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Discovery of virulence factors o
f pathogenic bacteria
Hsing-Ju Wu1, Andrew H-J Wang1 and Michael P Jennings2
Discovering virulence factors of pathogenic bacteria is a key in

understanding pathogenesis and for identification of targets for

novel drugs and design of new vaccines. Comparative

genomics, transcriptomics, and proteomics have become the

popular tools in discovering the virulence factors in bacterial

pathogens, such as Neisseria meningitidis, Yersinia pestis,

Mycobacterium tuberculosis, and Staphylococcus aureus. In

addition, proteomics has been employed successfully in the

study of the mechanism of post-translationally modified

proteins of bacterial pathogens. Once the putative virulence

factors are identified by genomics and/or proteomics, their

functions and mechanisms can be further investigated by

phenotypic analyses including mutagenesis and biochemical

methods and/or structural biology. Combination of these

techniques will accelerate the developments of therapeutic

drugs and vaccines in combating bacterial diseases.
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Introduction
Discovering virulence factors is important in understand-

ing bacterial pathogenesis and their interactions with the

host, which may also serve as novel targets in drug and

vaccine development. In the pregenomic era, systematic

identification of virulence factors were typically done

either by biochemical approaches or through genetic

screens for genes expressed under in vivo conditions or

essential for survival in the host (e.g. In Vivo Expression

Technology (IVET) [1]; Signature-Tagged Mutagenesis

(STM) [2]). The development of post-genomic

approaches, including genomics, transcriptomics, and

proteomics, has accelerated the virulence factor discovery

over the past decades. Bacterial genome sequences

rapidly add candidate virulence genes to databases.

Beyond this rather static description of the cell are the
www.sciencedirect.com
dynamic ‘transcriptomic’ and ‘proteomic’ analyses, often

referred to as functional genomic studies.

In spite of many newly developed techniques, the gel-

based proteomics is still the most frequently used tech-

nique in investigation of pathogenic bacteria. Notably,

the advantage of proteomics over genomics is the capacity

of analyzing post-translational protein modifications that

may not be apparent from the analysis of nucleotide

sequence data. Post-translational protein modifications

have been demonstrated to play an important role in

virulence factors; consequently, efforts using proteomic

techniques have been devoted to resolve their contri-

bution to bacterial pathogenesis. A further key role for

proteomic approaches is the definition of the proteomes

from distinct cellular compartment, most notably the cell

surface. Once identified by proteomics, the remaining

challenge is in deciphering the precise role and function

of virulence factor mechanisms of pathogenesis and their

interactions with host cells. High-throughput structural

analyses such as X-ray crystallography and nuclear mag-

netic resonance (NMR) are keys in this respect.

In this review, we will discuss the major virulence factors

of pathogenic bacteria and the genomic, transcriptomic,

and proteomic techniques applied in the field of patho-

genic bacteria with the prime focus on proteomic

approaches taken and the virulence factors discovered.

Bacterial virulence factors
In spite of advances in treatment and prevention, bac-

terial pathogens still pose a major threat on public health

worldwide. To understand how pathogenic bacteria inter-

act with their hosts to produce clinical disease is a

fundamental issue. A key first step in this process is

the identification of novel virulence determinants that

may serve as targets for vaccine and drug development.

In essence, the ability of pathogenic bacteria to cause

disease in a susceptible host is determined by multiple

virulence factors acting individually or together at differ-

ent stages of infection. Virulence factors are often

involved in direct interactions with the host tissues or

in concealing the bacterial surface from the host’s defense

mechanisms. The virulence factors of bacterial pathogens

were discussed in an earlier review [3�]. Also, Chen et al.
[4��] created a database called virulence factor database

(VFDB) (http://www.mgc.ac.cn/VFs/).

Bacterial virulence factors can be divided into several

groups on the basis of the mechanism of virulence and

function [3�] (Figure 1 and Table 1). These are (1)
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Figure 1

The schematic diagram showing the major virulence factors of pathogenic bacteria. (A) Gram-positive and (B) Gram-negative bacteria.
membrane proteins, which play roles in adhesion, colo-

nization, and invasions, promote adherence to host cell

surfaces, are responsible for resistance to antibiotics, and

promote intercellular communication. (2) Polysaccharide

capsules that surround the bacterial cell and have anti-

phagocytic properties. (3) Secretory proteins, such as

toxin, which can modify the host cell environment and

are responsible for some host cell–bacteria interactions.

Bacterial pathogens use distinct secretion systems, most

commonly types I–IV [5] (Figure 1 and Table 1), to

transport protein toxins from their cytoplasm into the

host or extracellular matrix [6]. Autotransporters (ATs)

are virulence proteins translocated by a variety of patho-

genic Gram-negative bacteria across the cell envelope to

the cell surface or extracellular environment. ATs com-

prise a family of proteins collectively secreted by the type

V pathway [7]. The structure and proposed mechanism of

ATs have been reviewed by Dautin and Bernstein [8��].
(4) Cell wall and outer membrane components, such as

lipopolysaccharide (LPS or endotoxin) and lipoteichoic

acids. Gram-positive bacteria are naturally surrounded by

a thick cell wall that has a low permeability to the

surrounding environment, while in Gram-negative bac-

teria the major outer membrane glycolipid, LPS, can

protect against complement-mediated lysis. LPS acti-

vates the host complement pathway and is a potent
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inducer of inflammation [3�]. (5) Other virulence factors,

such as biofilm forming proteins and siderophores

(Table 1). Some bacteria form biofilm, such as Pseudomo-
nas aeruginosa, Mycobacterium, Streptococcus pneumoniae,
and Staphylococcus aureus [9]. Biofilm formation confers

a selective advantage for persistence under environmen-

tal conditions and for resistance to antimicrobial agents

and also facilitates colonization in the host by the bacteria.

In addition, some bacterial virulence factors act as mimics

of mammalian proteins to subvert normal host cell pro-

cesses. Newman et al. [10�] identified a novel virulence

factor from Salmonella enterica serovar Enteritidis, TlpA

(TIR-like protein A), which modulates host defense

mechanisms.

Genomic and transcriptomic strategies for
virulence factor discovery
The continuing reports of complete genome sequences

for a variety of bacteria have fuelled the rapid develop-

ments in microbial genomics. In 2005, Fraser and Rap-

puoli [11�] provided a comprehensive list of the microbial

genome published. Since then, this list has increased by

more than 300 new genome sequences, including at least

one strain of every major human pathogen (http://www.ti-

gr.org/tigr-scripts/CMR2/CMRHomePage.spl and http://

www.genomesonline.org/). The genomic techniques
www.sciencedirect.com
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Table 1

The classification of the virulence factors of pathogenic bacteria including newly identified virulence factors

Classification Subclassification Examples Reference

1. Membrane

proteins

Adhesion Pilus-associated proteins: microbial surface cell recognition

adhesion matrix molecules (MSCRAMMs), for example,

Cpa, PrtF1, and PrtF2 of S. pyogenes, FnBPA of S. aureus

[13,21�]

Pla and pH 6 fimbriae antigen (PsaA) of Y. pestis [3�]

Fimbrial adhesins (type I, P and S/F1C) of

uropathogenic E. coli

[16�]

LraI family of proteins of S. pyogenes and

S. pneumoniae

[28,30�]

PsaA of S. pneumoniae, ScaA of S. gordonii,

SsaB from S. sanguis and FimA of S. parasanguis

[33–36]

Invasion Hyaluronidase, lecithinase, and phospholipase

of Clostridium and Gram-positive cocci

[3�]

Colonization Type IV pilus of N. gonorrhoeae, N. menigitidis,

V. cholerae, P. aeruginosa and entero-pathogenic

strains of E. coli

[3�,47�]

Urease of H. pylori [27]

Surface

components

Spa (surface protein A) of S. aureus [17�]

Surface protein A (SpsA), pneumococcal

surface protein A (PspA), choline-binding

protein A (CbpA), LytA amidase and

pneumococcal surface antigen

A (PsaA) of S. pneumoniae

[3�]

LipL32, LipL21 and LipL41

of Leptospira spp.

[22]

Spy0416 of Group A Streptococcus [29]

VI antigen of Salmonella typhi [3�]

Outer membrane

proteins

YaeT of E. coli [50�]

FhaC of B. pertussis [51�]

2. Capsule poly-g-D-glutamic acid of B. anthracis [3�]

F1 capsule antigen of Y. pestis [3�]

3. Secretory proteins Immune response

inhibitors

TlpA of S. enterica serovar Enteritidis [10�]

AvrA of S. enterica serovar Typhimurium [26]

YopJ of Yersinia [3�]

Protein kinase G (PknG) and phosphatase (MptpB)

of M. tuberculosis

[52]

SSL7 of S. aureus [53�]

Toxins Exotoxins: for example, [3�,16�,

21�,25,29](1) Ymt of Y. pestis;

(2) Lethal toxin (zinc metalloprotease,

Npr599 and InhA) of B. anthracis;

(3) Protective antigen (PA) and

edema toxin of B. anthracis;

(4) a-Toxin of S. aureus;

(5) a-Hemolysin (Hly) of uropathogenic E. coli;

(6) Exotoxin A of P. aeruginosa;

(7) Diphtheria exotoxin (DT) of

Corynebacterium diptheriae;

(8) Vacoulating toxin of H. pylori;

(9) Superantigens of S. pyogenes and S. aureus

Transport of

toxins

Type I: for example, haermolysin of E. coli [5,7,15�]

Type II: for example,

(1) Pseudopilin XcpT of

Pseudomonas aeruginosa;

(2) The Tad system

Type III: for example,

(1) Yop of Y. pestis;

(2) SptP, SgD/SopB and PrgI of S. typhimurium;

(3) BsaL of B. peudomallei;

(4) MxiH and Ipa of S. flexneri

Type V: Autotransporter, for example,

(1) AusI of N. meningitidis;

(2) YapA, C, E-H and K-N of Y. pestis

4. Cell wall and outer

membrane components

Peptidoglycan, LPS or endotoxin or teichoic acid [3�]

www.sciencedirect.com Current Opinion in Chemical Biology 2008, 12:93–101
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Table 1 (Continued )

Classification Subclassification Examples Reference

5. Others Biofilm a-Acetolactate decarboxylase (AlsD) of S. aureus [17�]

acetolactate synthase of S. aureus [17�]

Iron acquisition Siderophore receptor, for example, FrpB, LbpA/B of N. meningitidis [3�]

Siderophore, for example, (1) Ybt system in Y. pestis; [16�,26]

(2) Aerobactin, enterobactin, IroN and yersiniabactin of urogenic E. coli;

(3) Enterochelin of Salmonella

ABC transport system, for example, YfeABCDE of Y. pestis [3�]

PhoP/PhoQ

two-component

system

Y. pestis [3�]
have been widely applied in many pathogenic bacteria

[12��], such as Streptococcus pyogenes [13] and Mycobacterium
[14]. Genome sequencing has led to the development of

other ‘high-throughput’ approaches to defining essenti-

ality of genes on the genomic scale. A key example is a

process called ‘reverse vaccinology’ in which in silico
identification of candidate outer membrane proteins is

followed by individual analysis to assess its suitability as a

vaccine antigen. The first example of this approach was

reported in serogroup B Neisseria meningitidis [11�]. Yen

et al. applied in silico screening of the Yersinia pestis KIM

genome, which led to the identification of 10 putative

ATs and reported their possible roles in the Y. pestis
pathogenesis [15�] (Table S1).

Comparative genomics is a popular tool to identify viru-

lence factors and genes involved in environmental per-

sistence of pathogens. The goal is to correlate those

differences to biological function and to gain insight into

selective evolutionary pressures and patterns of gene

transfer or loss, particularly within the context of viru-

lence in pathogenic species. Comparisons can be per-

formed either with genome sequence or by using

microarray-based methods. Ribeiro-Guimaraes and Pas-

solani’s study [14] is a good example (Table S1). They

compared the protease-coding genes present in the gen-

ome of four species of Mycobacterium and identified 38

well-conserved proteases that are probably essential for

pathogenesis [14]. Similarly, Lloyd et al. [16�] utilized

comparative genomic hybridization (CGH) analysis on

investigating the virulence factors of uropathogenic

Escherichia coli (UPEC) (Table S1). They were able to

conclusively identify 131 genes that were exclusively

found in UPEC relative to commensal and fecal isolates.

However, half of these genes are annotated as hypothe-

tical or have little functional characterization. Thus,

improving the genome annotation and more functional

and structural biology studies for characterizing these

hypothetical proteins are needed.

Comparison of transcriptomes has been applied in the

bacterial pathogen, Staphylococcus aureus [17�] (Table S1).

Cassat et al. [17�] compared the S. aureus clinical isolate

UAMS-1 with the prototype laboratory strain RN6390 in
Current Opinion in Chemical Biology 2008, 12:93–101
order to exploit the genes involved in the biofilm for-

mation and virulence (Table 1). The overall profile in

RN6390 had the relatively high expression level of genes

encoding exotoxins and low expression level of genes

encoding surface protein. Conversely, UAMS-1 had the

opposite profile [17�]. In this sense, the capacity to

efficiently bind host proteins makes an important contri-

bution to staphylococcal infection, and that exotoxin

production may be less important. However, they have

focused their effort on UAMS-1 and there was a con-

siderable variability among clinical isolates; therefore,

there is a need to extend analyses to other staphylococcal

clinical strains.

Proteomic strategies for virulence factor
discovery
Compared with genomics and transcriptomics, proteo-

mics has the advantage of defining proteins that are

differentially expressed, not just purely transcriptional

regulation. Also, it can define proteins that are differen-

tially located or secreted to outside of the cell (i.e. to the

media or host cell), namely, the surfaceome. In many

cases, genomics can predict the proteins that fall into

these classes, but proteomics always shows some that are

not predicted. Moreover, only proteomics can define

proteins that are post-translationally modified. The appli-

cation of proteomics in pathogenic bacteria on some

particular pathogens, such as Chlamydia [18], S. aureus
[19], and Porphyromonas gingivalis [20] has been reviewed

recently. Therefore, this review will only discuss pro-

gresses in the past two years.

Two-dimensional gel electrophoresis and mass spectrom-

etry (2-DE-MS) have been used extensively to charac-

terize and compare proteomes of pathogenic bacteria.

Virulence factors are largely membrane, surface, cell wall,

or secreted proteins. Therefore, the general approach

employs the separation of membrane and cell wall frac-

tions from the cytoplasmic fraction before identification

of proteins by 2-DE (Tables S2 and S3). Gatlin et al. [21�]
present the most comprehensive cell envelope proteome

analysis of S. aureus so far (Tables S2 and S3). However,

one-third of the 48 identified proteins are uncharacterized

[21�]. Cullen et al. [22] investigated the surfaceome of
www.sciencedirect.com
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Leptospira by biotin labeling of viable leptospires, affinity

capture of the biotinylated proteins, 2-DE, and mass

spectrometry (Table S3). They showed that the surfa-

ceome consists predominantly of a relatively small num-

ber of proteins, most of which have been previously

identified, for example, LipL41 and LipL21 [22].

Gram-negative bacteria constitutively secrete outer

membrane vesicles (OMVs) into the extracellular milieu,

and OMVs are recently proven to be essential for bacterial

survival and pathogenesis [23�]; however, the mechanism

of vesicle formation and the biological roles of OMVs

have not been clearly defined. Therefore, studies using

proteomics on OMVs of Gram-negative pathogens have

been carried out, for example, in N. meningitidis [23�]
(Table S3) and E. coli [24]. Like comparative genomics,

comparative proteomics is a powerful tool to investigate

bacterial pathogenesis, such as the studies in N. meningi-
tidis [23�], Bacillus antrhacis [25], Salmonella typhimurium
[26], and S. aureus [9]. Ferrari et al. [23�] compared the

proteome of detergent-derived outer membrane vesicles

(DOMVs) of group B N. meningitides with that of outer

membrane vesicles (m-OMVs) of N. meningitidis delta

gna33 mutant, in which the gene coding for a lytic

transglycosylase was deleted. They presented the first

detailed proteomic analysis of DOMVs obtained from the

New Zealand epidemic strain NZ98/254, currently under

evaluation in clinical trials [23�] (Table S3). Intriguingly,

this study demonstrates that the accurate selection of

specific mutations represents an effective way to obtain

highly enriched membrane fractions (Table S2). Such

Dgna33-derived m-OMVs represent a promising alterna-

tive vaccine to DOMVs.

Other examples of using comparative proteomics are the

studies by Chitlaru et al. [25] and Chuang et al. [27].

Chitlaru et al. [25] investigated the Gram-positive

pathogen, B. anthracis but focused on secreted proteins

rather than outer membrane proteins. B. anthracis is the

causative agent of anthrax, a lethal disease sporadically

affecting humans and animals and the biological warfare

agents. They compared the secretomes of a virulent strain

Vollum and avirulent strains and identified many putative

virulence factors [25] (Tables S2 and S3). Furthermore,

this indicates that B. anthracis evolved its own set of

secreted factors as it is different from the closely related

B. cereus or B. thuringiensis and thus these putative viru-

lence factors particularly involved in anthrax pathogen-

esis are present in the B. anthracis secretome [25].

Host defense system, such as polymorphonuclear leuko-

cytes (PMN), producing substantial amounts of super-

oxide anion (O2
��) and hydrogen peroxide (H2O2) as part

of their oxygen-dependent bactericidal mechanisms and

thus, oxidative stress had a great effect on bacterial

virulence. To address the influence of oxidative stress

on Helicobacter pylori, Chuang et al. [27] compared the
www.sciencedirect.com
protein expression profiles of H. pylori under normal and

oxidative stress conditions by 2-DE and MALDI-MS.

Notably, the protein expression levels of urease accessory

protein E (UreE, an essential metallochaperone for

urease activity), one of the major virulence factors, and

alkylhydroperoxide reductase (AhpC) with antioxidant

potential are greatly decreased under stress conditions

[27]. Conceivably, UreR and AhpC may thus be potential

drug targets against H. pylori.

Another important factor needed to be considered is the

limitation in using laboratory conditions on defined cul-

ture media. Therefore, a large number of studies

employed in vitro model systems in which they infected

eukaryotic cells with bacteria. For example, Zhang et al.
[28] grew group A streptococcus (GAS), which causes

uncomplicated pharyngitis, impetigo, pneumonia, sepsis,

necrotizing fasciitis, and streptococcal toxic shock syn-

drome, in the hyaluronic acid-enrich media in the attempt

to create a simple biological system that could reflect

some elements of GAS pathogenesis.

Reliable methods capable of providing detailed pictures

of surface protein organization in pathogenic bacteria are

still unavailable. Recently, Rodriguez-Ortega et al. [29]

described a new procedure using proteolytic enzymes to

‘shave’ the GAS surface and the peptides generated are

separated and identified (Tables S2 and S3). This

approach provides the most extensive map of the surface

antigens of GAS strain M1-SF370, including a new

possible vaccine target, Spy0416 [29] (Table 1).

S. pneumoniae is a leading cause of bacterial pneumoniae,

meningitis, otitis media, and bacteraemia in children and

adults worldwide. Encheva et al. [30�] developed an

extraction method combining the use of detergent,

enzyme and a step of mechanical homogenization that

allows the characterization and evaluation of a large

number of proteins for S. pneumoniae through the use

of 2-DE and a more sensitive technology, surface-

enhanced laser desorption ionization time-of-flight MS

with the ProteinChip1 arrays, perhaps the most estab-

lished chip-based proteomics available at present (Tables

S2 and S3). As a result, more than 800 protein spots were

identified on a single 2-D gel. This was the first proteomic

investigation for the characterization of the cytosolic

protein fraction of S. pneumoniae, and the result was used

subsequently to create an expression reference map of

this pathogen. Furthermore, they demonstrated that this

method does not require high protein yield and can be

used in a complementary manner to 2-DE [30�].

Quantitative proteomics
In contrast to numerous 2-DE studies, there are limited

studies of using the quantitative proteomic techniques on

bacterial pathogenesis. Cho et al. [31] presented the first

use of a second generation of Isotope-Coded Affinity
Current Opinion in Chemical Biology 2008, 12:93–101
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Tags (ICAT), that is, cleavable ICAT (cICAT) for com-

parative proteomics analysis of M. tuberculosis. In their

study, 586 and 628 proteins were unambiguously ident-

ified in the early and later stage non-replicating persistent

(NRP-1 and NRP-2) M. tuberculosis, respectively [31].

Furthermore, the expression ratio of each protein be-

tween log phase vs. NRP-1 and log phase vs. NRP-2

was determined [31] (Table S3). Similarly, Nanduri et al.
[32] applied the cICAT technology to analyze the Pas-
teurella mulocida proteome response to subminimum

inhibitory concentrations (MICs) of amoxicillin, chlorte-

tracycline, and enrofloxacin (Table S3), demonstrating

that antibiotics cause secondary effects in addition to the

primary target effects.

Oxidative stress proteins and manganese transporter are

starting to get recognized as the virulence factors. Metal

ions, like Fe2+ and Mn2+, are involved in oxidative stress;

unlike Fe2+, however, Mn2+ and its transporters play

important roles in protecting cells against reactive oxygen

species. The importance of Mn2+ transporter in virulence

has been demonstrated in S. typhimurium [33], B. anthracis
[34], S. pyogenes [35] and S. pneumoniae [36]. Also, we have

proven that the accumulation of intracellular Mn2+ and

ABC-type Mn2+ transporters play the important roles in

the protection against O2
�� and H2O2 in the bacterial

pathogens, Neisseria gonorrhoeae [37], N. meningitidis [38]

and S. pneumoniae [36,39]. Therefore, there is a three-way

interlocking relationship among Mn2+/Mn2+ transporter,

oxidative stress, and virulence. We further characterized

the Mn regulation globally using one-dimensional sodium

dodecyl sulfate–polyacrylamide gel electrophoresis with

one-dimensional liquid chromatography–tandem mass

spectrometry (MS/MS), and cICAT with MS/MS. We

showed that 98 proteins are differentially regulated at

the post-transcriptional level by Mn2+, helping to resolve

the mechanism underlying a complex phenotype (Wu

et al., unpublished).

The alternative chemical labeling of quantitative shotgun

proteomics uses isobaric tags [40], a technique becoming

popular for bacterial pathogenesis study. Recently, Rado-

sevich et al. [41] demonstrated the differences in protein

expression in Mycobacterium avium subsp. paratuberculosis
laboratory-adapted strain K-10 and the clinical strain 187

using the iTRAQ technology (Table S3). This bacterium

is the causative agent of paratuberculosis (Johne’s dis-

ease) in cattle and sheep [41]. These data may provide

insights into the proteins whose expression is important in

natural infection but are modified once the pathogen is

adapted to laboratory cultivation.

Proteomic analyses for detection of post-
translational modifications (PTMs)
For a long time, PTMs have been considered to be

restricted to eukaryotes; but recently, PTMs have been

proposed in several bacterial models. The functions of
Current Opinion in Chemical Biology 2008, 12:93–101
PTMs include stability, protection from proteases and

signal transduction. PTMs of surface proteins in microbial

pathogens are now a well-established phenomenon. Con-

sequently, efforts have been devoted into the role of

PTMs in parasite–host interactions. Moreover, PTMs

provide effective means to generate diversity and to

influence antigenicity. For example, N- and O-linked

carbohydrates appear more and more as common features

of proteins of bacterial pathogens [42].

Most of our knowledge on microbial protein glycosylation

has been obtained from studies on S-layers of archaea and

bacteria [42,43]. During the past decade, microbial gly-

cosylation model has been proposed in the surface struc-

tures, such as flagella (P. aeruginosa and C. jejuni) [44] and

pili (N. meningitidis, N. gonorrhoeae, and P. aeruginosa)

[45,46,47�]. As many of the proposed bacterial glyco-

proteins are surface-exposed, these modified proteins

may play important roles in pathogenicity and antigeni-

city. The elucidation of the structure of glycosylated

peptides, particularly identification of the sugars and their

specific sites of attachment, can be made by comparative

MS [43]. Linton et al. [48] reported mutational and MS/

MS analyses for providing the first direct evidence for the

function of five glycosyltransferases, that is, PglA, PglC,

PglH, PglI, and PglJ, involved in the biosynthesis of the

Campylobacter jejuni N-linked heptasaccharide glycan

(Table S3). ATs has also been reported to have consider-

able diversity in the post-translational processing of pas-

senger domains, such as cleavage by a variety of

mechanisms, lipidation, glycosylation, and oligomeriza-

tion; these undoubtedly contribute to the functional

diversity of the AT superfamily [8��].

During the process of pathogenesis, protein phosphoryl-

ation occurs at different stages, including cell–cell inter-

action and adherence, translocation of bacterial effectors

into host cells, and changes in host cellular structure and

function induced by infection. A major obstacle in our

understanding of protein kinase biology in prokaryotes is

the identification of physiologically relevant kinase sub-

strates. Villarino et al. [49�] reported the identification of

GarA, a Forkhead-associated (FHA) domain-containing

protein, as a putative physiological substrate of an essen-

tial protein kinase, PknB, in M. tuberculosis (Table S3).

Conclusions
Recent advances in bacterial pathogenesis research by

genomics, proteomics, and transcriptional profiling have

been impressive. The roles of glycosylation and phosor-

ylation in bacteria are only now starting to emerge and

other types of PTMs will surely follow. The new field of

proteomics is concerned with structural and functional

properties of large sets of proteins. The complete charac-

terization of the primary structure of large populations of

proteins, however, remains a challenging area for proteo-

mics. As a result, structural studies including X-ray crys-
www.sciencedirect.com
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tallography and NMR [8��,50�,51�,52,53�,54] of the newly

discovered virulence factors by genomic or proteomic

techniques play an important role in characterizing their

functions and interactions with their hosts. Moreover,

Craig et al. [55�] combined the techniques of X-ray

crystallography and 3D cryo-electron microscopy in order

to solve the type IV pilus assembly of N. gonorrhoeae that

cannot be solved by the individual technique otherwise.

We expect that combining different genomic, proteomic,

and structural results will substantially increase our un-

derstanding of complex biological processes associated

with virulence factors and assist the development of

antibacterial drugs and vaccines.
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