine in National
Taiwan University. His research interests in clinical
medicine include management of the postoperative

pain, neuropathic pain, and cancer pain. He also collaborates with basic
research in the rat acupuncture analgesia model, opioid tolerance, and infor-
mation systems.

Dr. Sun is currently chairing a national project in medical micro-video-sensor
consumer product design.


