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STRUCTURED ABSTRACT 

Objective: Recent studies have shown that the frequency-following response (FFR) to voice pitch can be 

a useful method to evaluate the signal-processing mechanisms and neural plasticity in the human 

brainstem. The purpose of this study was to examine the quantitative properties of the FFR trends with an 

exponential curve-fitting model.  

Design: FFR trends obtained with increasing number of sweeps (up to 8000 sweeps) at three stimulus 

intensities (30, 45 and 60 dB nHL) were fit to an exponential model that consisted of estimates of 

background noise amplitude, asymptotic response amplitude and a time constant. Five objective indices 

(Frequency Error, Slope Error, Tracking Accuracy, Pitch Strength and RMS Ratio) were used to 

represent different perspectives of pitch processing in the human brainstem.  

Study Sample: Twenty-three native speakers (16 males; age=24.7±2.1 years) of Mandarin Chinese were 

recruited. 

Results: The results demonstrated that the exponential model provided a good fit (r2=0.89±0.10) to the 

FFR trends with increasing number of sweeps for the five objective indices.  

Conclusions: The exponential model, combined with the five objective indices, can be used for difficult-

to-test patients and may prove to be useful as an assessment and diagnostic method in both clinical and 

basic research efforts.   

  



INTRODUCTION 

The scalp-recorded frequency-following response (FFR) to voice pitch has become widely accepted as a 

useful method for studying the signal-processing mechanisms and the neural plasticity of the human 

brainstem for normal and pathological populations. Recent studies have shown that neurons in the human 

brainstem are malleable elements and can be affected by the listener’s language experience (Krishnan et 

al., 2005, 2009, 2010; Swaminathan et al., 2008), long-term musical training (Johnson et al., 2008; 

Musacchia et al., 2007; Strait et al., 2009; Wong et al., 2007) and short-term auditory training (Russo et 

al., 2005; Song et al., 2008). As measured through FFR, some children with autism spectrum disorders 

(Russo et al., 2008) and reading and spelling difficulties (Chandrasekaran et al., 2009) have shown 

decreased accuracy in tracking changes in voice pitch. Developmental trajectories of the FFR to voice 

pitch have also been described through studies in normal-hearing children (Johnson et al., 2008) and 

infants (Jeng et al., 2010). Given the increasing clinical utilities of the FFR to voice pitch, the amount of 

time needed to complete a recording becomes an important issue to address. The purpose of this study 

was to quantify the dependency of the FFR to voice pitch on the number of sweeps through the use of an 

exponential model. We recognize that the major factor affecting our study in determining the dependency 

of the FFR to voice pitch will be the quality of the recordings as measured by the signal-to-noise ratio 

(SNR) of the recordings. Because the SNR is affected by the number of sweeps averaged, we have chosen 

as a matter of ease and convenience to use the number of sweeps as our quantitative metric fully 

understand that for any individual participant a specific number of sweeps cannot guarantee a given SNR.  

 

FFR trends with increasing number of sweeps 

One challenge in recording an FFR to voice pitch is the relatively low SNR of the response waveform 

taken from an individual. The FFR reflects a small amplitude response, usually on the order of hundreds 

of nanovolts (Gardi et al., 1979; Krishnan et al., 2004; Jeng et al., 2010; Li & Jeng, 2011), whereas the 

background noise (physiological and non-physiological) is larger, usually in the range of 10-20 µV. 

Among many possible ways to improve the SNR of a recording, signal averaging is one of the most 



commonly used approaches in clinics and research laboratories. Signal averaging takes advantage of the 

time-locked feature between the onset of the stimulus and that of the computer analysis sweeps. With 

progressively more sweeps included in the average, the background noise (due to its nature of 

randomness) will be averaged toward a zero mean. In contrast, neural responses to the external auditory 

event are time-locked to the stimulus onset and will be summed with increasing number of sweeps. That 

is, in order to successfully identify an FFR, a certain number of stimulus presentations and recording 

sweeps will be needed to reduce the background noise to an extent such that the FFR is distinguishable 

from the background noise. Although it is almost impossible to pre-determine an exact number of sweeps 

for a given population, a reasonable range can be estimated using a post hoc analysis of recordings 

containing a large number of sweeps. Effects of the number of sweeps can then be assessed by including 

progressively higher numbers of sweeps into the average (e.g., comparing sub-averages of the first 500, 

1000, 1500, 2000 and up to 8000 sweeps).  

 

For conventional auditory evoked potentials such as the auditory brainstem response (ABR) to click 

stimuli, it has been reported that the SNR changes according to the following formula (Hood, 1998; Hall, 

2006; Thornton, 2007).  
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That is, SNR changes with the square root of the number of sweeps. SNR will increase quickly in the 

beginning of a recording and reach an asymptotic value when more sweeps are included. Also, according 

to this formula, SNR is affected by at least three factors. The first factor is the response amplitude, which 

is inherent to the integrity and excitability of the auditory system for each individual. Although the 

amplitude of a response varies between individuals (due to the properties of the individual’s volume 

conduction and the location and orientation of the ABR sources relative to the electrode montage), 



response amplitude usually does not vary dramatically within an individual and is primarily affected by 

the intensity of the stimulus token. The second factor is the amplitude of noise, which can be 

physiological (e.g., ongoing brain activities that are not synchronized to the stimulus) or non-

physiological (e.g., ambient noise) in origin. Note that, in deriving the SNR, the units for measuring the 

response and noise amplitudes are the same. The third factor is number of sweeps. As stated above, noise 

amplitude in the average declines with an increasing number of sweeps and, consequently, SNR is 

improved.  

 

Although the square-root relationship between the amplitude of noise and the number of sweeps has been 

well established (Don & Elberling, 1994, 1996), in the presence of an evoked potential, response trends of 

a specific aspect of the evoked potential will likely deviate from the original square-root relationship, 

which is solely determined by the decrement of noise. Several mathematical models have been used to 

capture the response trends of various neural activities in the auditory system (Miller et al., 2006; Nourski 

et al., 2005). For example, Don and Elberling (1996) reported the usefulness of employing quantitative 

measures of ABR peak amplitude and residual background noise in the decision to stop averaging. 

Nourski and colleagues (2005) also successfully used an exponential model to describe the time course of 

the effects of acoustic noise on electrically evoked auditory compound action potentials in guinea pigs’ 

auditory nerves. For responses elicited by the sustained portion of a stimulus, such as the FFR to voice 

pitch, it has not yet been determined if the same formula would provide a good fit to the FFR trends.   

 

Quantitative analyses and objective indices of the FFR to voice pitch 

There are two general approaches that can be used to quantify the repeating pattern (i.e., periodicity) of a 

sampled signal. One is to measure the strength of the overall periodicity of a sampled signal in the 

temporal domain by using an autocorrelation algorithm (Krishnan et al., 2005; Wong et al., 2007; Jeng et 

al., 2011). Briefly, this method employs an autocorrelation function that multiplies a sampled signal with 

a time-shifted copy of itself. Strength of the overall periodicity of the sampled signal is then determined 



by calculating the peak-to-trough amplitude within a certain range of time shifts in the normalized 

autocorrelation output. The other approach is to examine how accurately the spectral energy of a response 

follows the fundamental frequency (f0) contour of the stimulus by using a narrow-band spectrogram 

algorithm (Russo et al., 2008; Song et al., 2008; Jeng et al., 2011). Briefly, this algorithm analyzes the 

spectral components of an incoming signal by using a sliding-window technique. In this study, we used a 

window size of 50 ms and a step size of 1 ms when plotting the narrow-band spectrogram of a sampled 

signal. For each time bin (i.e., each windowed segment of the sampled signal), this algorithm searches for 

the frequency that contains the largest spectral density in a pre-defined frequency range. An f0 contour of 

the sampled signal was then constructed by concatenating the fundamental frequencies estimated from 

each of the time bins. When an FFR is present, spectral components of a recording that are in close 

proximity to the f0 contour of the stimulus would have relatively larger and distinguishable spectral 

energy than the frequency components that are further from the f0 contour of the stimulus. Thus, small 

spectral energies in the frequency range around the f0 contour of the stimulus token could be 

quantitatively analyzed.  

 

To better quantify the response trends of the FFR to voice pitch from the time and frequency domains, 

both pitch-extraction algorithms were used. Specifically, five objective indices: Frequency Error, Slope 

Error, Tracking Accuracy, Pitch Strength and RMS (root-mean-square) Ratio were included (Krishnan et 

al., 2005; Russo et al., 2008; Skoe & Kraus, 2010; Song et al., 2009; Wong et al., 2007) to represent 

different aspects of pitch processing in the human brainstem. The first index, Frequency Error, represents 

a measure of the accuracy of pitch-encoding during stimulus presentation. Slope Error indicates the 

brainstem’s ability to preserve the overall shape of the pitch contour of the stimulus signal. Tracking 

Accuracy reflects the overall faithfulness of pitch tracking between the stimulus and response f0 contours. 

Pitch Strength denotes the robustness of the phase-locking phenomenon in the human brainstem. RMS 

Ratio represents the dB relationship of the RMS amplitude of a response to that of noise. 

 



MATERIALS AND METHODS 

Experimental protocols and procedures used in this study were approved by the China Medical University 

Hospital (Taichung, Taiwan) Institutional Review Board. All recordings were obtained in an acoustically-

treated chamber in the Auditory Electrophysiology Laboratory at China Medical University Hospital.  

 

Participants  

Twenty-three adult participants (16 males; mean ± S.D. = 24.7 ± 2.1 years) with hearing sensitivity ≤ 20 

dB HL at octave frequencies from 125 to 8000 Hz were recruited. All participants were native speakers of 

Mandarin Chinese.  

 

Stimulus parameters and calibration 

A monosyllabic Mandarin Chinese speech token /yi/, meaning aunt, with a rising pitch (117-166 Hz) was 

utilized to evoke the FFR. This stimulus token had a duration of 250 ms with 10-ms rise and fall times of 

the stimulus envelope. Stimulus presentation and trigger synchronization was controlled by custom-made 

software written in LabView 8.0 (National Instruments, Austin, TX). For each recording, the stimulus 

token was presented up to about 8800 times with a silent interval of 45 ms between the offset of a 

stimulus token and the onset of the next. All stimulus tokens were routed through a 12-bit digital-to-

analog converter (National Instruments, DAQ 6062E) and low-pass filtered through a Wavetek Filter 

model 442 (cutoff frequency: 20 kHz, slope 24 dB/octave). The stimulus tokens were delivered 

monaurally via a MAICO MA42 audiometer to an electromagnetically-shielded insert earphone (Bio-

logic, TIP300). Three blocks of stimulus tokens at 30, 45 and 60 dB nHL were presented in a random 

order across participants. Because each block of stimulus presentations was about 44 minutes (295 ms x 

8800 sweeps ≈ 44 minutes), stimulus intensities greater than 60 dB nHL (approximately 75.6 dB SPL in a 

2 c.c. coupler) were excluded to avoid possible damage to the listener’s hearing such as temporary or 

permanent threshold shifts.  



 

Stimulus intensity of the acoustic token was calibrated using both biological (i.e., dB nHL) and electro-

acoustical (i.e., dB SPL) methods. The dB nHL was based on the mean behavioral threshold of a group of 

eight normal-hearing adults (3 males; mean ± S.D. = 24.9 ± 2.4 years). The modified Hughson-Westlake 

procedure (Carhart & Jerger, 1959) was used to determine the behavioral threshold for the stimulus token. 

Blocks of the stimuli were presented to each participant through the electromagnetically-shielded insert 

earphone with a step size of 5 dB at supra-threshold levels and 2 dB at near threshold levels. Each 

presentation block consisted of three stimulus tokens. Within each presentation block, adjacent stimulus 

tokens were separated by silent intervals of 45 ms (i.e., the same silent interval used in the FFR 

recordings). The dB SPL of the stimulus token was also measured using a Larson & Davis system 824 

model sound level meter (dB flat weighting) bridged to a 2 c.c. coupler (GRAS RA0038). By using the 

same stimulus token and silent interval, the highest stimulus intensity (i.e., 60 dB nHL) used in this study 

corresponded to 75.6 dB SPL in the 2 c.c. coupler.  

 

Recording parameters 

Three gold-plated recording electrodes were applied to each participant at the high forehead along the 

midline below the hairline (noninverting), right mastoid (inverting), and left mastoid (ground). All 

electrode impedances were under 3 kOhm at 10 Hz. Recordings were amplified by an Intelligent Hearing 

Systems OptiAmp with a gain of 10000. This amplifier also provided an online analog bandpass filter of 

10-3000 Hz at 6 dB/octave. Continuous recordings were then digitized at a rate of 20000 samples/s using 

a 12-bit analog-to-digital converter (National Instruments, DAQ 6062E). Continuous recordings were 

obtained using custom-written LabView software and stored on a computer for offline analysis. 

 

To enhance the detectability and visibility of the FFR and minimize the contamination of stimulus 

artifact, a few procedural steps and precautions were exercised in this study. First, all waveforms were 



recorded in an acoustically-attenuated and electrically-shielded sound booth to reduce environmental 

noise. Second, the insert earphone and the stimulation cable were electromagnetically shielded to 

minimize electromagnetic leakage from the stimulation equipment to the recording cables. Finally, to 

better visualize the FFR on a spectrogram, a high-order bandpass filter was used to “extract” the spectral 

energy within the frequency region of interest (e.g., 100 to 1500 Hz). One drawback of applying a high-

order filter is that it introduces a noticeable filter delay in the output. To accommodate the 250 data-point 

filter delay (i.e., 12.5-msec. delay with a recording sampling rate of 20000 samples/sec.) created by the 

500-pole digital filter on the continuous data, all recordings were started at least 3 sec. before the first 

stimulus token was delivered to the listener’s ear. The filter delay was corrected in the data analysis of all 

recordings. It was also important to note that a control condition (i.e., sound tube plugged and removed 

from the listener’s ear canal) had been used in our previous studies (e.g., Jeng et al., 2010, 2011) and 

demonstrated that the recordings were physiological in nature. For this current study, the same stimulation 

and recording techniques were used; however, we were unable to include the control condition due to 

time constraints.  

 

Data analysis 

All data were analyzed using MatLab 2008a (MathWorks, Natick, MA). To better isolate spectral 

energies at the f0 contours, continuous recordings were digitally bandpass filtered using a brick-wall, 

linear-phase finite-impulse-response filter (cutoff frequency 100-1500 Hz, 500th order). Filtered 

recordings were segmented into sweeps of 295 ms in length. An individual sweep was rejected if it 

contained voltages greater than ±25 µV. During each recording condition, the rejection rate was less than 

10% and a total of 8000 accepted sweeps were included for averaging. Recordings obtained from a 

distinct number of sweeps, starting from the first sweep, were averaged. The numbers of sweeps used in 

averaging were 1, 10, 20, 50, 100, 200, 500, 800, 1000, 1200, 1400, 1600, 1800, 2000, 2200, 2400, 2600, 

2800, 3000, 3500, 4000, 5000, 6000, 7000 and 8000. Each averaged waveform was subject to the 

following analytical procedures. First, cross-correlation of the stimulus and an averaged waveform was 



performed to identify the time shift that produced the maximum cross-correlation value within the 3-10 

ms response window (Galbraith et al., 2001; Russo, et al., 2005). Second, a 250-ms segment of the 

recording was extracted from the averaged waveform starting from the time shift that produced the 

maximum cross-correlation value. Finally, the same analytical procedures were applied to all other 

averaged waveforms. Data obtained from each stimulus level were analyzed separately. 

 

Extraction of f0 contours 

A narrow-band spectrogram was used to extract the pitch information of a sampled signal. All averaged 

recordings were first segmented using a 50-ms Hanning window with a step size of 1 ms which resulted 

in a total of 201 time bins to be analyzed. Each time bin was zero-padded to 1 s and provided a 1-Hz 

resolution in the spectrogram. For each time bin, the frequency that corresponded to the maximal peak of 

the spectral density was searched within a pre-defined frequency range and determined as the f0 estimate 

for that time bin. This procedure was repeated for all time bins. All f0 estimates were concatenated to 

constitute the f0 contour of an averaged recording. A pre-defined frequency range (107-176 Hz) was used 

to fit with the specific pitch contour of the stimulus and allow a buffer of 10 Hz for error measurements. 

The same technique was applied to the stimulus token and averaged recordings.  

 

Objective indices 

Five objective measures (Frequency Error, Slope Error, Tracking Accuracy, Pitch Strength and RMS 

Ratio) were used to quantify the pitch-tracking accuracy and phase-locking magnitude of the responses. 

These objective indices are described as follows. (1) Frequency Error represented the accuracy of pitch-

encoding during stimulus presentation. This index was computed as the absolute Euclidian distance 

between the stimulus and recording f0 contours for each time bin and averaged across the 201 time bins. 

(2) Slope Error indicated the degree to which the shapes of the pitch contours were preserved in the 

brainstem, and was derived by subtracting the slope of the regression line of the stimulus f0 contour from 

the regression slope of the recording f0 contour. The estimated slope of the stimulus token used in this 



study was 275 Hz/s. (3) Tracking Accuracy denoted the overall faithfulness of pitch tracking between the 

stimulus and response f0 contours and was calculated by finding the linear regression ‘r’ value on a 

recording-versus-stimulus f0 contours plot. (4) Pitch Strength measured the robustness of phase-locking 

in the brainstem and was derived from an autocorrelation function that allowed the measurement of 

overall periodicity of a sampled signal. Specifically, each recording was multiplied by a copy of itself 

with increasing time shifts. For each time shift, an autocorrelation value was calculated and expressed 

between -1 and 1. f0 was calculated using the output of the autocorrelation function by finding the time 

shift that yielded the maximum autocorrelation value and taking the inverse of that time shift (i.e., 

periodicity = 1/frequency; e.g., 5 ms = 1/200 Hz). Pitch Strength was calculated using the autocorrelation 

function by finding the peak-to-trough amplitude starting from the maximum positive peak (within the 5-

10 ms time shifts) to the following negative trough in the normalized autocorrelation output. Because the 

f0 contour of the stimulus token used in this study fell within the frequency range of 100-200 Hz, the time 

shifts were limited to 5-10 ms when searching for the location of the maximum peak in the 

autocorrelation output. (5) RMS Ratio provided an estimate of the FFR amplitude relative to that of the 

ongoing neural activity not synchronized to the stimulus. FFR amplitude was calculated by finding the 

RMS amplitude of the extracted 250-ms segment of an averaged waveform. To obtain an estimate of the 

background physiological noise, waveforms were extracted from a 10-ms prestimulus interval to 

determine the amount of brainstem activities not synchronized to the stimulus. RMS Ratio was then 

calculated as the dB ratio of the FFR RMS amplitude relative to that of the noise.  

 

Exponential curve fitting on the FFR trends of pitch-encoding 

Measurements of each of the objective indices (Frequency Error, Slope Error, Tracking Accuracy, Pitch 

Strength and RMS Ratio) were analyzed as a function of number of sweeps. For Frequency Error and 

Slope Error, which had descending trends with increasing number of sweeps, the following model was 

used to describe the dependency of the FFR to voice pitch on the number of sweeps included in the 

averaging procedure.  



( ) AS
n

noise AeAnA     )( / −= − τ
,      (2) 

where A is an objective measure (i.e., Frequency Error or Slope Error) of the FFR to voice pitch; n is the 

number of sweeps included in the averaging process; Anoise represents the amplitude of noise and is 

derived from the fitted curve of the FFR trend of a specific objective index when the number of sweeps 

equals 1 (i.e., units of Anoise remain the same for each of the five objective indices); AAS represents the 

asymptotic amplitude of the response and is computed from the fitted curve of the exponential model with 

the number of sweeps being 8000; e is Euler’s number: 2.7182; τ is the “time” constant of the fitted curve 

that denotes the number of sweeps needed to reach its 63% asymptotic amplitude. Calculation and 

derivation of the 63% asymptotic amplitude is based on the mathematical principle that the exponential 

function, with a base of e, is identical to its derivative (Courant & Robbins, 1996; Goldstein et al., 2009). 

For example, when n equals τ, an ascending exponential function with zero noise will be A(n) = AAS(1-e-

n/�) = AAS(1-e-1) = 0.63AAS. 

 

For Tracking Accuracy, Pitch Strength and RMS Ratio, which had ascending trends with increasing 

number of sweeps, an alternative model was used to describe the response trends of these objective 

indices. Note Anoise and AAS were exchanged in place due to the nature of an ascending exponential trend. 

( ) noise
n

AS AeAnA    - 1)( / −= − τ       (3) 

 

RESULTS 

Temporal and spectral energies of the FFR to voice pitch were visualized by plotting the averaged time 

waveforms (A) and spectrograms (B) of each recording. Figure 1 shows a typical set of the FFR time 

waveforms and spectrograms at three different stimulus intensities. Each row represents the time 

waveforms and spectrograms of a recording that were averaged by including a certain number of sweeps. 

In this example, the FFR was difficult to distinguish from the background noise with less than 1000 



sweeps for the three stimulus intensities. However, the FFR became visually identifiable when the 

number of sweeps was progressively increased up to about 8000 sweeps.  

 

Quantitative analyses of the FFR to voice pitch 

In order to quantify the FFR to voice pitch, responses were analyzed using the methods noted above. 

Figure 2 represents an example of the f0 contour of a response (left panel) and the autocorrelation output 

(right panel) of a recording obtained at 60 dB nHL. This response was obtained by including 8000 sweeps 

in the averaging process. In terms of the accuracy of pitch tracking (left panel), the f0 contour of the 

response generally followed the f0 contour of the stimulus. In terms of the strength of phase-locking, 

autocorrelation output of the same recording (right panel) demonstrated overall periodicity of the 

recording. Pitch Strength of the response was calculated from the peak-to-trough amplitude starting from 

the positive peak (within the 5-10 ms time shifts) to the following negative trough in the normalized 

autocorrelation output. The response f0 contour and autocorrelation curve seen in this figure are typical of 

those observed in the 23 participants across the three stimulus intensities.  

 

FFR trends with respect to different objective indices 

As the FFR to voice pitch contains enriched information of pitch-encoding mechanisms in the human 

brainstem, the five objective indices used in this study quantified the FFR from different perspectives. 

Figure 3 plots the mean Frequency Error (A), Slope Error (B), Tracking Accuracy (C) Pitch Strength (D) 

and RMS Ratio (E) as a function of number of sweeps.  

 

Relatively large values of Frequency Error (A) were observed when the averaging included only a 

limited number of sweeps. When the number of sweeps was increased, Frequency Error declined 

dramatically and appeared to reach a steady-state, asymptotic amplitude. At 60 dB nHL, Frequency Error 

was about 18 Hz for ≤10 sweeps, declined with increasing number of sweeps, and then reached a steady-

state of about 7 Hz at around 5000-8000 sweeps. Frequency Error at 45 and 30 dB nHL showed similar 



trends and declined from about 16 to 9 Hz and 18 to 11 Hz, respectively. Although three stimulus 

intensities showed similar values of Frequency Error at low numbers of sweeps (e.g., ≤10 sweeps), the 

Frequency Error estimates declined at different rates and reached different asymptotic amplitudes. It was 

noted that higher stimulus intensities declined faster and reached smaller asymptotic amplitudes than 

lower stimulus intensities. That is, when a sufficient number of sweeps (e.g., 8000 sweeps) was included 

in the averaging process, 60 dB nHL produced the least Frequency Error, followed by 45 and 30 dB nHL 

conditions. It should be noted that the asymptotic amplitude of the Frequency Error, even at the highest 

stimulus intensity used in this study, did not reach a mean value of zero.  

 

Slope Error (B) showed similar trends to Frequency Error. Specifically, when the number of sweeps was 

increased from 1 to 8000 sweeps, Slope Error declined from about 310 to 190, 280 to 100 and 300 to 80 

Hz/s at 30, 45 and 60 dB nHL, respectively. High stimulus intensities produced a faster decrement and 

reached a smaller value of Slope Error than low stimulus intensities. It was also noted that Slope Error 

did not reach a mean value of zero at any of the three stimulus intensities.  

 

Tracking Accuracy (C) demonstrated an increasing trend when more sweeps were included. At 60 dB 

nHL, Tracking Accuracy was about 0.17 at ≤10 sweeps, which increased substantially with increasing 

number of sweeps and reached an asymptotic amplitude of about 0.8 at around 6000-8000 sweeps. Data 

obtained at 45 and 30 dB nHL showed similar trends, but the trends were increased at different rates and 

reached different asymptotic amplitudes. Pitch Strength (D) and RMS Ratio (E) showed similar increasing 

trends as Tracking Accuracy. To better illustrate the dependency of the FFR trends on the SNR estimates, 

means and standard deviations of the RMS amplitudes of the FFR (i.e., the 250-ms interval of the 

averaged time waveform), RMS amplitudes of the noise (i.e., the 10-ms prestimulus interval) and the 

corresponding RMS Ratios are summarized in Table 1. 

 

Exponential modeling of the FFR trends 



To better quantify the decreasing and increasing trends of pitch processing in the human brainstem as a 

function of number of sweeps, data obtained from the 23 participants were fit to either a descending or 

ascending exponential model as noted above. Figure 4 shows the exponential curves that best fit the pitch-

encoding trends of Frequency Error, Slope Error, Tracking Accuracy, Pitch Strength and RMS Ratio at 

three different stimulus intensities. Equations and goodness of fit (r2) are displayed in each panel. The 

exponential model used in this study provided a good fit to the pitch-encoding trends in the human 

brainstem, with a mean r2 value of 0.89 and standard deviation of 0.10, across the five objective indices 

and three stimulus intensities. For clarity, dotted and dashed lines were used in each panel to indicate the 

estimates of the noise amplitude (Anoise) and response asymptotic amplitude (AAS) of the fitted curve, 

respectively. The Anoise and AAS values were calculated from the fitted curves of the FFR trends when the 

numbers of sweeps were 1 and 8000, respectively.   

 

Frequency Error (Figure 4A) of the fitted curves had asymptotic amplitudes (i.e., AAS) of 10.78, 7.23 and 

6.09 Hz at 30, 45 and 60 dB nHL, respectively. The fact that Frequency Error reached a smaller 

asymptotic value at higher stimulus intensities indicated the dependency of the Frequency Error 

measurement on stimulus intensities. Estimates of the noise amplitudes (i.e., Anoise) of the fitted curves for 

Frequency Error were 16.02, 14.31 and 16.37 Hz for 30, 45 and 60 dB nHL, respectively. The 

unfavorable noise amplitudes of Frequency Error reflected the poor signal-to-noise ratios when only a 

limited number of sweeps was included in the averaging procedures. In addition to the AAS and Anoise 

estimates, another important parameter in our exponential model was the τ value which indicated the 

number of sweeps needed to reach its 63% asymptotic amplitude of the response. The τ values of the 

fitted curves for Frequency Error were 3940, 3110 and 1578 sweeps at 30, 45 and 60 dB nHL, 

respectively. It is important to note that the τ values decreased with increasing stimulus intensity. This 

finding indicated that higher stimulus intensities (e.g., 60 dB nHL) produced a faster improvement in 

pitch-tracking acuity (i.e., less Frequency Error) in the human brainstem than lower stimulus intensities 

(e.g., 30 dB nHL).  



 

Slope Error (Figure 4B) showed similar trends to Frequency Error. The asymptotic amplitudes were 

182.66, 101.91 and 82.67 Hz/s at 30, 45 and 60 dB nHL, respectively. The asymptotic amplitude of Slope 

Error decreased with increasing stimulus intensity. This finding indicated a better preservation of the 

shape of the stimulus f0 contour at higher stimulus intensities (e.g., 60 dB nHL). Noise amplitudes of the 

fitted curves for Slope Error were 263.45, 243.15 and 271.53 Hz/s at 30, 45 and 60 dB nHL, respectively. 

The unfavorable Slope Errors reflected the poor SNRs when only a limited number of sweeps were 

included. The τ values of the fitted curves for Slope Error were 3310 sweeps at 30 dB nHL, decreased to 

2030 sweeps at 45 dB nHL and 1932 sweeps at 60 dB nHL. Note that higher stimulus intensities 

produced a faster improvement (i.e., less Slope Error) in preserving the shape of the stimulus f0 contour 

in the FFR than lower stimulus intensities.  

 

Tracking Accuracy (Figure 4C) of the fitted curves demonstrated an ascending trend with increasing 

number of sweeps. Tracking Accuracy of the fitted curves had asymptotic amplitudes of 0.41, 0.72 and 

0.75 at 30, 45 and 60 dB nHL, respectively. Noise amplitudes of the fitted curve for Tracking Accuracy 

were 0.24, 0.30 and 0.15 at 30, 45 and 60 dB nHL, respectively. The τ values of the fitted curves were 

5527 sweeps at 30 dB nHL, decreased to 2633 sweeps at 45 and 1299 sweeps at 60 dB nHL. Higher 

stimulus intensities produced better pitch-tracking accuracy (i.e., larger asymptotic amplitudes) at a faster 

rate (i.e., smaller τ values) than lower stimulus intensities. 

 

Pitch Strength (Figure 4D) showed similar trends as those observed in Tracking Accuracy. The 

asymptotic amplitudes of the fitted curve for Pitch Strength were 0.54, 0.54 and 0.63 at 30, 45 and 60 dB 

nHL, respectively. Noise amplitudes of the fitted curves were 0.20, 0.27 and 0.16 at 30, 45 and 60 dB 

nHL, respectively. The τ values of the fitted curves for Pitch Strength were 9634 sweeps at 30 dB nHL, 

which decreased to 3737 sweeps at 45 dB nHL and 1767 sweeps at 60 dB nHL. Note that higher stimulus 

intensities produced a larger enhancement (i.e., larger asymptotic amplitudes) of neural phase-locking in 



the human brainstem at a faster rate (i.e., smaller τ values) than lower stimulus intensities. RMS Ratio 

(Figure 4E) showed similar trends as those observed in Tracking Accuracy and Pitch Strength. 

 

Dependence of the FFR trends on stimulus intensity and objective index 

To better illustrate the dependence of the FFR on stimulus intensity and the choice of objective indices, 

the asymptotic amplitude (AAS), noise amplitude (Anoise) and τ values of the fitted curves are summarized 

in Table 2. As reflected from the τ values of the fitted exponential model, response trends of pitch-

encoding in the human brainstem were dependent on both the stimulus intensity and the choice of 

objective indices. Specifically, higher stimulus intensities (e.g., 60 dB nHL) demonstrated a faster 

improvement in SNR (i.e., smaller τ values) with increasing number of sweeps than lower stimulus 

intensities (e.g., 30 dB nHL). The five objective indices were all feasible and effective in quantifying the 

FFR trends. Note Tracking Accuracy had the smallest τ value (1229 sweeps at 60 dB nHL) across the five 

objective indices and the three stimulus intensities.  

 

DISCUSSION 

 

As the FFR has shown its potential in basic research and clinical applications, parameters that can be used 

to determine the number of sweeps (i.e., amount of time) needed to obtain an FFR become important 

factors to examine. This study collected up to 8000 accepted sweeps and examined the response trends of 

the FFR to voice pitch in normal-hearing adults. Results demonstrated that the exponential model used in 

this study provides a good fit (r2 value: mean ± S.D. = 0.89 ± 0.10, median = 0.93, range = 0.69-0.98) to 

the FFR trends. This finding supports the use of an exponential model to mathematically analyze the FFR 

trends.  

 

Exponential modeling of the FFR trends of pitch-encoding in the human brainstem 



It has been reported that amplitude of noise decreases with the square root of the number of sweeps (Hood 

1998; Hall, 2006; Thornton, 2007). However, when a response is present in addition to noise, response 

trends with increasing number of sweeps may be further influenced by the physiological properties of the 

response. That is, in the presence of a specific neural potential, trends of the response will likely deviate 

from the original square-root relationship that is solely determined by the decrement of noise. Several 

exponential models have also been reported to track the time course of various neural activities in the 

auditory system (Miller et al., 2006; Nourski et al., 2005). For example, Nourski and colleagues (2005) 

successfully used an exponential model to describe the time course of the effects of acoustic noise on 

electrically evoked auditory compound action potentials in the guinea pig’s auditory nerve. Our study 

expands the use of the exponential model to track the changes of the FFR to voice pitch with increasing 

number of sweeps in normal-hearing adults. Additionally, the model used in this study provides a good fit 

of the FFR trends across the five objective indices and three stimulus intensities. This finding supports the 

use of an exponential model to delineate the response trend of pitch-encoding in the human brainstem. 

One important advantage of utilizing an exponential model to describe the FFR trends is that it allows an 

objective method to mathematically analyze and compare the amplitude of such a response across 

different testing conditions and populations of interest. It is also important to note that, although each of 

the objective indices represents a different aspect of pitch processing in the human brainstem, they may 

not be totally independent from each other. For example, averaged recordings with lower values of 

Frequency Error will likely have lower Slope Error and higher Tracking Accuracy.  

 

This modeling approach also improves the consistency and proficiency in selecting a pre-determined 

threshold criterion (or a combination of several criteria) for recording FFRs. It should be noted that a 

recording can be terminated for different reasons. In developing a statistical model for ABR, Don and 

Elberling (1996) proposed that a recording could be terminated based on several conditions: (1) when 

averaging has reached a point where it is possible to visually identify a “normal” response from the 

background noise, (2) when the targeted neural response with a given amplitude has been established, (3) 



when the afforded time has been exhausted before sufficient averaging occurs, (4) when a given residual 

averaged background noise level has been reached, and (5) when a given criterion of a quantitative 

detector has been achieved. Although a statistical model has not been used in the present study, successful 

results of the exponential curve fitting to the FFR trends permits the use of a normal quantitative analysis. 

The absence of an FFR would be apparent in conditions where the criterion for residual averaged 

background noise is met or when afforded test time is exhausted. It is also important to note that the FFR 

trends of the five objective indices may change if a different set of experimental parameters are used. 

However, one would not need to conduct their own modeling to evaluate FFR trends but could achieve 

the same results if FFR and noise amplitudes are comparable to the numbers listed in Table 2.  

 

One interesting finding derived from the exponential model is that the asymptotic amplitude of the 

response (i.e., AAS) does not reach a zero mean at any of the three stimulus intensities. For example, the 

AAS value of Frequency Error is largest at 30 dB nHL and smallest at 60 dB nHL. The AAS values of Slope 

Error show a similar trend to Frequency Error. (i.e., do not reach a zero mean at the three stimulus 

intensities). This finding indicates that at higher stimulus intensities (e.g., 60 dB nHL), neural responses 

are more synchronized to the stimulus frequency when compared to lower stimulus intensities (e.g., 30 

dB nHL). This phenomenon is also observed in the AAS values of Tracking Accuracy and Pitch Strength. 

Although the non-zero AAS values of Frequency Error, Slope Error, Tracking Accuracy and Pitch 

Strength at 60 dB nHL can be explained by the residual errors of the less synchronized neural responses 

in the brainstem, it is possible that higher stimulus intensities (e.g., 80 dB nHL) will produce AAS values 

that are very close or equal to zero. If so, the non-zero AAS values observed in this study simply represent 

the FFR dependence on stimulus intensity. It is also possible that, even at stimulus intensities higher than 

60 dB nHL, the AAS values still do not reach a zero mean. In this case, the non-zero AAS values would 

further represent the upper limits of the pitch-tracking acuity and phasing-locking phenomenon in the 

human brainstem. 

 



Effects of number of sweeps and stimulus intensity 

When recording an auditory evoked potential, it is necessary to identify the physiological response of 

small-amplitude from the relatively large-amplitude background noise. While the amplitude of a response 

can be enhanced by a careful design of experiments, amplitude of background noise can be reduced 

through a variety of techniques. The most efficient way of reducing noise is likely to eliminate the noise 

from its source, which can be physiological (e.g., muscle artifact) or non-physiological (e.g., 

environmental noise and stimulation artifact) in nature. For example, muscle artifact can be reduced by 

making sure that the participant is relaxed and receives appropriate head support during experiments. 

Environmental noise can be minimized by conducting experiments in an acoustically-isolated and 

electrically-treated chamber. Stimulus artifact can be minimized through careful selection of the 

stimulation and recording parameters as well as the use of an electromagnetically-shielded earphone. 

After the various sources of background noise have been eliminated, SNR of a recording can be further 

improved by including more sweeps in the averaging process (Hood, 1998; Hall, 2006; Thornton, 2007). 

In order to determine the appropriate range of number of sweeps needed to reduce the noise to an 

acceptable level, this study used an exponential model to examine the response trends of the FFR to voice 

pitch. It is found that, given the proviso of equal background noise levels, the number of sweeps needed 

to stop a recording is dependent on the stimulus intensity and the choice of objective indices. For 

example, if FFR recordings are performed at 60 dB nHL and Tracking Accuracy is used to signal the 

presence of a response, the exponential model provides the specific AAS, Anoise and τ values that can be 

used to compute the number of sweeps needed to complete a recording. For example, if 75% of the 

response asymptotic value is desired, approximately (1.39 τ = 1.39 x 1229 = 1708) sweeps will be needed. 

If 90% or more is satisfactory, approximately (2.30 τ = 2.30 x 1229 = 2827) sweeps will be required. 

Similarly, if anywhere between 75-90% of the asymptotic value is set as the threshold criterion, roughly 

1700 to 2800 sweeps will be needed to obtain an FFR to voice pitch. This result is consistent with the 

number of sweeps that are commonly used in FFR literature (Galbraith et al., 1994, 2000, 2001; Jeng et 



al., 2010, 2011; Krishnan, 2007; Krishnan et al., 2004, 2005, 2010; Li & Jeng, 2011; Skoe & Kraus, 

2010; Song et al., 2009; Wong et al., 2007).  

 

Dependence of the FFR to voice pitch on stimulus intensity is also observed (i.e., FFR amplitude 

increases with stimulus intensity). An interesting finding observed in this study is that higher stimulus 

intensities (e.g., 60 dB nHL) produce a faster SNR improvement than lower stimulus intensities (e.g., 30 

dB nHL). This finding can be explained, at least partially, by the fact that high stimulus intensities 

produce better neural-firing efficiency and less temporal jitter in single neuron recordings in the auditory 

nerve (Miller et al., 2006; Imennov & Rubinstein, 2009) and brainstem nuclei (Keller & Takahashi, 2000; 

Voytenko & Galazyuk, 2008). Briefly, firing efficiency can be computed as a ratio of the number of 

neuronal spikes elicited and the number of times the stimulus is presented. Jitter is often considered as the 

temporal uncertainty of spike timing and can be calculated as the standard deviation of the spiking times. 

At high stimulus intensities, neurons in the brainstem will likely produce a larger number of spikes (i.e., 

greater firing efficiency) that are closely synchronized with the onset of the stimulus (i.e., less temporal 

jitter). As the scalp-recorded FFR to voice pitch requires synchronized neural responses, higher stimulus 

intensities will likely produce a “cleaner” response. Such clean responses from individual neurons in 

response to high intensities will likely build up and reveal the presence of a response more quickly than 

those obtained at low stimulus intensities. In the current study, all five objective indices showed a faster 

SNR improvement (i.e., smaller τ values) at high stimulus intensities than low stimulus intensities. This 

finding is consistent with the effect of stimulus intensity reported in FFR literature (Gardi et al., 1979; 

Krishnan & Parkinson, 2000). For example, Gardi and colleagues (1979) recorded FFRs to 10-ms tone 

bursts in normal-hearing adults and neonates at 25-65 dB nHL and found that the largest FFR amplitude 

was produced at 65 dB nHL for both the neonates and adults. Krishnan and Parkinson (2000) recorded 

FFRs to 80-ms frequency sweeps (400-600 Hz) at 65-95 dB nHL in normal-hearing adults and found that 

the largest response amplitude was produced at 95 dB nHL. Although higher stimulus intensity produces 

larger response amplitude, we limited our stimulus to ≤ 60 dB nHL (due the relatively long duration of 



stimulus presentation used in this study; e.g., 295 ms x 8000 sweeps ≈ 39 minutes) in order to avoid any 

possible damage to the listener’s hearing.  

 

Clinical Implications 

Although Mandarin tones are used to elicit FFRs in this study, the exponential model could realistically 

be applied to any complex sound with a variable pitch contour; thus, it has utility beyond a Mandarin 

speaking population and can be useful to any clinician interested in obtaining an objective measurement 

of pitch processing in the human brainstem. It is important to note that different populations (e.g., 

musicians, native speakers of tonal versus non-tonal languages, normal-hearing children and infants, 

children with specific hearing or language disorders) and stimuli with different pitch contours (e.g., a 

falling pitch rather than a rising pitch) may have different response properties in pitch processing and 

therefore exhibit FFR trends with different AAS, Anoise and τ values. Equations derived from these trends of 

a specific population can be useful in developing objective methods and experimental protocols to 

determine the presence of an FFR and to complete a recording by applying a pre-determined stopping 

criterion or a combination of them. It is anticipated that future studies focusing on examining the 

exponential trends of the FFR in a variety of populations will shed light on signal-processing mechanisms 

and neural plasticity of the human brainstem.  

 

ACKNOWLEDGMENTS 

This study was supported in part by (1) Advancing Academic-Research Career (AARC) Award from the 

American Speech-Language-Hearing Association, U.S.A., (2) Research Incentive Grant (DMR-99-048) 

from the Department of Medical Research at China Medical University Hospital, Taiwan, and (3) the 

Clinical Trial and Research Center of Excellence Funds (DOH100-TD-B-111-004) from Taiwanese 

Department of Health. Preliminary results of this study were presented at the American Auditory Society 

Annual Meeting, March 4-6, 2010. The authors thank Cheng-Han Chiu for his assistance in data 

collection. 



 

REFERENCES 
 
Carhart, R. & Jerger, J. F. 1959. Preferred method for clinical determination of pure-tone thresholds. J 
Speech Hear Disord, 24, 330-345. 
 
Chandrasekaran, B., Hornickel, J., Skoe, E., Nicol, T. & Kraus, N. 2009. Context-dependent encoding in 
the human auditory brainstem relates to hearing speech in noise: Implications for developmental dyslexia. 
Neuron, 64, 311-319. 
 
Courant, R. & Robbins, H. (eds.) 1996. What is Mathematics? An Elementary Approach to Ideas and 
Methods (2nd edition, revised by Stewart, I.). New York: Oxford University Press. 
 
Dajani, H.R., Purcell, D., Wong, W., Kunov, H. & Picton, T.W. 2005. Recording human evoked 
potentials that follow the pitch contour of a natural vowel. IEEE Trans Biomed Eng, 52, 1614-8. 
 
Don, M. & Elberling, C. 1994. Evaluating residual background noise in human auditory brainstem 
responses (ABRs). J Acoust Soc Am, 96, 2746-2757. 
 
Don, M. & Elberling, C. 1996. Use of quantitative measures of auditory brain-stem response peak 
amplitude and residual background noise in the decision to stop averaging. J Acoust Soc Am, 99, 491-499. 
 
Galbraith, G.C. 1994. Two-channel brain-stem frequency-following responses to pure tone and missing 
fundamental stimuli. Electroencephalogr Clin Neurophysiol, 92, 321-330. 
 
Galbraith, G.C., Amaya, E.M., de Rivera, J.M., Donan, N.M., Duong, M.T., et al. 2004. Brain stem 
evoked response to forward and reversed speech in humans. Neuroreport, 15, 2057-2060. 
 
Galbraith, G.C., Bagasan, B. & Sulahian, J. 2001. Brainstem frequency-following response recorded from 
one vertical and three horizontal electrode derivations. Percept Mot Skills, 92, 99-106. 
 
Galbraith, G.C., Threadgill, M.R., Hemsley, J., Salour, K., Songdej, N., et al. 2000. Putative measure of 
peripheral and brainstem frequency-following in humans. Neurosci Lett, 292, 123-127. 
 
Gardi, J., Salamy, A. & Mendelson, T. 1979 Scalp-recorded frequency-following responses in neonates. 
Audiology: Journal of Auditory Communication, 18, 494-506. 
 
Goldstein, L.J., Schneider, D.I., Lay, D.C. & Asmar, N.H. (eds.) 2009. Calculus and Its Applications 
(12th edition). New Jersey: Prentice-Hall. 
 
Hall, J.W. 2006. New Handbook of Auditory Evoked Responses. Boston, MA: Allyn and Bacon. 
 
Hood, L.J. 1998. Clinical Applications of the Auditory Brainstem Response. San Diego, CA: Singular 
Publication Group. 
 
Imennov, N.S. & Rubinstein, J.T. 2009. Stochastic population model for electrical stimulation of the 
auditory nerve. IEEE Trans Biomed Eng, 56(10), 2493-2501. 
 



Jeng, F.-C., Hu, J., Dickman, B., Lin, C.-Y., Lin, C.-D., Wang, C.-Y., Chung, H.-K. & Li, X. 2011. 
Evaluation of two algorithms for detecting human frequency-following responses to voice pitch. Int J 
Audiol, 50(1), 14-26 (DOI:10.3109/14992027.2010.515620). 
 
Jeng, F.-C., Schnabel, E.A., Dickman, B.M., Hu, J., Li, X., Lin, C.-D. & Chung, H.-K. 2010. Early 
maturation of frequency-following responses to voice pitch in infants with normal hearing. Percept Mot 
Skills, 111, 765-784. 
 
Johnson, K.L., Nicol, T., Zecker, S.G. & Kraus, N. 2008. Developmental plasticity in the human auditory 
brainstem. J Neurosci, 28(15), 4000-4007. 
 
Keller, C.H. & Takahashi, T.T. 2000. Representation of temporal features of complex sounds by the 
discharge patterns of neurons in the owl’s inferior colliculus. J Neurophysiol, 84(5), 2638-2650. 
 
Krishnan, A. 2007. Frequency-following response. In R. F. Burkard, J. J. Eggermont, M. Don (Eds.). 
Auditory Evoked Potentials: Basic Principles and Clinical Application (pp, 313-335). Philadelphia, PA: 
Lippincott Williams & Wilkins. 
 
Krishnan, A., Xu, Y., Gandour, J.T. & Cariani, P. 2004. Human frequency-following response: 
Representation of pitch contours in Chinese tones. Hear Res, 189, 1-12. 
 
Krishnan, A., Xu, Y., Gandour, J.T. & Cariani, P. 2005. Encoding of pitch in the human brainstem is 
sensitive to language experience. Cogn Brain Res, 25, 161-8. 
 
Krishnan, A., Gandour, J.T. & Bidelman, G.M. 2010. The effects of tone language experience on pitch 
processing in the brainstem. J Neurolinguist, 23, 81-95. 
 
Krishnan, A. & Parkinson, J. 2000. Human frequency-following response: representation of tonal sweeps. 
Audiol Neuro-Otol, 2000, 5, 312-321. 
 
Krishnan, A., Swaminathan, J. & Gandour, J.T. 2009. Experience-dependent enhancement of linguistic 
pitch representation in the brainstem is not specific to a speech context. J Cogn Neurosci, 21, 1092-105. 
 
Li, X. & Jeng, F.-C. 2011. Noise tolerance in human frequency-following responses to voice pitch. J 
Acoust Soc Am Express Letters, 129(1), EL21-26 (DOI:10.1121/1.3528775). 
 
Miller, C.A., Abbas, P.J., Robinson, B.K., Nourski, K.V., Zhang, F., et al. 2006. Electrical excitation of 
the acoustically sensitive auditory nerve: Single-fiber responses to electric pulse trains. J Assoc Res 
Otolaryngol, 7(3), 195-210. 
 
Musacchia, G., Sams, M., Skoe, E. & Kraus, N. 2007. Musicians have enhanced subcortical auditory and 
audiovisual processing of speech and music. Proc natl Acad Sci, 104(40), 15894-8. 
 
Nourski, K.V., Abbas, P.J., Miller, C.A., Robinson, B.K. & Jeng, F.-C. 2005. Effects of acoustic noise on 
the auditory nerve compound action potentials evoked by electric pulse trains. Hear Res, 202, 141-153. 
 
Rosenhamer, H., Lindstrom, B., & Lundborg, T. 1978. On the use of click evoked electric brainstem 
responses in audiologic diagnosis: I. The variability of the normal response. Scandinavian Audiology, 7, 
193-205. 
 



Russo, N.M., Nicol, T.G., Zecker, S.G., Hayes, E.A. & Kraus, N. 2005. Auditory training improves 
neural timing in the human brainstem. Behav Brain Res, 156, 95-103. 
 
Russo, N.M., Skoe, E., Trommer, B., Nicol, T., Zecker, S., et al. 2008. Deficient brainstem encoding of 
pitch in children with autism spectrum disorders. Clin Neurophysiol, 119(8), 1720-1731. 
 
Skoe, E. & Kraus, N. 2010. Auditory brain stem response to complex sounds: A tutorial. Ear Hear, 31, 
302-324. 
 
Song, J.H., Skoe, E., Wong, P.C.M. & Kraus, N. 2008. Plasticity in the adult human auditory brainstem 
following short-term linguistic training. J Cogn Neurosci, 20(10), 1892-1902. 
 
Strait, D.L., Kraus, N., Skoe, E. & Ashley, R. 2009. Musical experience and neural efficiency – effects of 
training on subcortical processing of vocal expressions of emotion. Eur J Neurosci, 29, 661-668. 
 
Swaminathan, J., Krishnan, A. & Gandour, J.T. 2008. Pitch encoding in speech and nonspeech contexts in 
the human auditory brainstem. Neuroreport, 19, 1163-7. 
 
Thornton, A. R. D. 2007. Instrumentation and Recording Parameters. In R. F. Burkard, J. J. Eggermont, 
M. Don (Eds.). Auditory Evoked Potentials: Basic Principles and Clinical Application (pp, 42-72). 
Philadelphia, PA: Lippincott Williams & Wilkins. 
 
Voytenko, S. V. & Galazyuk, A. V. 2008. Timing of sound-evoked potentials and spike responses in the 
inferior colliculus of awake bats. Neuroscience, 155(3), 923-936. 
 
Wong, P.C.M., Skoe, E., Russo, N.M., Dees, T. & Kraus, N. 2007. Musical experience shapes human 
brainstem encoding of linguistic pitch patterns. Nat Neurosci, 10(4), 420-422. 
 
 
FIGURE LEGENDS 

Figure 1   A typical example of the time waveforms (A) and spectrograms (B) of the frequency-following 

response to voice pitch. The three columns on the left represent the time waveforms obtained at three 

different stimulus intensities (30, 45 and 60 dB nHL), whereas the three columns on the right display the 

corresponding spectrograms at each intensity. Each row represents the time waveforms and spectrograms 

after averaging, including the number of sweeps incorporated into the average as indicated on the right. 

Numbers in parentheses indicate the amount of time (minutes: seconds) that is needed to obtain 

recordings with the associated numbers of sweeps. The vertical bar in the bottom left corner indicates the 

ordinate scale and unit of the response time waveforms; the gray scale in the bottom right corner indicates 

the scale and unit of the spectral amplitudes of the spectrograms.  

 



Figure 2   A typical example of the f0 contour (left panel) and the autocorrelation output (right panel) of 

an FFR to voice pitch that represents an average of 8000 recording sweeps at 60 dB nHL. Arrows in the 

right panel point to the positive peak and its following trough of the normalized autocorrelation output.  

 

Figure 3   FFR trends revealed by plotting the mean values of Frequency Error (A), Slope Error (B), 

Tracking Accuracy (C), Pitch Strength (D) and RMS Ratio (E) as a function of number of sweeps. 

Stimulus intensities are plotted using different symbols. Vertical error bars indicate one standard error.  

 

Figure 4   Exponential curve-fitting to the FFR trends with respect to five objective indices: Frequency 

Error (A), Slope Error (B), Tracking Accuracy (C), Pitch Strength (D) and RMS Ratio (E). The three 

columns represent data obtained at three different stimulus intensities. Data of each index were fit to an 

exponential model with descending or ascending trends (solid curves). The fitted equation, along with the 

coefficient of determination (r2), is shown in each panel. Dotted and dashed lines in each panel indicate 

the estimated amplitude of background noise (Anoise) and asymptotic amplitude of the response (AAS), 

respectively.  

 


