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Microglia: A Promising Target for Treating Neuropathic
and Postoperative Pain, and Morphine Tolerance
Yeong-Ray Wen,1,2,3 Ping-Heng Tan,1,4 Jen-Kun Cheng,1,5,6,7 Yen-Chin Liu,1,8 Ru-Rong Ji1*

Management of chronic pain, such as nerve-injury-induced neuropathic pain associated with diabetic
neuropathy, viral infection, and cancer, is a real clinical challenge. Major surgeries, such as breast and tho-
racic surgery, leg amputation, and coronary artery bypass surgery, also lead to chronic pain in 10–50% of
individuals after acute postoperative pain, partly due to surgery-induced nerve injury. Current treatments
mainly focus on blocking neurotransmission in the pain pathway and have only resulted in limited suc-
cess. Ironically, chronic opioid exposure might lead to paradoxical pain. Development of effective thera-
peutic strategies requires a better understanding of cellular mechanisms underlying the pathogenesis of
neuropathic pain. Progress in pain research points to an important role of microglial cells in the develop-
ment of chronic pain. Spinal cord microglia are strongly activated after nerve injury, surgical incision, and
chronic opioid exposure. Increasing evidence suggests that, under all these conditions, the activated mi-
croglia not only exhibit increased expression of microglial markers CD11b and Iba1, but also display ele-
vated phosphorylation of p38 mitogen-activated protein kinase. Inhibition of spinal cord p38 has been
shown to attenuate neuropathic and postoperative pain, as well as morphine-induced antinociceptive tol-
erance. Activation of p38 in spinal microglia results in increased synthesis and release of the neurotrophin
brain-derived neurotrophic factor and the proinflammatory cytokines interleukin-1β, interleukin-6, and
tumor necrosis factor-α. These microglia-released mediators can powerfully modulate spinal cord synap-
tic transmission, leading to increased excitability of dorsal horn neurons, that is, central sensitization,
partly via suppressing inhibitory synaptic transmission. Here, we review studies that support the prono-
ciceptive role of microglia in conditions of neuropathic and postoperative pain and opioid tolerance. 
We conclude that targeting microglial signaling might lead to more effective treatments for devastating
chronic pain after diabetic neuropathy, viral infection, cancer, and major surgeries, partly via improving
the analgesic efficacy of opioids.

Key Words: central sensitization, neuronal–glial interactions, p38 mitogen-activated protein kinase,
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Microglia Activation and 

Neuropathic Pain

Microglial cells originate from bone-marrow-

derived monocytes migrating to the central ner-

vous system during the perinatal period, and they

account for 5–12% of the total cells in the cen-

tral nervous system. Under normal conditions,

microglia are ramified and thought to be quies-

cent. However, microglia under the non-injured

conditions are not really quiescent, because they

can actively sense their environment with their

ramified processes.1 After peripheral nerve injury,

microglia in the spinal cord become activated and

show dramatic changes in morphology (from

ramified to ameboid) and robust increases in the

expression of microglial markers such as CD11b

and Iba1 (Figure 1).2 Proliferation of microglia

in the spinal cord after nerve injury is also a fea-

ture of microglial activation. Under normal con-

ditions, glial cell proliferation is rarely detected.

However, robust microglial proliferation occurs

under several neuropathic pain conditions after

sciatic nerve constriction, partial sciatic nerve 

ligation, or spared nerve injury (SNI),2,3 in which

two of the three terminal branches of the sciatic

nerve are ligated, leaving the third branch, the

sural nerve, intact.4 Notably, nerve-injury-induced

cell proliferation in the spinal cord is largely re-

stricted to microglial cells, although proliferation

of other cell types, such as astrocytes, has also

been reported.5 The specific role of microglial

proliferation in the control of neuropathic pain

has not been clearly demonstrated. However,

more microglia could result in increased produc-

tion of pain mediators.

Although nerve-injury-induced morphological

changes in microglia are very striking, biochemi-

cal changes after nerve injury are more important

for microglia to induce pain. Nerve injury results

in dramatic upregulation of the ATP receptor

P2X46 and the chemokine receptor CX3CR1 in

spinal cord microglia.7,8 Spinal blockade of P2X4

and CX3CR1 signaling attenuates nerve-injury-

induced neuropathic pain.6,8 The chemokine 

receptor CCR2 and Toll-like receptor (TLR)4 also

contribute to neuropathic pain sensitization via

microglial activation,9,10 although CCR2 and TLR4

localization in microglia has not been clearly

demonstrated.

Studies from many laboratories worldwide

have demonstrated that nerve injury causes phos-

phorylation of p38 mitogen-activated protein 

kinase (MAPK) in spinal cord microglia.11,12

Phsopho-p38 (p-p38) levels are low in the spinal

cord of non-injured rats. Spinal nerve ligation in-

duces a substantial increase in p-p38 levels in the

injured side of the spinal cord, which is accom-

panied by an increase in p38 activity.11 Strikingly,

p38 is primarily if not exclusively activated in

spinal cells expressing the microglial markers.

CD11b/OX-42 and Iba1.13,14 By contrast, p-p38

is barely detected in Neuronal-nuclei-expressing

neurons, although low levels of p-p38 might be

seen occasionally. We have confirmed microglial

activation of p38 in the SNI model.15 p38 activa-

tion in spinal microglia has also been reported

Lesion side Contralat eral sideContralat eral sideContralat eral side
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Figure 1. Microglial reaction in the spinal dorsal horn 
of rats after nerve injury and paw incision. (A) OX-42 
immunofluorescence (dark field) in the dorsal horn 1 day
after spinal nerve ligation. The lesion side shows marked
microglial activation in comparison with the contralateral
side. (B) Immunohistochemical staining (bright field) of
Iba-1 in the dorsal horn 1 day after plantar incision. The re-
active microglia in the injured side displayed a dense and
ameboid appearance in contrast to the ramified morphology
of microglia in the contralateral side. Scar bar = 100 μm.
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after ventral root lesion16 and spinal cord injury.17

Although p38 activation peaks in the first week

of nerve injury, activation is still maintained

even 3 weeks later.18 Thus, either intrathecal 

pretreatment of p38 inhibitor (e.g. SB203580 or

FR167653) or intrathecal post-treatment with 

p38 inhibitor, at early and late stages of nerve 

injury, can effectively reduce nerve injury mechan-

ical allodynia, a cardinal feature of neuropathic

pain.13–15 Consistently, minocycline, a non-

selective microglial inhibitor attenuates neuro-

pathic pain by inhibiting p38.17,19 Minocycline

only inhibits neuropathic pain in the early phase;

therefore, it might not inhibit p38 activation in

the late phase.

What causes activation of p38 and microglia

in the spinal cord? We have shown that matrix

metalloproteinase (MMP)-9 can cause microglial

activation via neuronal–glial interaction. Spinal

nerve ligation elicits a rapid increase in MMP-9

protein and activity in dorsal root ganglion

(DRG) neurons.20 Intrathecal administration of

MMP-9 induces persistent mechanical allodynia

for many days.20 Intrathecal MMP-9 also induces

drastic activation of spinal microglia, as revealed

by increased p38 phosphorylation and OX-42

expression in the spinal cord.20 A critical issue to

study MMP-9 function is how to suppress MMP-9

expression persistently in the DRG. Tan and

coauthors21 have developed an RNA interference

strategy to target gene expression in the pain 

system, using a cationic polymer, polyethyl-

eneimine, to form a “proton sponge” by utilizing

its buffering capacity, which enables polyethyl-

eneimine to buffer endosomes and induce their

rupture to release small interfering RNA (siRNA)

into the cytoplasm.21,22 We have used this siRNA

strategy to target MMP-9 in the DRG after nerve

injury. Intrathecal injections of MMP-9-specific

siRNA (2 × 5 μg) in rats effectively suppressed

spinal-nerve-ligation-induced MMP-9 upregula-

tion by > 70% in the DRG without affecting

MMP-2 levels.20 Importantly, this siRNA treat-

ment also suppressed microglia activation in the

spinal cord and delayed the development of me-

chanical allodynia.20 We found that Cy3-labeled

siRNA was heavily taken up by many DRG cells 

3 hours after intrathecal injection.22 These results

suggest that siRNA knockdown is an effective

way to study gene functions in neuropathic pain.

An association of MMP-9 with microglia activa-

tion of p38 has been validated by the finding that

intrathecal p38 inhibitor can block the MMP-9-

induced neuropathic pain symptom, mechanical

allodynia.20

MMP-9, as well as ATP and chemokines [e.g.

CC chemokine ligand (CCL) 2 and fractalkine

(FKN)/CX3CL1] are released from DRG neurons

by nerve-injury-induced discharge, which causes

activation of microglia in the spinal cord (Fig-

ure 2). It is generally believed that nerve-injury-

induced spontaneous discharge in the axons and

cell bodies of DRG neurons can drive neuro-

pathic pain.23 Indeed, blocking neural activity in
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ATP, MMP-9, FKN

Surgery
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TNF-α, IL-1β, BDNF
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Figure 2. Schematic illustration of microglia-evoked pain.
Nerve injury, surgical procedures, and chronic opioid ex-
posure result in activation of microglial cells in the spinal
cord. This activation could be initiated by the release of
ATP, MMP-9, and the chemokine FKN, leading to the
phosphorylation of p38 mitogen-activated protein kinase
in microglia. Activation of p38 induces the synthesis and
release of several pain mediators including the proinflam-
matory cytokines (IL-1β and TNF-α) and BDNF from mi-
croglia. These glia-produced pain mediators can initiate
and maintain postoperative pain, neuropathic pain, and
antinociceptive tolerance of opioids, via inducing hyperex-
citability of nociceptive neurons in the spinal cord dorsal horn.
MMP = matrix metalloproteinase-9; FKN = fractalkine; p-
p38 = phospho-p38; IL-1β = interleukin-1β; TNF-α = tumor
necrosis factor-α; BDNF = brain-derived neurotrophic factor.
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the sciatic nerve by the local anesthetic bupiva-

caine can prevent nerve-injury-induced spinal mi-

croglia activation of p38 in the SNI model.15 By

contrast, blocking C-fiber activity in the sciatic

nerve with an ultrapotent capsaicin analog,

resiniferatoxin, fails to inhibit p38 activation in

this model.24 Thus, activity from large myelinated

A-fibers is also important for microglial activa-

tion after nerve injury.

Microglial Activation and 

Postoperative Pain

Growing evidence has indicated that postopera-

tive pain, traditionally regarded as acute sponta-

neously resolving pain, could become chronic and

persistent under similar processes. For example,

groin hernia repair, breast and thoracic surgery,

leg amputation, thoracotomy, and coronary 

artery bypass surgery result in chronic pain in

10–50% individuals after acute postoperative

pain, partly due to surgery-induced nerve injury.25

In light of various types of surgery in human, an

optimal animal model is essential for investigat-

ing the mechanisms and treatments of postoper-

ative pain. The most widely used surgical pain

model in rodents was developed by Brennan 

et al.26 In this incisional pain model, a longitudi-

nal incision (1 cm) was made in the plantar sur-

face deep to the muscle layers in a hind limb.26

Behaviorally, hypersensitivity to mechanical touch

and radiant heat was shown to develop immedi-

ately after surgery and lasted for 2–3 days. Many

studies have demonstrated that this model is

compatible with human incisional pain in terms

of behavioral, pharmacological, and molecular

changes.26–28 Other surgical models have also

been developed since then to mimic different

conditions of human surgery, such as: back inci-

sion,29 hindlimb incision,30 and gastrocnemius

incision as models of incisional pain; a thoraco-

tomy model31 to study surgery in nerve-rich tis-

sues; a laparotomy model32 to mimic abdominal

surgical consequences; and a skin/muscle incision

and retraction model33 to explore potentially

persistent pain following surgery of the somatic

tissues.

In our previous study,28 we found in the plan-

tar incision model that a simple brief incision at

the paw induced marked upregulation of p38

phosphorylation in the spinal dorsal horn, starting

within 1 hour, reaching a peak at 1 day, and 

declining after 3–5 days. The time course of p38

activation was compatible with that of early pain

progression after operation. Except for a few 

neurons expressing p-p38 within the first hour,

we observed that activated p38 was exclusively

expressed in microglia. However, changes in mi-

croglia surface markers (e.g. CD11b/OX-42) after

incision was found 2–3 days later, with a marked

increase from Day 3 to Day 7 after incision.28

The function of the delayed microglial reaction

remains to be investigated.

Involvement of p38 MAPK in postoperative

pain development has been confirmed by phar-

macological inhibition of p38 via the intrathecal

route. The p38 inhibitor FR167653 produces a

potent anti-inflammatory action by inhibiting

the production of interleukin (IL)-1β and tumor

necrosis factor (TNF)-α. We have found that in-

trathecal FR167653 prevents incision-induced

mechanical allodynia, and also reduces p-p38

levels in the spinal dorsal horn, but only has a

mild effect on reducing thermal hyperalgesia.28

These results support the hypothesis that p38 ac-

tivation in spinal microglial cells plays a crucial

role in the development and maintenance of post-

operative mechanical hypersensitivity. This study

has also suggested that targeting p38 in microglia

offers a novel way of preventing persistent post-

operative pain by inhibiting microglia-driven

“central sensitization”, that is, hyperactivity in

spinal cord dorsal horn neurons, a crucial mech-

anism underlying the development of persistent

pain.34 In addition, Eisenach and collaborators

have also shown that cyclooxygenase (COX)-1 is

dramatically upregulated in spinal microglia

after incision, and intrathecal administration of

a COX-1 inhibitor can attenuate post-incisional

pain for several days.35 It is tempting to postulate

that p38 activation in microglia induces COX-1
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expression to drive incisional pain, although p38

can regulate many other targets (Figure 2).

Microglia Activation and Morphine

Tolerance

Opioids are the primary treatment for acute and

cancer pain.36,37 Medical practice has shifted over

recent decades, and opioid use in chronic pain

has become common. However, long-term ad-

ministration of opioids produces negative health

consequences, such as increased risk of abuse

and addiction. Prolonged administration of opi-

oids is also associated with the development of

antinociceptive tolerance, wherein higher doses

of the drug are required over time to elicit the

same degree of analgesia. Numerous animal stud-

ies have demonstrated that sustained exposure to

systemic or spinal opioids, including morphine,

DAMGO (D-Ala2, N-MePhe4, Gly-ol]-enkephalin),

fentanyl, or heroin produces paradoxical pain,

characterized as heat hyperalgesia and mechani-

cal allodynia. Opioid-induced hyperalgesia is also

found in chronic pain patients.38,39 Chronic mor-

phine exposure results in a strong upregulation of

the microglial markers CD11b and Iba1, as well

as the ATP receptors P2X4 and P2X7 in spinal

microglia.40,41 Intrathecal injections of antisense

oligodeoxynucleotides against P2X4 or P2X7 an-

tagonists prevent development of morphine tol-

erance and microglial reaction.40,41 In particular,

chronic morphine induces p38 activation in spinal

microglia, and intrathecal treatment with p38 in-

hibitor or minocycline prevents the development

of morphine tolerance.42,43

Mechanisms of Microglia-evoked Pain

Figure 2 illustrates how microglial activation

causes pain hypersensitivity after nerve injury,

surgical procedures, and chronic opioid expo-

sure. Phosphorylation of p38 in microglia via ac-

tivation of P2X4 receptor increases the synthesis

and release of the neurotrophin brain-derived

neurotrophic factor (BDNF), and BDNF could

enhance neuropathic pain via suppressing in-

hibitory synaptic transmission in the spinal cord.44

Phosphorylation of p38 in microglia also results

in increased synthesis of the proinflammatory

cytokines IL-1β, IL-6, and TNF-α, partly through ac-

tivation of the transcription factor nuclear factor-

κB.11,45 Lipopolysaccharide, a potent microglia

activator and also a TLR4 ligand, induces IL-1β
release via p38 activation in spinal microglia.46

Accumulating evidence indicates a crucial role

for IL-1β, IL-6 and TNF-α in inducing hyperac-

tivity of dorsal horn neurons, that is, central sen-

sitization, leading to pain hypersensitivity.47,48

Intrathecal administration of IL-1β, IL-6 and

TNF-α induces robust heat hyperalgesia and me-

chanical allodynia.48,49 Conversely, spinal block-

ade of these cytokines has been shown to attenuate

inflammatory and neuropathic pain, and mor-

phine tolerance.50–54 Intrathecal administration

of IL-1β induces a substantial increase in COX-2

mRNA levels in the spinal cord.55 Perfusion of

spinal cord slices with IL-1β, IL-6 or TNF-α also

activates the transcription factor cAMP response

element-binding protein,48 which is crucial for

transcription of pro-nociceptive genes such as

neurokinin-1 and COX-2, as well as long-term

neuronal plasticity in dorsal horn neurons.34 In

particular, we have found that these proinflam-

matory cytokines also have a non-transcriptional

role in pain control. They can powerfully regulate

synaptic transmission via enhancing excitatory

synaptic transmission and suppressing inhibi-

tory synaptic transmission.48 Our patch clamp

recordings in isolated spinal cord slices have re-

vealed the following. First, IL-1β and TNF-α in-

crease spontaneous excitatory postsynaptic currents

in dorsal horn neurons, and enhance 2-amino-3-

(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic acid-

or N-methyl D-aspartic acid-induced currents.

Second, IL-1β and IL-6 decrease spontaneous 

inhibitory postsynaptic currents in dorsal horn

neurons and suppress γ-aminobutyric acid- or

glycine-induced currents.48,49,53 Similar findings

for the actions of IL-1β have also been reported

in cultured dorsal horn neurons,56 and TNF-α
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causes disinhibition in GABAergic neurons in

spinal cord slices.57 In addition to direct effects

on synaptic transmission, TNF-α can further acti-

vate astrocytes via c-Jun N-terminal kinase, to

produce monocyte chemoattractant protein-1

(CCL2), an important chemokine for central

sensitization,58 whereas IL-1β can activate spinal

microglia via p38 phosphorylation.24,59 Of note,

morphine metabolite morphine-3-glucuronide

facilitates pain via TLR4 activation and IL-1β
release; conversely, intrathecal injection of IL-1β
antagonist and TLR4 inhibitor can potentiate

morphine analgesia.60

Conclusions and Future Directions

Chronic pain is an increasing burden for society,

affecting 20% of the population worldwide.

Current treatments that focus mostly on target-

ing neuronal excitability and transmission are

unsatisfactory. The emerging role of microglia in

pain control brought great excitement to the

pain research field. We have discussed the prono-

ciceptive role of microglia in neuropathic pain,

postoperative pain, and opioid tolerance. It is

important to point out that some of these stud-

ies have been accomplished by four Taiwanese

anesthesiologists, who are also co-authors of this

review, during their training at Harvard Medical

School. Apparently, microglia regulate chronic pain

and opioid tolerance via neuronal-glial interac-

tions (Figure 2). First, primary sensory neurons

exhibit hyperactivity after nerve injury, surgical

procedures, and chronic opioid treatment and

release potential microglial activators such as

ATP, MMP-9, and the chemokines (e.g. FKN and

monocyte chemoattractant protein-1). Second,

p38 activation in microglia leads to the produc-

tion of pain mediators such as neurotrophin and

cytokines to modulate synaptic transmission and

enhance pain. Thus, targeting microglial signal-

ing via inhibiting the actions of chemokines (e.g.

FKN or CCL2), ATP receptors (e.g. P2X4 or P2X7),

MMP-9, p38 MAPK, and/or proinflammatory 

cytokines (e.g. IL-1β, IL-6 or TNF-α) might lead to

novel therapies for chronic pain. Finally, we have

to point out that, apart from microglia, other types

of glial cells, such as astrocytes, are also impor-

tant for inflammatory and neuropathic pain.61,62

Our work in progress has shown that astrocytes

can produce tissue plasminogen activator, a pro-

tease in the spinal cord to facilitate morphine

tolerance (unpublished observations). Satellite

glial cells share similar molecular features as 

astrocytes, but are localized in the DRG in the

peripheral nervous system. Activation of satellite

cells in the DRG after morphine treatment could

antagonize morphine analgesia via release of 

IL-1β (unpublished observations). It remains to

be investigated how different types of glial cells

control pain sensitivity under various injury and

treatment conditions.
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