# Characterization of the OxyR regulon of *Neisseria* gonorrhoeae

Kate L. Seib,<sup>1†</sup> Hsing-Ju Wu,<sup>1‡</sup> Yogitha N. Srikhanta,<sup>1</sup> Jennifer L. Edwards,<sup>2§</sup> Megan L. Falsetta,<sup>2</sup> Amanda J. Hamilton,<sup>1</sup> Tina L. Maguire,<sup>3</sup> Sean M. Grimmond,<sup>3</sup> Michael A. Apicella,<sup>2</sup> Alastair G. McEwan<sup>1</sup> and Michael P. Jennings<sup>1\*</sup>

<sup>1</sup>School of Molecular and Microbial Sciences and Centre for Metals in Biology, The University of Queensland, Brisbane 4072, Qld, Australia.

<sup>2</sup>Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA. <sup>3</sup>Institute of Molecular Bioscience, The University of Queensland, Brisbane 4072, Qld, Australia.

#### Summary

OxyR regulates the expression of the majority of H<sub>2</sub>O<sub>2</sub> responses in Gram-negative organisms. In a previous study we reported the OxyR-dependent derepression of catalase expression in the human pathogen Neisseria gonorrhoeae. In the present study we used microarray expression profiling of N. gonorrhoeae wild-type strain 1291 and an oxyR mutant strain to define the OxyR regulon. In addition to katA (encoding catalase), only one other locus displayed a greater than two-fold difference in expression in the wild type : oxyR comparison. This locus encodes an operon of two genes, a putative peroxiredoxin/ glutaredoxin (Prx) and a putative glutathione oxidoreductase (Gor). Mutant strains were constructed in which each of these genes was inactivated. A previous biochemical study in Neisseria meningitidis had confirmed function of the glutaredoxin/ peroxiredoxin. Assay of the wild-type 1291 cell free extract confirmed Gor activity, which was lost in the gor mutant strain. Phenotypic analysis of the prx mutant strain in H<sub>2</sub>O<sub>2</sub> killing assays revealed increased resistance, presumably due to upregulation of alternative defence mechanisms. The oxyR, prx and gor mutant strains were deficient in biofilm formation, and the oxyR and prx strains had

Accepted 13 October, 2006. \*For correspondence. E-mail jennings@uq.edu.au; Tel. (+61) 7 3365 4879; Fax (+61) 7 3365 4620. Present addresses: <sup>†</sup>Novartis Vaccines, Department of Molecular Immunology, Via Fiorentina 1, 53100 Siena, Italy; <sup>‡</sup>Core Facilities for Proteomics Research, Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; <sup>§</sup>Centre for Microbial Pathogenesis, Columbus Children's Research Institute, Columbus, OH 43205, USA.

decreased survival in cervical epithelial cells, indicating a key role for the OxyR regulon in these processes.

#### Introduction

Neisseria gonorrhoeae, the causative agent of the sexually transmitted infection gonorrhoea, is a host-adapted pathogen that poses a serious health threat worldwide. During infection, N. gonorrhoeae is exposed to oxidative stress in the form of reactive oxygen species (ROS) and reactive nitrogen species (RNS) generated by host defence mechanisms and as by-products of endogenous respiratory processes. These reactive species can damage all cellular macromolecules (i.e. DNA, lipids and proteins) (reviewed by Imlay, 2003). N. gonorrhoeae is often associated with inflamed urogenital tissues and activated polymorphonuclear leucocytes (Archibald and Duong, 1986) which generate superoxide  $(O_2^{-})$  and hydrogen peroxide  $(H_2O_2)$ as part of their bactericidal mechanism (reviewed by Hampton et al., 1998; Burg and Pillinger, 2001). N. gonorrhoeae has evolved numerous defence mechanisms to sense and cope with this and other sources of oxidative stress that it encounters. Detoxification of H<sub>2</sub>O<sub>2</sub> in N. gonorrhoeae depends on catalase (Tseng et al., 2003; Seib et al., 2004), accumulation of manganese (Mn) by the MntABC transporter (Tseng et al., 2001; Seib et al., 2004) and cytochrome c peroxidase (Ccp) (Turner et al., 2003; Seib et al., 2004). Other defences involved in protection against H<sub>2</sub>O<sub>2</sub> include bacterioferritin (Chen and Morse, 1999) and methionine sulphoxide reductase (Taha et al., 1991; Wizemann et al., 1996; Skaar et al., 2002).

*Neisseria gonorrhoeae* possesses very high constitutive levels of catalase (encoded by *katA*) (Hassett *et al.*, 1990; Zheng *et al.*, 1992) which are induced by  $H_2O_2$  as a consequence of loss of OxyR repression (Tseng *et al.*, 2003). An *oxyR* mutant strain has ninefold higher catalase activity than constitutive levels, fourfold higher activity than maximally induced wild-type levels, and is significantly more resistant to  $H_2O_2$  killing than the wild type (Tseng *et al.*, 2003). This is distinct from the situation in *Escherichia coli* and *Salmonella typhimurium*, in which OxyR is a positive regulator of catalase expression (Christman *et al.*, 1985; Morgan *et al.*, 1986; Pomposiello and Demple, 2001) and where increased sensitivity to  $H_2O_2$  is seen in *oxyR* mutant strains (Christman *et al.*, 1985; 1989). OxyR of *N. gonorrhoeae* contains all of the typical features of OxyR proteins; the LysR family helix–turn–helix motif, the active site cysteine residues and has 37%/59% sequence identity/similarity to OxyR of *E. coli*. In addition, *N. gonorrhoeae* OxyR can complement an *E. coli* oxyR mutant strain and behave as an activator (Tseng *et al.*, 2003).

OxvR belongs to the LvsR family of DNA binding transcriptional modulators (Christman et al., 1989) and has been extensively studied in E. coli (reviewed by Storz and Imlay, 1999; Pomposiello and Demple, 2001). OxyR regulates expression of the majority of H<sub>2</sub>O<sub>2</sub> responsive genes in E. coli, including katG (hydroperoxidase I), ahpCF (alkylhydroperoxide reductase), gorA (glutathione reductase), grxA (glutaredoxin 1), trxC (thioredoxin 2), fur (repressor of iron uptake), dps (unspecific DNA binding protein), oxyS (regulatory RNA), dsbG (disulphide bond chaperone-isomerase) and *fhuF* (protein required for iron uptake), hemH (haem biosynthetic gene), six-gene suf operon (may participate in Fe-S cluster assembly or repair), and uxuA (mannonate hydrolase) (Pomposiello and Demple, 2001; Zheng et al., 2001a,b). These OxyR-regulated genes have direct (e.g. removal of  $H_2O_2$  by *katG* and *ahpC*; control of redox balance by gor, grxA and trxC) and indirect (e.g. control of the fur and oxyS regulators that affect numerous other genes) roles in defences against oxidative stress. The OxyR regulon of E. coli was determined, in part, via DNA microarray-mediated transcription profiling of the  $H_2O_2$  response (after exposure to 1 mM  $H_2O_2$ for 10 min) of an E. coli wild-type strain relative to an oxyR mutant strain (Zheng et al., 2001b).

OxyR is constitutively expressed in E. coli and S. typhimurium (Storz et al., 1990; Zheng et al., 1998). H<sub>2</sub>O<sub>2</sub> reversibly activates OxyR at the post-translational level through the oxidation of two cysteine residues and the formation of an intramolecular disulphide bond (Zheng et al., 1998). The disulphide bond is then reduced by glutaredoxin 1 (GrxA) and glutathione ( $\gamma$ -L-glutamyl-Lcysteinylglycine; GSH), which is in turn reduced by glutathione reductase (Gor), both of which are part of the OxyR regulon in E. coli (Aslund and Beckwith, 1999). In this way oxyR expression is controlled via a negative feedback loop. OxyR binding sites are unusually long (> 45 bp) with limited sequence similarity. Both the oxidized and reduced forms of OxyR bind DNA, but OxyR uses two different modes of binding to enable it to act as both an activator and a repressor (Toledano et al., 1994).

In this study we used a microarray approach to define the OxyR regulon of *N. gonorrhoeae* and enable further investigation of the peroxide stress response in this organism, including the role of the newly identified peroxiredoxin (Prx) and glutathione oxidoreductase (Gor).

#### **Results**

#### Characterization of the OxyR regulon of N. gonorrhoeae: DNA microarray analysis and real-time PCR

OxyR is known to regulate more than nine genes in E. coli that are involved directly or indirectly in the oxidative stress response (Zheng et al., 2001b). To examine the OxyR regulon of N. gonorrhoeae, gene expression in a wild-type N. gonorrhoeae strain 1291 and an isogenic 1291 oxyR::kan mutant strain (Tseng et al., 2003) was compared by analysis on N. gonorrhoeae/Neisseria meningitidis genome microarrays (TIGR). To rule out the possibility that suppressor mutations may have arisen in the key strain used in this study, 1291oxyR::kan, which may confuse interpretation of microarray analysis, we constructed a wild-type oxyR 'knock-in' version of the 1291 oxyR::kan mutant strain (called 'wild type') in which the wild-type oxyR gene was used to replace the oxyR::kan allele (see Experimental procedures). The resulting 1291 wild type\* strains were compared with the parental 1291 strain and with 1291 oxyR::kan to confirm that the 1291 oxyR::kan H<sub>2</sub>O<sub>2</sub> hyper-resistant phenotype (Tseng et al., 2003) had returned to the parental 1291 wild type phenotype (result not shown). This confirmed that suppressor mutations were not responsible for the 1291oxyR::kan phenotype, but that the 1291oxyR::kan phenotype was solely due to inactivation of the oxyR gene.

Total RNA was isolated from wild-type and 1291*oxyR::kan* mutant strain cultures that had been grown to exponential phase then exposed to 1 mM H<sub>2</sub>O<sub>2</sub> for 10 min. Overall, three genes were differentially regulated by greater than twofold (*P*-value < 0.01) between the wild-type and the *oxyR* mutant strain. Two genes, *prx* [NG0926 (LosAlamos, 2005)] and *gor* (NG0925), encoding a putative Prx and a putative Gor respectively, were downregulated in the *oxyR* mutant strain relative to wild type (Table 1). The gene encoding catalase, *katA* (NG1767), was upregulated in the *oxyR* mutant (Table 1) in accordance with previous findings (Tseng *et al.*, 2003). Results from the microarray analysis were confirmed using quantitative real-time (RT)-PCR (Table 1).

The genes NG0926 and NG0925 have not previously been characterized in *N. gonorrhoeae* and are the focus of this study (see Fig. 1A for a schematic of the genome region containing these genes). The predicted protein sequence of NG0926 is 98% identical to Prx of *N. meningitidis* which is able to reduce various peroxides, including  $H_2O_2$ , in the presence of GSH (Rouhier and Jacquot, 2003). NG0925 is annotated in the *N. gonorrhoeae* FA1090 genome (LosAlamos, 2005) as dihydrolipoamide dehydrogenase, the E3 component of the multienzyme pyruvate dehydrogenase complex

| Table 1. | Differentially | expressed | genes in A | l. gonorrhoeae | wild type | versus the | oxyR mutant. |
|----------|----------------|-----------|------------|----------------|-----------|------------|--------------|
|----------|----------------|-----------|------------|----------------|-----------|------------|--------------|

|                      |                                  | Microar   | ray <sup>b</sup> | Microcreation | $H_2O_2$ regulation <sup>d</sup><br>WT + $H_2O_2$ : WT |
|----------------------|----------------------------------|-----------|------------------|---------------|--------------------------------------------------------|
| Gene ID <sup>a</sup> | Description                      | oxyR : WT | B-Stat           | oxyR : WT     |                                                        |
| Reduced expression   | n in <i>oxyR</i> mutant          |           |                  |               |                                                        |
| NG0925               | Glutathione reductase (gor)      | 0.32      | 6.24             | 0.11 ± 0.015  | $8.05 \pm 0.78$                                        |
| NT01NG1498           | ORF (5' end of gor)              | 0.35      | 6.38             | ND            | ND                                                     |
| NG0926               | Peroxiredoxin (prx) <sup>e</sup> | 0.31      | 6.10             | 0.11 ± 0.004  | $6.40 \pm 0.15$                                        |
| Increased expressio  | n in <i>oxyR</i> mutant          |           |                  |               |                                                        |
| NG1767               | Catalase (katA)                  | 4.00      | 5.33             | $1.54\pm0.22$ | $4.65\pm0.67$                                          |

**a.** The 'NG' gene IDs refers to the annotation of the *N. gonorrhoeae* strain FA1090 genome in the LosAlamos database (http://www.stdgen.lanl. gov/stdgen/bacteria/ngon/index.html). The 'NT' ID is from the TIGR array annotation. Arrangement of the ORFs is shown in Fig. 1.

**b.** The ratio presented is the mean of mutant : wild type (WT) from six replicate spots on three independent microarrays, incorporating a dye swap. Thus, the expression of each gene was measured six times. Only those genes with an expression value above twofold and had a B statistic value above 0.0 were considered significant and included in this study. A threshold in the B statistic of 0.0 was adopted as genes with a B score > 0 have a > 50% probability of being truly differentially expressed. All primary data, related meta-data and a detailed summary of the protocols used in this project are available (see *Experimental procedures*).

c. Microarray validation was performed using quantitative RT-PCR analysis on RNA isolated from the *N. gonorrhoeae oxyR* mutant and WT strains which had been exposed to 1 mM  $H_2O_2$  for 10 min prior to RNA extraction.

**d.** The  $H_2O_2$  dependence of OxyR regulation of *prx, gor* and *katA* in *N. gonorrhoeae* was investigated using quantitative RT-PCR on RNA isolated from the WT strain exposed to 1 mM  $H_2O_2$  (WT +  $H_2O_2$ ) or 0 mM  $H_2O_2$  (WT).

e. The prx gene of N. gonorrhoeae is not included in the Neisseria array; however, this gene is 98% identical to prx of N. meningitidis strain MC58 (NT01NG1498; NMB0946).

ND, not determined.

(PDHC) which catalyses oxidative decarboxylation of  $\alpha$ -ketoacids in the Krebs cycle. Protein family (Pfam) analysis (Bateman *et al.*, 2002) places NG0925 in the pyridine nucleotide-disulphide oxidoreductase family (PF00070; *E*-value = 2.6e-46) of which dihydrolipoyl dehydrogenase (EC 1.6.4.3) is a member. Other members of this family include Gor (EC 1.6.4.2), thiore-doxin reductase (TR; EC 1.6.4.5) and mercuric reductase. These enzymes have high sequence and structural similarities and have a common mechanism, but have evolved different specificities. Due to the similarity of members of this family, we hypothesized that NG0925 encoded Gor, which has not previously been identified in *N. gonorrhoeae*, rather than the E3 component of the pyruvate complex.

The genes encoding the dihydrolipoyl dehydrogenase multienzyme complexes are usually organized in operons (de Kok et al., 1998); however, NG0925 does not have genes encoding the E1 and E2 components adjacent to it. Several dihydrolipoyl dehydrogenases have already been described or identified in the pathogenic Neisseria. The PDHC of N. meningitidis is encoded by NMB1341 (pdhA, E1 component), NMB1342 (aceF, E2 component) and NMB1344 (IpdA, E3 component) (Ala' Aldeen et al., 1996; Tettelin et al., 2000), which correspond to NG0565, NG0564 and NG0562 in N. gonorrhoeae (LosAlamos, 2005). The 2-oxoglutarate dehydrogenase complex (OGDHC) of N. gonorrhoeae has been annotated in the genome and is encoded by NG0915 (dLdH, E3 component), NG0916 (sucB, E2 component) and NG0917 (sucA, E1 component). The succinate dehydrogenase (SDH) is located downstream and is encoded by NG0920 (*dhsB*, iron-sulphur protein), NG0921 (*dhsA*, flavoprotein subunit), NG0922 (*dhsD*, hydrophobic membrane anchor) and NG0923 (*dhsC*, cytochrome b556 chain). The E3 component can be shared by different complexes; however, the E3 gene NG0562 is unique for PDHC, and OGDHC contains the usual E3 gene NG0915 (de Kok *et al.*, 1998). Also, disruption of the E3 gene of PDHC in *N. meningitidis* results in loss of PDHC, but not OGDHC, activity (de Kok *et al.*, 1998). This *in silico* analysis suggests that NG0925 does not encode the E3 component of the pyruvate dehydrogenase. Further analysis of a *gor* mutant strain supports the suggestion that it encodes Gor and is described below.

### Hydrogen peroxide dependence of expression of the OxyR regulon

Studies in *E. coli* have shown that  $H_2O_2$  reversibly activates OxyR at the post-translational level through the oxidation of two cysteine residues and the formation of an intramolecular disulphide bond (Zheng *et al.*, 1998). To investigate the  $H_2O_2$  dependence of OxyR in *N. gonorrhoeae*, expression of the genes within the OxyR regulon was investigated by RT-PCR in the wild-type strain under growth conditions  $\pm 1 \text{ mM } H_2O_2$ .  $H_2O_2$  induced expression of *prx* (6.4-fold), *gor* (eightfold) and *katA* (4.65-fold) (Table 1). These data, in conjunction with the *oxyR* mutant : wild type expression ratios from microarray analysis, indicate that *gor* and *prx* are activated by OxyR under conditions of increased  $H_2O_2$ . On the other hand, OxyR derepresses catalase expression upon exposure to increased levels of  $H_2O_2$ .



Fig. 1. Schematic representation of (A) the N. gonorrhoeae genome region surrounding prx and gor, (B) the ORF and restriction endonuclease map (C) the plasmid constructs of prx and gor, and (D) agarose gel analysis of co-transcription of prx and gor by RT-PCR. The black lines labelled Ng represent the ORF and restriction endonuclease map of a region of the N. gonorrhoeae genome (co-ordinates 910380-900833 accession number AE004969, University of Oklahoma). The open arrows above the line indicate the orientation and location of the ORFs identified in the sequence. The gene names and 'NG' gene IDs are from the LosAlamos N. gonorrhoeae genome database (http://www.stdgen.lanl.gov/stdgen/bacteria/ ngon/index.html). The 'NT' ID is from the TIGR array annotation. The location of the Prx and Grx domains of prx is shown within the ORF. Below the ORFs the grey lines represent the plasmids constructed during this work. The vector, pGEM®-T Easy (Promega), is represented by black boxes. The restriction endonuclease sites shown indicate where the kanamycin-resistance cassette (from pUC4Kan: Pharmacia) was inserted. Black arrowheads indicate the primers used in this study (see Table 2). White bars represent the expected amplification products of RT-PCRs whose sizes base pairs (bp) are given in parenthesis. The agarose gel shows the products of these RT-PCR reactions using cDNA with primers for either prx, gor or a region between these genes. A RNA sample Ino reverse transcriptase (RT) added to the cDNA synthesis reaction] was used as a control for genomic DNA. Sizes of the DNA ladder are shown in bp. (E) Comparison of prx regulation in 1291 wild type (WT), 1291 wild type\* (WT\*) and 1291oxyR::kan. The agarose gel shows the RT-PCR product for the prx transcript and 16S ribosomal RNA gene (indicated with arrowheads at the right of the figure).

earlier reports based on catalase activity assays in the *N. gonorrhoeae oxyR* mutant strain (Tseng *et al.*, 2003).

#### Analysis of prx and gor transcription

Co-transcription of *prx* and *gor* was investigated due to their close proximity, their potentially related roles within the cell and the similarity of their transcription profile by DNA microarray and RT-PCR analysis (Table 1). To confirm that the two genes are in fact part of an operon, total RNA from *N. gonorrhoeae* wild-type strain was used in reverse transcription PCR experiments. Three pairs of primers were used: two pairs were designed to amplify the individual *prx* and *gor* genes, and the third pair spans the intergenic region to demonstrate co-transcription of the *prx* and *gor* genes. All three RT-PCR products were the expected size for co-transcription (see Fig. 1D). There was no amplification when reverse transcriptase was omitted from the reaction, indicating that the PCR products seen were not a result of contamination of the RNA sample with genomic DNA. Further investigation of prx and gor transcription indicated that they are not co-transcribed with their flanking genes, metE and dhsC respectively (data not shown; see Fig. 1A for map of prx and gor region in the genome). *dhsC* is part of the SDH complex. The fact that gor and dhsC are not co-transcribed provides further support that gor does not encode the dihydrolipoamide dehydrogenase component of the PDHC, as is annotated in the genome database (see above for a full description). Further RT-PCR experiments were conducted comparing the prx-gor operon expression in 1291 wild type, 1291 wild type\* and 1291 oxyR::kan (see Fig. 1E). The prx-gor transcript, reduced in the 1291 oxyR::kan mutant returned to 1291 wild type levels in the 1291 wild type\* strain, further confirming that the 1291 oxyR::kan regulatory phenotype was not due to second site suppressor mutations.

| Table 2. Primers used in PCR and RT-PC |
|----------------------------------------|
|----------------------------------------|

| Primer    | Sequence (5'-3')          |
|-----------|---------------------------|
| 16S F     | ACGGAGGGTGCGAGCGTTAATC    |
| 16S_R     | CTGCCTTCGCCTTCGGTATTCCT   |
| katA_F    | AGCCCTGCACCAAGTTACCA      |
| katA_R    | CAGAAGCTGTAGGTATGCGAACC   |
| gor_F     | GATGTGGAAGAATGGCCTGC      |
| gor_R     | CGCAATTTGGATATGGTCGTC     |
| prx_F     | ACGGCGAATTTACCGAAGGTA     |
| prx_R     | CGTCGTTAACCAGCATGGAGTA    |
| prxA      | TGGCTTTGCAAGATCGTACC      |
| gorB      | AACGGCATATCCAGCATTTG      |
| preprx    | GCGATTCACAATTATTTCTCAAACC |
| prx-gor_F | GAAGATTTGGAAGCTTACTTGG    |
| prx-gor_R | ACATATCGGTTTCAGACAGC      |
| oxyRfor   | CGGAGAACCGGTCATCCA        |
| oxyRrev   | GACGAATCTATCCATACG        |

### Construction of N. gonorrhoeae prx and gor mutant strains

To investigate the role of Prx and Gor in *N. gonorrhoeae*, *prx* and *gor* mutant strains were constructed via insertion of a kanamycin-resistance cassette into the open reading frame (ORF) of the *prx* and *gor* genes of *N. gonorrhoeae* strain 1291 (Fig. 1C). These mutant strains were confirmed by PCR analysis with the primers preprx and prx\_R for the *prx* mutant strain or preprx and gor\_R for the *gor* mutant strain (Table 2). The growth characteristics of the *N. gonorrhoeae* wild-type and the *prx*, *gor* and *oxyR* mutant strains were indistinguishable under aerobic conditions in Brain Heart Infusion broth (BHI; Oxoid) at 37°C as monitored by the increase in optical density at 600 nm. Growth studies were conducted in triplicate and repeated on two occasions (data not shown).

## *Glutathione reductase activity is absent in the* gor *mutant strain*

To determine the physiological function of NG0925, Gor activity was measured in cell free extracts of overnight cultures of N. gonorrhoeae wild-type, gor and prx mutant strains. Gor catalyses the reaction 2GSSG + NADPH + H<sup>+</sup>  $\rightarrow$  2GSH + NADP<sup>+</sup>. The reduction of GSSG, and thus Gor activity, can be measured indirectly by following the consumption of NADPH, measured as a decrease in absorbance at 340 nm. This enzyme assay showed Gor activity in the wild-type strain, which increased with increasing protein concentration (Fig. 2) and increasing GSSG concentration (data not shown). No significant Gor activity was present in the gor mutant strain relative to the wildtype strain (see Fig. 2). These results indicate that NG0925 does encode the Gor of N. gonorrhoeae. Gor activity in the prx mutant strain was identical to the wildtype levels (data not shown; *P*-value = 1). These results indicate that Prx is not required for Gor activity and that



**Fig. 2.** Glutathione reductase activity in *N. gonorrhoeae* wild-type and *gor* mutant strains. Gor activity was measured in cell free extracts of overnight cultures of *N. gonorrhoeae* strain 1291 (solid line) and the *gor* mutant (broken line). Protein concentration in cell extracts was determined by absorbance at 280 nm. Activity was determined from the decrease in [NADPH], followed as the decrease in optical density at 340 nm, using 6220 as the molar extinction coefficient. Experiments were performed in triplicate. Y-error bars indicated  $\pm 1$  standard deviation of the mean. Experiments were conducted at least three times and data shown is a representative result. Differences between the *N. gonorrhoeae* wild-type and *gor* strains were statistically significant (*P*-values = 0.023 for 1 mg protein, 0.00027 for 2 mg protein, 0.0093 for 4 mg). *P*-values were computed using unpaired two-sided Student's *t*-test.

the phenotype of the *gor* mutant strain is not a result of a polar effect from the *prx* mutation.

The apparent  $K_m$  ( $K_m$  app) for the reduction of GSSG by *N. gonorrhoeae* cell free extracts was calculated using Lineweaver-Burke (454 ± 120  $\mu$ M) and Eadie-Hofstee plots (475 ± 132  $\mu$ M).

## Role of Prx and Gor in defence against oxidative stress

The oxyR mutant of N. gonorrhoeae is highly resistant to H<sub>2</sub>O<sub>2</sub> stress (Tseng et al., 2003). This resistance is presumably in part due to the increased catalase activity seen in the oxyR mutant strain (Tseng et al., 2003); a katA mutant of *N. gonorrhoeae* is highly sensitive to H<sub>2</sub>O<sub>2</sub> (Seib et al., 2004). To investigate the role of the two other OxyRregulated proteins in the oxidative stress response,  $H_2O_2$ , xanthine/xanthine oxidase, paraquat and cumene hydrokilling assavs were performed peroxide using N. gonorrhoeae wild-type and prx and gor mutant strains. The prx mutant strain was significantly more resistant to



**Fig. 3.**  $H_2O_2$  killing assay of *N. gonorrhoeae* wild type (WT), and the *gor* and *prx* mutant strains. Cells were resuspended in BHI broth and exposed to a final concentration of 10 mM  $H_2O_2$ . Experiments were performed in triplicate. Y-error bars indicate  $\pm 1$  standard deviation of the mean. Experiments were conducted at least three times and data shown are a representative result. There is a statistically significant difference in the mean per cent survival of the *prx* mutant strain relative to WT at all time points (*P*-values  $\leq 0.05$  as determined using a Student's *t*-test: *P* = 0.03, 15 min; *P* = 0.03, 30 min; *P* = 0.001, 60 min; *P* = 0.05, 75 min). There was no significant difference in the mean per cent survival of the *gor* mutant strain relative to WT (*P*-values  $\geq 0.05$ ).

killing with H<sub>2</sub>O<sub>2</sub> than the wild-type strain ( $P \le 0.05$ ; Fig. 3), while the *gor* mutant strain was only slightly more resistant than the wild type. Both mutant strains behaved like the wild-type strain in the xanthine/xanthine oxidase, paraquat and cumene hydroperoxide assays (data not shown). RT-PCR analysis of catalase transcript levels showed a 2.3  $\pm$  0.2 increase in expression of *katA* in the *prx* mutant strain relative to the wild-type strain, which could account for the increased H<sub>2</sub>O<sub>2</sub> resistance seen in this strain.

### oxyR and gor mutant strains have decreased survival in cervical epithelial cells

To determine the ability of *N. gonorrhoeae* wild-type, oxyR, prx, gor and katA mutant strains to associate with, invade and survive within primary human ectocervical epithelial (pex) cells, they were challenged with either the wild-type or mutant strains and infection allowed to progress for 2 h (37°C, 5% CO<sub>2</sub>). There was a small but significant difference observed in the ability of the oxyR and *gor* mutant strains to associate with pex cells upon comparison with wild-type gonococci. The oxyR and *gor* mutants showed a more significant decrease in invasion and survival over 2 h, relative to wild type (Fig. 4). However, there was no statistically significant difference in the mean per cent association or survival of the *katA* and *prx* mutant strains relative to *N. gonorrhoeae* strain 1291 wild type (Fig. 4).



**Fig. 4.** Gonococcal association with and intracellular survival within primary human cervical epithelial (pex) cells. The histogram shows the normalized mean per cent association or invasion as a function of the original inoculum of the *N. gonorrhoeae katA, prx, gor* and *oxyR* mutant strains relative to the wild type (WT). Data, determined from the number of colony forming units formed upon plating of the cervical cell lysates, were obtained from three trials performed in triplicate. Y-error bars show  $\pm 1$  variance. There was a statistically significant difference in the mean per cent survival of the *oxyR* mutant (*P*-values: association, 0.05; *T* = 0, 0.005; *T* = 1, 0.002; *T* = 2, 0.0007) and the *gor* mutant (*P*-values: association, 0.08; *T* = 0, 0.001; *T* = 1, 0.006; *T* = 2, 0.001) relative to *N. gonorrhoeae* strain 1291 wild type, determined using a Kruskal–Wallis non-parametric analysis of variance. The differences in the mean per cent association, 0.43; *T* = 1, 0.54; *T* = 2, 0.43) and the *prx* mutant (*P*-values: association, 0.93; *T* = 0, 0.50; *T* = 1, 0.38; *T* = 2, 0.07) relative to *N. gonorrhoeae* strain 1291 wild type are not statistically significant.

### © 2006 The Authors

Journal compilation © 2006 Blackwell Publishing Ltd, Molecular Microbiology, 63, 54-68

### oxyR, gor and prx mutant strains have decreased biofilm formation

Studies performed in continuous flow chambers have recently shown that *N. gonorrhoeae* strain 1291 can form a biofilm on glass coverslips as well as on primary cervical cells without loss of viability of the epithelial cells (Greiner *et al.*, 2005). The ability of the *N. gonorrhoeae* 1291 *oxyR*, *prx* and *gor* mutant strains to form a biofilm was investigated via confocal microscopy after 2 days of growth in continuous flow chambers. All three mutant strains had a significant decrease in biofilm formation relative to the wild-type strain; *oxyR*, *prx* and *gor* formed approximately 7%, 3% and 9% of the wild-type biofilm biomass respectively (Fig. 5).

#### Discussion

Neisseria gonorrhoeae encounters significant levels of ROS, including H<sub>2</sub>O<sub>2</sub>, within the female urogenital tract as a result of exposure to resident lactic acid bacteria (Whittenbury, 1964) and activated polymorphonuclear leucocytes (Archibald and Duong, 1986). The peroxide stress response of N. gonorrhoeae is unusual in that it contains two H<sub>2</sub>O<sub>2</sub> responsive regulators of oxidative stress defences, OxyR (Tseng et al., 2003) and PerR (Wu et al., 2006). OxyR is typically found in Gram-negative bacteria such as E. coli and S. typhimurium (Christman et al., 1989), while PerR typically regulates peroxide stress responses in Gram-positive organisms including Bacillus subtilis (Bsat et al., 1998) and Staphylococcus aureus (Horsburgh et al., 2001). The recently defined PerR regulon in N. gonorrhoeae includes 12 genes, several of which have a proven or suggested role in defence against ROS (Wu et al., 2006). Here we define the relatively small OxyR regulon of N. gonorrhoeae and describe two previously uncharacterized proteins of N. gonorrhoeae, Prx and Gor. All three OxyR regulated genes are upregulated in response to  $H_2O_2$  stress, indicating that they play a role in protecting N. gonorrhoeae from damage caused by  $H_2O_2$ .

OxyR regulates more than 10 genes in *E. coli*, including *katG* (hydroperoxidase I), *ahpCF* (alkylhydroperoxide reductase) and *gorA* (glutathione reductase). It has been suggested that the Prx system functionally replaces the well-known *E. coli* AhpCF system (Vergauwen *et al.*, 2003), which is the primary scavenger of endogenous  $H_2O_2$  in *E. coli* (Seaver and Imlay, 2001). Although the OxyR regulon of *N. gonorrhoeae* contains genes that are regulated by OxyR in *E. coli*, the *N. gonorrhoeae* regulon is much smaller and peroxide stress response of *N. gonorrhoeae* appears to be quite distinct from that of *E. coli*. For instance, an *oxyR* mutant strain of *N. gonorrhoeae* is highly resistant to  $H_2O_2$  stress (Tseng

*et al.*, 2003), while sensitivity to  $H_2O_2$  is seen in an *oxyR* mutant of *E. coli* (Christman *et al.*, 1985; 1989). OxyR mutant strains of *Pseudomonas aeruginosa* (Ochsner *et al.*, 2000), *Haemophilus influenzae* (Maciver and Hansen, 1996), *Xanthomonas campestris* (Mongkolsuk *et al.*, 1998) and *Brucella abortus* (Kim and Mayfield, 2000) are also hypersensitive to oxidative stress.

Prx are non-haem peroxidases that catalyse the reduction of alkyl hydroperoxides via reactive cysteines. The cysteines are then regenerated via thioredoxin (Trx) or Grx, which in turn are reduced by NADPH and TR or NADPH, GSH and Gor (Poole, 2005). GSH is considered one of the first lines of defence against oxidative stress (Pomposiello and Demple, 2002). The reduced pool of GSH within the cell is typically maintained by Gor using NADPH as reductant (Carmel-Harel and Storz, 2000). NADPH is then recycled by glucose 6-phosphate dehydrogenase (Hofmann et al., 2002). Therefore, the finding that prx and gor are transcriptionally linked and co-ordinately regulated in N. gonorrhoeae is appropriate in light of their co-ordinated function. The Prx protein identified in N. gonorrhoeae is 98% identical to the hybrid Prx (N-terminus Prx domain and C-terminus Grx domain) characterized in N. meningitidis which reduces various peroxides, including  $H_2O_2$ , in the presence of GSH (Rouhier and Jacquot, 2003). Both domains possess biological activity; the reducing power of GSH regenerates the catalytic cysteine of Prx via the Grx domain (Rouhier and Jacquot, 2003). The location of these domains in the N. gonorrhoeae prx ORF is shown in Fig. 1. The hybrid Prx has been identified in several other bacteria including H. influenzae (Vergauwen et al., 2003), Vibrio cholerae (Cha et al., 2004) and Chromatium gracile (Vergauwen et al., 2001).

Prxs are divided into three classes: typical and atypical 2-Cys Prxs, and 1-Cys Prxs. These classes share the same initial catalytic mechanism; an active site cysteine (the peroxidatic cysteine) is oxidized to a sulphenic acid by the peroxide substrate. The mechanism by which the thiol is regenerated from the sulphenic acid back is what distinguishes the three enzyme classes (Wood et al., 2003). Phylogenic analysis indicated that Prx of N. meningitidis is grouped with the Prx of V. cholera in the atypical 2-Cys class of Prx (Cha et al., 2004). In the atypical 2-Cys Prxs, both the peroxidatic cysteine and its corresponding resolving cysteine are contained within the same polypeptide, and catalysis involves the formation of an intramolecular disulphide bond (Cha et al., 2004). Due to the homology between the N. gonorrhoeae and N. meningitidis Prx, it follows that a similar catalytic mechanism would be used by the N. gonorrhoeae Prx.

The hybrid Prx proteins are all capable of reducing  $H_2O_2$ , *tert*-butylhydroperoxide and cumene hydroperoxide (Vergauwen *et al.*, 2001; 2003; Cha *et al.*, 2004; Pauwels



#### OxyR regulon of Neisseria gonorrhoeae 61

Fig. 5. Biofilm formation by N. gonorrhoeae strain 1291 wild type and the oxyR, prx and gor mutant derivatives. Panel A shows the biofilm mass over 2 days of growth for (1) the N. gonorrhoeae 1291 parent strain, and the (2) oxyR, (3) prx and (4) gor mutation strains. The images are stacked z-series taken at 200× magnification. Panel B shows a COMSTAT analysis of the stack biofilm analysing the sections for biomass and the average thickness of the biofilm. The error bars represent  $\pm 1$  standard deviation of the mean. These experiments were performed in duplicate on two different occasions and a representative result is shown. There is a statistically significant difference in the mean biomass of the oxyR, prx and gor mutant strains relative to WT (P-values 0.016, 0.014 and 0.018 respectively, as determined using a Student's *t*-test). There is also a statistically significant difference in the average thickness of the biofilm of the oxyR, prx and gor mutant strains relative to WT (P-values 0.021, 0.011 and 0.007 respectively).

*et al.*, 2004). In addition, the *H. influenzae* Prx is able to protect supercoiled DNA against the metal ion-catalysed oxidation system (Pauwels *et al.*, 2003). The *prx* mutant strain of *N. gonorrhoeae* had increased resistance to  $H_2O_2$  relative to the wild-type strain. A similar result was

seen in *H. influenzae*, and was attributed to the presence of elevated levels catalase (HktE) in the absence of a functional *pgdx* gene (Pauwels *et al.*, 2004). Catalase transcript levels were also upregulated 2.3-fold in the *N. gonorrhoeae prx* strain relative to the wild-type strain. These findings indicate that the absence of Prx, which is believed to fulfil a role as a major peroxidase for low concentrations of  $H_2O_2$  (Pauwels *et al.*, 2004), results in increased  $H_2O_2$  levels that cause derepression of catalase in *N. gonorrhoeae*.

Gor (NAD(P)H:oxidized-glutathione oxidoreductase) is nearly ubiquitous and has been well characterized in many organisms including E. coli and Saccharomyces cerevisiae (Carmel-Harel and Storz, 2000). Gor plays a central role in maintaining the redox balance of the cell. Gor typically maintains the reduced pool of GSH (Carmel-Harel and Storz, 2000), which is a low-molecular-weight compound (GSH) that is considered one of the first lines of defence against oxidative stress (Pomposiello and Demple, 2002). GSH, typically present in cells in millimolar concentrations (5 mM in E. coli) (Prinz et al., 1997), is a chemical scavenger of radicals and acts as a hydrogen donor to restore oxidized macromolecules (Carmel-Harel and Storz, 2000). Very high concentrations of GSH (17.3 mM) are present in N. gonorrhoeae, which may constitute a powerful antioxidant system (Archibald and Duong, 1986). Despite the proposed importance of GSH as an antioxidant in N. gonorrhoeae, Gor has not been identified in this organism until now. The apparent  $K_m$ determined for Gor (454  $\pm$  120  $\mu M$ ) is consistent with the high intracellular concentrations of GSH. The gor mutant strain constructed in this study had no significant levels of Gor activity, and showed a slight increase in resistance to H<sub>2</sub>O<sub>2</sub> killing relative to the wild-type strain. In E. coli, gor mutants also had increased resistance to paraguat and H<sub>2</sub>O<sub>2</sub> (Kunert et al., 1990; Becker-Hapak and Eisenstark, 1995). Unlike the situation in a prx mutant (Pauwels et al., 2004), catalase levels were the same in the E. coli gor mutant strain as the wild type, but it was proposed that the increased resistance to H<sub>2</sub>O<sub>2</sub> may have been a result of upregulation of GSH biosynthetic genes (Becker-Hapak and Eisenstark, 1995).

 $H_2O_2$ -dependent regulation of *gor* expression was also observed in a study of the transcriptional response of *N. gonorrhoeae* to  $H_2O_2$  that was published during the preparation of this manuscript (Stohl *et al.*, 2005). This study found that the expression of 75 genes was upregulated after transient exposure to  $H_2O_2$ , including *gor* (annotated as *dLdH*) *katA* and several other genes involved in oxidative stress defence, the heat shock response, iron uptake, DNA repair and energy metabolism (Stohl *et al.*, 2005).

The  $H_2O_2$  resistance of the *N. gonorrhoeae oxyR* mutant strain (Tseng *et al.*, 2003) is presumably largely due to the increased catalase expression seen in the *oxyR* mutant strain as a *katA* mutant of *N. gonorrhoeae* is highly sensitive to  $H_2O_2$  (Seib *et al.*, 2004). A similar situation may also explain the increased resistance of the *prx* mutant strain to  $H_2O_2$  killing. The complex nature and the

fine balance of the oxidative stress response is indicated by similar but reversed findings in E. coli: increased sensitivity to H<sub>2</sub>O<sub>2</sub> is seen in a strain overexpressing ahpCF on a plasmid (Storz et al., 1989). It is proposed that the increased ahpCF expression may cause the OxyR regulator to be titrated away from other OxyR-regulated genes, including katG, which confer resistance to high levels of exogenous H<sub>2</sub>O<sub>2</sub> (Storz et al., 1989). The importance of this balance in vivo is implied by the finding from the ex vivo assays of pex cell survival and biofilm formation. Oxidative killing mechanisms have not yet been fully explored in cervical epithelial cells, but intestinal and airway epithelial cells are known to be able to kill bacteria by oxidative mechanisms (Schmidt and Walter, 1994; Rochelle et al., 1998; Battistoni et al., 2000). Despite the increased resistance of the oxyR mutant to in vitro oxidative killing, assumed to be due to increased expression of catalase, this strain had decreased survival in pex cells even though the katA mutant strain showed no decrease in survival compared with wild type. The gor, but not prx, mutant strain replicates the oxyR phenotype indicating that Gor and GSH play an important role in survival of N. gonorrhoeae within pex cells.

The *N. gonorrhoeae oxyR*, *prx* and *gor* mutant strains have decreased ability to form a biofilm. It has been suggested that the formation of a biofilm by N. gonorrhoeae may contribute to its ability to persist in an asymptomatic state in the female genital tract (Hook and Handsfield, 1999). Indeed, the number of human infections known to involve bacterial biofilms is increasing, as is the understanding of the metabolic alterations which occur during biofilm growth (reviewed in Costerton et al., 1999; Hall-Stoodley et al., 2004). Bacteria within biofilms display increased resistance to antimicrobial agents, and links between biofilm formation and oxidative stress defences have been seen in several microbes including E. coli (Schembri et al., 2003), H. influenzae (Murphy et al., 2005), P. aeruginosa (Sauer et al., 2002), Campylobacter jejuni (Sampathkumar et al., 2006), Streptococcus mutans (Wen et al., 2005), Burkholderia pseudomallei (Loprasert et al., 2002) and Candida albicans (Murillo et al., 2005). Of particular interest, the Prx of H. influenzae (73% similarity/81% identity to the N. gonorrhoeae Prx over the entire predicted amino acid sequence) is expressed in greater abundance during biofilm growth and Prx deficient mutant strains have 25-50% reduction in biofilm formation compared with the parent strains (Murphy et al., 2005). In yeast, the gene encoding glutamylcysteine synthase, an important gene in GSH synthesis, is upregulated during early stages of biofilm development (Murillo et al., 2005). In E. coli, the OxyR-regulated adhesin Ag43 promotes biofilm formation (Danese et al., 2000; Kjaergaard et al., 2000). Ag43 is repressed by OxyR; however, expression is derepressed upon exposure to oxidative stress (Schembri *et al.*, 2003). *E. coli agn43* mutant strains are defective in biofilm formation in glucose-minimal medium compared with wildtype strains, whereas *oxyR* mutant strains have increased Ag43 expression and increased biofilm formation (Danese *et al.*, 2000; Schembri *et al.*, 2003). Ag43 mutant cells were sensitive to H<sub>2</sub>O<sub>2</sub>; Ag43-mediated cell aggregation is believed to confer protection against H<sub>2</sub>O<sub>2</sub> killing (Schembri *et al.*, 2003). A similar situation is seen in *B. pseudomallei*, where *oxyR* mutant strains are hypersensitive to H<sub>2</sub>O<sub>2</sub> and paraquat and have increased biofilm formation in minimal medium (Loprasert *et al.*, 2002). Oxidative stress defences are also induced during immobilized or biofilm growth in *C. jejuni* (Sampathkumar *et al.*, 2006) and *P. aeruginosa* (Sauer *et al.*, 2002).

While the underlying mechanisms linking oxidative stress defences and biofilm formation is not yet known, it has been argued that complex interactions between pathogens and the host inflammatory response result in modification of the host environment which induces biofilm formation (Hall-Stoodley *et al.*, 2004). Oxidative stress in the host may be a trigger for the upregulation of oxidative stress defences and biofilm formation as a complex and linked defence strategy. These findings, in conjunction with the pex cell results described above, provide interesting insights into the *in vivo* survival mechanisms of *N. gonorrhoeae*.

#### **Experimental procedures**

#### Strains and growth conditions

*Neisseria gonorrhoeae* strain 1291 and the *oxyR* mutant derivative, *N. gonorrhoeae oxyR::kan* (Tseng *et al.*, 2003), were used in this study. *N. gonorrhoeae* strain 1291 is an American type culture collection (ATCC) strain that was isolated from a male patient with gonococcal urethritis. *N. gonorrhoeae* was grown on BHI agar or broth (Acumedia) supplemented with 10% Levinthal's base (Alexander 1965) and 1% IsoVitaleX (Becton Dickinson) at 37°C in 5% CO<sub>2</sub>. *E. coli* strain DH5 $\alpha$  was cultured in Luria–Bertani (LB) broth or on LB plates containing 1.5% bacteriological agar (Difco). Ampicillin and kanamycin were used at a final concentration of 100 µg ml<sup>-1</sup>.

### Recombinant DNA techniques and nucleotide sequence analysis

Recombinant DNA techniques were used as described in Sambrook *et al.* (1989). PCR was essentially done as described by Saiki *et al.* (1988). Primers used were as described by Tseng *et al.* (2003) or as listed in Table 2. Nucleotide sequence analysis was performed using MacVector (Oxford Molecular). DNA and protein alignments were performed using CLUSTALW (Jeanmougin *et al.*, 1998). All restriction endonucleases and T4 DNA ligase were obtained from New England Biolabs.

Construction of knockout mutants of the prx and gor genes of N. gonorrhoeae

Knockout constructs of the prx and gor genes were made via insertion of a kanamycin-resistant cassette (pUC4Kan; Amersham Biosciences) into a suitable unique restriction site in the coding region of each gene. The prx and gor genes were amplified from N. gonorrhoeae strain 1291 using primers prxA and gorB (Table 2) and cloned into pGEM®-T Easy (Promega), generating pGEM-Prx/Gor. The prx and gor insertional mutations were created by digesting pGEM-Prx/Gor with Hpal and EcoRV respectively, and ligating the isolated HinclI kanaymcin-cassette-containing fragment derived from pUC4Kan (see Fig. 1). These constructs were linearized with Notl and N. gonorrhoeae strain 1291 was transformed with each of the prx::kan and gor::kan knockouts as described previously (Jennings et al., 1995). Multiple, independent mutant strains were isolated and confirmed by PCR using the primers preprx and kan do (Table 2). Previous work has demonstrated that the pUC4Kan kanamycin cassette has no promoter or terminator that is active in Neisseria and will neither affect transcription nor have a polar effect on expression of adjacent genes (Jennings et al., 1995; van der Ley et al., 1997). To rule out the possibility that suppressor mutations may have arisen in 1291 oxyR::kan, we constructed a wild-type oxyR 'knock-in' version 'wild type\*' of the 1291oxyR::kan mutant strain. Knock-in strains, in which the wild-type oxyR gene was used to replace the oxyR::kan allele, were made by transforming Notl linearized pHJToxvR (Tseng et al., 2003). which contains the wild-type oxvR gene, into the 1291*oxvR::kan* mutant strain, and then selecting for a kanamycin-sensitive phenotype by replica plating. Confirmation that the oxvR::kan allele had been replaced by wildtype *oxyR* via homologous recombination was confirmed by amplification and sequencing of the oxyR gene. The resulting 1291 wild type\* strains were analysed by comparison with the parental wild-type 1291 strain and to 1291oxyR::kan, to confirm that both the 1291oxyR::kan H<sub>2</sub>O<sub>2</sub> resistant phenotype (Tseng et al., 2003), and regulatory phenotypes seen by non-quantitative PCR (regulation of prx; see Results section) had returned to the 1291 wild type phenotype, thus confirming that suppressor mutations were not responsible for the 1291oxyR::kan phenotype, but that the 1291 oxyR::kan phenotype was solely due to inactivation of the oxyR gene.

#### Microarray analysis

Triplicate cultures of *N. gonorrhoeae* strain 1291 wild type and the *oxyR* mutant were grown to exponential phase (optical density at 600 nm = 0.2–0.5). These cultures were then exposed to 1 mM hydrogen peroxide for 10 min prior to RNA extraction. Approximately 100  $\mu$ g of total RNA was prepared from each sample using the RNeasy Maxi Kit according to the manufacturer's instructions (Qiagen). The triplicate samples were pooled and the integrity and concentration of RNA was determined via microfluidic analysis on a bioanalyser (Agilent Technologies).

All microarray analysis was performed on *N. gonorrhoeae/* meningitidis genome arrays (Tlgr; http://pfgrc.tigr.org/

slide\_html/array-descriptions/N\_gonorrhoeae\_2.shtml). Each microarray consists of 6389 70mer oligonucleotides representing ORFs from *N. gonorrhoeae* strains FA1090 and ATCC 700825 (reference strain), and *N. meningitidis* strains Z2491 (serogroup A) and MC58 (serogroup B). *N. gonorrhoeae* strain 1291 was used in this study to enable comparison with previous reports on OxyR and oxidative stress responses of *N. gonorrhoeae* from this laboratory.

Five micrograms of each total RNA sample was labelled using random hexamers and direct incorporation of fluorescently Cy3- or Cy5-labelled nucleotides as previously described (Grimmond *et al.*, 2000). The hybridizations were performed in triplicate and incorporated a dye-swap to account for dye bias. After 16 h of hybridization, the arrays were washed and scanned on an Agilent G2565BA microarray scanner at a 5 micron resolution. The resulting images of the hybridizations were analysed using Imagene 5.5 (BioDiscovery) and the mean foreground, mean background and spot/signal quality determined.

All primary data were imported into an in-house installation of the comprehensive microarray relational database, BASE (http://kidney.scgap.org/base) (login: oxyR, password: oxyR). After print-tip intensity-independent Lowess normalization, differential expression was defined using a robust statistical method rather than simple fold change. All genes were ranked using the B statistic method where both fold change and variance of signals in replicates are used to determine the likelihood that genes are truly differentially expressed. A threshold in the B statistic of 0.0 was adopted as genes with a B score > 0 have a > 50% probability of being truly differentially expressed (Smyth *et al.*, 2003). The ranked B scores for all genes in each experiment are also maintained in BASE.

#### Quantitative RT-PCR

Total RNA was isolated by using the RNeasy kit (Qiagen) as described above. Cultures were exposed to 1 mM hydrogen peroxide for 10 min prior to RNA extraction. The equivalent of 1 µg of the total RNA preparation was treated with RQ1 RNase-free DNase (Promega). RNA was reverse transcribed using random primers and the TagMan® RT-PCR kit (PE Applied Biosystems) as recommended by the manufacturer. Primers were designed using Primer Express 1.0 software (ABI Prism; PE Biosystems). All RT-PCR reactions were performed in triplicate in a 25 µl mixture containing cDNA (5  $\mu$ l of 1/5 dilution), 1× SYBR Green buffer (PE Applied Biosystems) and approximately 2 µM of each primer (see Table 2 for primer sequences). 16S rRNA was used as the standard control in each quantitative PCR. Amplification and detection of specific products were performed with the ABI Prism 7700 sequence detection system (PE Applied Biosystems) with the following cycle profile: 95°C for 10 min. followed by 45 cycles of 95°C for 15 s and 60°C for 1 min. Data were analysed with ABI Prism 7700 v1.7 analysis software. Relative gene expression between the N. gonorrhoeae wild-type strain and the N. gonorrhoeae oxyR mutant strain was determined using the 2<sup>AACT</sup> relative quantification method. To investigate H<sub>2</sub>O<sub>2</sub> dependence of OxyR in N. gonorrhoeae, expression of the genes within the OxyR regulon was also investigated in the wild-type strain under growth conditions  $\pm 1 \text{ mM H}_2\text{O}_2$ .

#### Semi-quantitative RT-PCR

PCR was carried out in 50  $\mu$ l reactions using 1 $\times$  Taq buffer, 1.5 mM MgCl<sub>2</sub>, 1 unit of Taq DNA polymerase (Promega), cDNA (prepared as described above) and gene specific primers designed for quantitative RT-PCR (Table 2) with the following cycling conditions: 30 cycles of 94°C for 30 s, 50°C for 30 s, 72°C for 30 s and one cycle of 72°C for 10 min. 16S rRNA was used as an internal standard. PCR products were run on a 2% agarose gel.

#### Glutathione reductase assay

Cell free extracts of overnight cultures of *N. gonorrhoeae* strain 1291 and the *gor* mutant were prepared by resuspending cells in phosphate buffered saline (PBS), followed by three cycles of freezing and thawing. Unbroken cells were removed by centrifugation and the supernatant was collected. Protein concentration in cell extracts was determined by absorbance at 280 nm. The assay mixture included 50 mM K<sub>2</sub>HPO<sub>4</sub>/0.1 mM EDTA pH 7.5, 100  $\mu$ M NADPH, 1 mM GSSG and cell free extract in 1 ml. The decrease in [NADPH] was followed at 340 nm using 6220 as the molar extinction coefficient.

#### Oxidative stress killing assays

Paraguat, xanthine/xanthine oxidase and H<sub>2</sub>O<sub>2</sub> (Johnson et al., 1993) killing assays were performed using established methods as described by Tseng et al. (2001). Briefly, cells from agar plates were harvested, resuspended in PBS and 10<sup>5</sup>–10<sup>7</sup> cells were added to a solution of BHI broth to a final volume of 100 µl. The killing assay was started by the addition of a final concentration either 10 mM paraguat (Sigma), or 4.3 mM xanthine and 300 mU ml-1 xanthine oxidase (Sigma), or 10 mM H<sub>2</sub>O<sub>2</sub> (Riedel-de Haen). Cultures were incubated at 37°C/5% CO2 and at various time points samples were taken, plated onto BHI agar after serial dilutions and incubated at 37°C in 5% CO2. Experiments were done in triplicate and repeated on several occasions. Cumene hydroperoxide killing assays were also performed described above using 0.005-0.1% as cumene hydroperoxide.

#### Primary human ectocervical epithelial cell survival assay

Primary human ectocervical epithelial cells were procured and maintained as described previously (Edwards *et al.*, 2000) and cell monolayers were grown to confluence in 35 mm tissue culture dishes (Falcon). To determine the ability of *N. gonorrhoeae* wild-type and *oxyR* mutant strains to associate with, invade and survive within pex cells, they were challenged with either the wild-type or mutant strain and infection allowed to progress at 37°C, 5% CO<sub>2</sub>. For association assays the infection medium was removed, and the cells rinsed with PBS. For invasion assays, pex cells were incubated for a further 30 min with medium containing 100 µg of gentamicin (Gibco) per ml to kill extracellular bacteria. Survival assays were performed in a similar manner with the exception that following gentamicin treatment the infected cell monolayers were again rinsed with PBS. Fresh antibioticfree medium was then added to each infected cell monolayer before 1 h or 2 h incubation. Following each assay, pex cells were lysed with 0.5% saponin to release invasive bacteria, and serial dilutions were plated to determine colony-forming units (cfu). The per cent invasion was determined as a function of the original inoculum. *P*-values were determined using a Kruskal–Wallis non-parametric analysis of variance.

#### Biofilm formation by N. gonorrhoeae

For examination of biofilm formation via confocal microscopy, the *N. gonorrhoeae* 1291 wild type and the *gor, prx* and *oxyR* mutant strains were transformed with a plasmid encoding a green fluorescent protein (GFP; pLES98 containing GFP was a gift from Virginia Clark at the University of Rochester, NY). Strains were propagated from frozen stock cultures on GC agar with 10 ml  $\Gamma^1$  IsoVitaleX (Becton-Dickinson, Franklin Lakes, NJ), and incubated at 37°C and 5% CO<sub>2</sub>. Overnight plate cultures were used to create cell suspensions for inoculation of biofilm flow chambers.

Neisseria gonorrhoeae was grown in continuous flow chambers in 1:10 GC broth (Kellogg *et al.*, 1963) diluted in PBS with 1% IsoVitaleX, 100  $\mu$ M sodium nitrite and 5  $\mu$ g  $\mu$ I<sup>-1</sup> chloramphenicol to maintain pGFP. Cell suspensions of 2 × 10<sup>8</sup> cfu mI<sup>-1</sup> (in approximately 1 ml of biofilm media) were used to inoculate 37 × 5 × 5 mm flow cell chamber wells. These chambers were designed to reduce fluid sheer on biofilm (versus typical 1 mm depth wells). Flow chambers were incubated under static conditions at 37°C for 1 h post inoculation. Chambers were then incubated for another 48 h under 180  $\mu$ l min<sup>-1</sup> flow. After 48 h, the biofilm effluent was cultured to assure culture purity, and biofilm formation was assessed via confocal microscopy.

Z-series photomicrographs of flow chamber biofilms were taken with the Nikon PCM-2000 confocal microscope scanning system (Nikon, Melville, NY) using a modified stage for flow cell microscopy. GFP was excited at 450–490 nm for biofilm imaging. Three dimensional volume images were rendered using Nikon's accompanying EZ-C1 software. Each z-series photomicrograph was saved as a series of tiff images that were converted into eight-bit grayscale images using ImageJ software (Abramoff *et al.*, 2004) (available free from the NIH through http://rsb.info.nih.gov/ij), for analysis in COMSTAT (Heydorn *et al.*, 2000) (http://www.cbm. biocentrum.dtu.dk/English/Services/Resources/COMSTAT.

aspx). An info file (including pixel sizes for the x, y, z axes, and the number of the starting image and the total number of images in the stack) was created for each series of tiff images to direct COMSTAT to which images to analyse. COMSTAT was then used to threshold the images to reduce background. Biomass, and average and maximum thickness in each z-series was calculated by COMSTAT from the threshold images.

#### Acknowledgements

This work was supported by Program Grant 284214 from the National Health and Medical Research Council of Australia. SMG is a recipient of a NHMRC Career Development award

and a senior research affiliate of the ARC Special Research Centre for Functional and Applied Genomics. The authors would like to thank NIH and TIGR for the provision of the Neisseria arrays. We acknowledge the Gonococcal Genome Sequencing Project supported by USPHS/NIH grant #Al38399, and B.A. Roe, L. Song, S.P. Lin, X. Yuan, S. Clifton, Tom Ducey, Lisa Lewis and D.W. Dyer at the University of Oklahoma. The GenBank accession number for the completed *N. gonorrhoeae* strain FA1090 genome is AE004969.

#### References

- Abramoff, M.D., Magelhaes, P.J., and Ram, S.J. (2004) Image processing with ImageJ. *Biophot Int* **11:** 36–42.
- Ala' Aldeen, D.A., Westphal, A.H., De Kok, A., Weston, V., Atta, M.S., Baldwin, T.J., *et al.* (1996) Cloning, sequencing, characterisation and implications for vaccine design of the novel dihydrolipoyl acetyltransferase of *Neisseria meningitidis. J Med Microbiol* **45**: 419–432.
- Alexander, H.E. (1965) The haemophilus group. In *Bacterial and Mycotic Infection in Man*. Dubos, R.J., and Hirsch, J.G. (eds). London: Pitman Medical Publishing, pp. 724–741.
- Archibald, F.S., and Duong, M.N. (1986) Superoxide dismutase and oxygen toxicity defenses in the genus *Neisseria*. *Infect Immun* **51**: 631–641.
- Aslund, F., and Beckwith, J. (1999) The thioredoxin superfamily: redundancy, specificity, and gray-area genomics. *J Bacteriol* **181:** 1375–1379.
- Bateman, A., Birney, E., Cerruti, L., Durbin, R., Etwiller, L., Eddy, S.R., *et al.* (2002) The Pfam protein families database. *Nucleic Acids Res* **30**: 276–280.
- Battistoni, A., Pacello, F., Folcarelli, S., Ajello, M., Donnarumma, G., Greco, R., *et al.* (2000) Increased expression of periplasmic Cu,Zn superoxide dismutase enhances survival of *Escherichia coli* invasive strains within nonphagocytic cells. *Infect Immun* 68: 30–37.
- Becker-Hapak, M., and Eisenstark, A. (1995) Role of rpoS in the regulation of glutathione oxidoreductase (gor) in *Escherichia coli. FEMS Microbiol Lett* **134:** 39–44.
- Bsat, N., Herbig, A., Casillas-Martinez, L., Setlow, P., and Helmann, J.D. (1998) *Bacillus subtilis* contains multiple Fur homologues: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors. *Mol Microbiol* 29: 189–198.
- Burg, N.D., and Pillinger, M.H. (2001) The neutrophil: function and regulation in innate and humoral immunity. *Clin Immunol* **99:** 7–17.
- Carmel-Harel, O., and Storz, G. (2000) Roles of the glutathione- and thioredoxin-dependent reduction systems in the *Escherichia coli* and *Saccharomyces cerevisiae* responses to oxidative stress. *Annu Rev Microbiol* **54**: 439–461.
- Cha, M.K., Hong, S.K., Lee, D.S., and Kim, I.H. (2004) *Vibrio cholerae* thiol peroxidase-glutaredoxin fusion is a 2-Cys TSA/AhpC subfamily acting as a lipid hydroperoxide reductase. *J Biol Chem* **279**: 11035–11041.
- Chen, C.Y., and Morse, S.A. (1999) *Neisseria gonorrhoeae* bacterioferritin: structural heterogeneity, involvement in iron storage and protection against oxidative stress. *Microbiology* **145**: 2967–2975.

Journal compilation © 2006 Blackwell Publishing Ltd, Molecular Microbiology, 63, 54-68

- Christman, M.F., Morgan, R.W., Jacobson, F.S., and Ames, B.N. (1985) Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins in *Salmonella typhimurium*. *Cell* **41:** 753– 762.
- Christman, M.F., Storz, G., and Ames, B.N. (1989) OxyR, a positive regulator of hydrogen peroxide-inducible genes in *Escherichia coli* and *Salmonella typhimurium*, is homologous to a family of bacterial regulatory proteins. *Proc Natl Acad Sci USA* **86:** 3484–3488.
- Costerton, J.W., Stewart, P.S., and Greenberg, E.P. (1999) Bacterial biofilms: a common cause of persistent infections. *Science* **284:** 1318–1322.
- Danese, P.N., Pratt, L.A., Dove, S.L., and Kolter, R. (2000) The outer membrane protein, antigen 43, mediates cell-tocell interactions within *Escherichia coli* biofilms. *Mol Microbiol* **37:** 424–432.
- Edwards, J.L., Shao, J.Q., Ault, K.A., and Apicella, M.A. (2000) *Neisseria gonorrhoeae* elicits membrane ruffling and cytoskeletal rearrangements upon infection of primary human endocervical and ectocervical cells. *Infect Immun* **68**: 5354–5363.
- Greiner, L.L., Edwards, J.L., Shao, J., Rabinak, C., Entz, D., and Apicella, M.A. (2005) Biofilm formation by *Neisseria gonorrhoeae. Infect Immun* **73:** 1964–1970.
- Grimmond, S., Van Hateren, N., Siggers, P., Arkell, R., Larder, R., Soares, M.B., *et al.* (2000) Sexually dimorphic expression of protease nexin-1 and vanin-1 in the developing mouse gonad prior to overt differentiation suggests a role in mammalian sexual development. *Hum Mol Genet* **9**: 1553–1560.
- Hall-Stoodley, L., Costerton, J.W., and Stoodley, P. (2004) Bacterial biofilms: from the natural environment to infectious diseases. *Nat Rev Microbiol* 2: 95–108.
- Hampton, M.B., Kettle, A.J., and Winterbourn, C.C. (1998) Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. *Blood* **92:** 3007–3017.
- Hassett, D.J., Charniga, L., and Cohen, M.S. (1990) recA and catalase in H2O2-mediated toxicity in *Neisseria gonorrhoeae. J Bacteriol* **172:** 7293–7296.
- Heydorn, A., Nielsen, A.T., Hentzer, M., Sternberg, C., Givskov, M., Ersboll, B.K., and Molin, S. (2000) Quantification of biofilm structures by the novel computer program COMSTAT. *Microbiology* **146**: 2395–2407.
- Hofmann, B., Hecht, H.J., and Flohe, L. (2002) Peroxiredoxins. *Biol Chem* **383:** 347–364.
- Hook, E.W., and Handsfield, H. (1999) Gonococcal infections in adults. In *Sexually Transmitted Diseases*. Holmes, K.K., Sparling, P.F., Mardh, P.A., Lemon, S.M., Stamm, W.E., Piot, P., and Wasserheit, J.N. (eds). New York: New York McGraw-Hill, pp. 451–466.
- Horsburgh, M.J., Clements, M.O., Crossley, H., Ingham, E., and Foster, S.J. (2001) PerR controls oxidative stress resistance and iron storage proteins and is required for virulence in *Staphylococcus aureus*. *Infect Immun* **69**: 3744–3754.
- Imlay, J.A. (2003) Pathways of oxidative damage. Annu Rev Microbiol 57: 395–418.
- Jeanmougin, F., Thompson, J.D., Gouy, M., Higgins, D.G., and Gibson, T.J. (1998) Multiple sequence alignment with Clustal X. *Trends Biochem Sci* **23**: 403–405.

- Jennings, M.P., Hood, D.W., Peak, I.R., Virji, M., and Moxon, E.R. (1995) Molecular analysis of a locus for the biosynthesis and phase-variable expression of the lacto-N-neotetraose terminal lipopolysaccharide structure in *Neisseria meningitidis*. *Mol Microbiol* **18**: 729– 740.
- Johnson, S.R., Steiner, B.M., Cruce, D.D., Perkins, G.H., and Arko, R.J. (1993) Characterization of a catalase-deficient strain of *Neisseria gonorrhoeae*: evidence for the significance of catalase in the biology of *N. gonorrhoeae*. *Infect Immun* **61**: 1232–1238.
- Kellogg, D.S., Jr, Peacock, W.L., Jr, Deacon, W.E., Brown, L., and Pirkle, D.I. (1963) *Neisseria gonorrhoeae*. I. Virulence genetically linked to clonal variation. *J Bacteriol* 85: 1274–1279.
- Kim, J.A., and Mayfield, J. (2000) Identification of *Brucella abortus* OxyR and its role in control of catalase expression. *J Bacteriol* **182:** 5631–5633.
- Kjaergaard, K., Schembri, M.A., Hasman, H., and Klemm, P. (2000) Antigen 43 from *Escherichia coli* induces inter- and intraspecies cell aggregation and changes in colony morphology of *Pseudomonas fluorescens*. J Bacteriol **182**: 4789–4796.
- de Kok, A., Hengeveld, A.F., Martin, A., and Westphal, A.H. (1998) The pyruvate dehydrogenase multi-enzyme complex from Gram-negative bacteria. *Biochim Biophys Acta* **1385**: 353–366.
- Kunert, K.J., Cresswell, C.F., Schmidt, A., Mullineaux, P.M., and Foyer, C.H. (1990) Variations in the activity of glutathione reductase and the cellular glutathione content in relation to sensitivity to methylviologen in *Escherichia coli*. *Arch Biochem Biophys* **282**: 233–238.
- van der Ley, P., Kramer, M., Martin, A., Richards, J.C., and Poolman, J.T. (1997) Analysis of the *icsBA* locus required for biosynthesis of the inner core region from *Neisseria meningitidis* lipopolysaccharide. *FEMS Microbiol Lett* **146**: 247–253.
- Loprasert, S., Sallabhan, R., Whangsuk, W., and Mongkolsuk, S. (2002) The *Burkholderia pseudomallei oxyR* gene: expression analysis and mutant characterization. *Gene* **296:** 161–169.
- LosAlamos (2005) Neisseria gonorrhoeae database [WWW document]. URL http://www.stdgen.lanl.gov/stdgen/ bacteria/ngon/index.html. Los Alamos National Laboratory; University of California for the US Department of Energy.
- Maciver, I., and Hansen, E.J. (1996) Lack of expression of the global regulator OxyR in *Haemophilus influenzae* has a profound effect on growth phenotype. *Infect Immun* **64**: 4618–4629.
- Mongkolsuk, S., Sukchawalit, R., Loprasert, S., Praituan, W., and Upaichit, A. (1998) Construction and physiological analysis of a *Xanthomonas* mutant to examine the role of the *oxyR* gene in oxidant-induced protection against peroxide killing. *J Bacteriol* **180**: 3988– 3991.
- Morgan, R.W., Christman, M.F., Jacobson, F.S., Storz, G., and Ames, B.N. (1986) Hydrogen peroxide-inducible proteins in *Salmonella typhimurium* overlap with heat shock and other stress proteins. *Proc Natl Acad Sci USA* 83: 8059–8063.

- Murillo, L.A., Newport, G., Lan, C.Y., Habelitz, S., Dungan, J., and Agabian, N.M. (2005) Genome-wide transcription profiling of the early phase of biofilm formation by *Candida albicans. Eukaryot Cell* **4**: 1562–1573.
- Murphy, T.F., Kirkham, C., Sethi, S., and Lesse, A.J. (2005) Expression of a peroxiredoxin-glutaredoxin by *Haemophilus influenzae* in biofilms and during human respiratory tract infection. *FEMS Immunol Med Microbiol* **44**: 81–89.
- Ochsner, U.A., Vasil, M.L., Alsabbagh, E., Parvatiyar, K., and Hassett, D.J. (2000) Role of the *Pseudomonas aeruginosa oxyR-recG* operon in oxidative stress defense and DNA repair: OxyR-dependent regulation of *katB-ankB*, *ahpB*, and *ahpC-ahpF*. *J Bacteriol* **182**: 4533–4544.
- Pauwels, F., Vergauwen, B., Vanrobaeys, F., Devreese, B., and Van Beeumen, J.J. (2003) Purification and characterization of a chimeric enzyme from *Haemophilus influenzae* Rd that exhibits glutathione-dependent peroxidase activity. *J Biol Chem* **278**: 16658–16666.
- Pauwels, F., Vergauwen, B., and Van Beeumen, J.J. (2004) Physiological characterization of *Haemophilus influenzae* Rd deficient in its glutathione-dependent peroxidase PGdx. *J Biol Chem* **279**: 12163–12170.
- Pomposiello, P.J., and Demple, B. (2001) Redox-operated genetic switches: the SoxR and OxyR transcription factors. *Trends Biotechnol* **19:** 109–114.
- Pomposiello, P.J., and Demple, B. (2002) Global adjustment of microbial physiology during free radical stress. *Adv Microb Physiol* **46:** 319–341.
- Poole, L.B. (2005) Bacterial defenses against oxidants: mechanistic features of cysteine-based peroxidases and their flavoprotein reductases. *Arch Biochem Biophys* **433**: 240–254.
- Prinz, W.A., Aslund, F., Holmgren, A., and Beckwith, J. (1997) The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the *Escherichia coli* cytoplasm. *J Biol Chem* **272**: 15661–15667.
- Rochelle, L.G., Fischer, B.M., and Adler, K.B. (1998) Concurrent production of reactive oxygen and nitrogen species by airway epithelial cells in vitro. *Free Radic Biol Med* **24**: 863–868.
- Rouhier, N., and Jacquot, J.P. (2003) Molecular and catalytic properties of a peroxiredoxin-glutaredoxin hybrid from *Neisseria meningitidis. FEBS Lett* **554:** 149–153.
- Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharf, S.J., Higuchi, R., Horn, G.T., *et al.* (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. *Science* 239: 487–491.
- Sambrook, J., Maniatis, T., and Fritsch, E.F. (1989) *Molecular cloning: A Laboratory Manual.* Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
- Sampathkumar, B., Napper, S., Carrillo, C.D., Willson, P., Taboada, E., Nash, J.H., *et al.* (2006) Transcriptional and translational expression patterns associated with immobilized growth of *Campylobacter jejuni*. *Microbiology* **152**: 567–577.
- Sauer, K., Camper, A.K., Ehrlich, G.D., Costerton, J.W., and Davies, D.G. (2002) *Pseudomonas aeruginosa* displays multiple phenotypes during development as a biofilm. *J Bacteriol* **184:** 1140–1154.
- Schembri, M.A., Hjerrild, L., Gjermansen, M., and Klemm, P. (2003) Differential expression of the *Escherichia coli*

autoaggregation factor antigen 43. J Bacteriol 185: 2236-2242.

- Schmidt, H.H., and Walter, U. (1994) NO at work. *Cell* 78: 919–925.
- Seaver, L.C., and Imlay, J.A. (2001) Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in *Escherichia coli. J Bacteriol* **183**: 7173–7181.
- Seib, K.L., Tseng, H.J., McEwan, A.G., Apicella, M.A., and Jennings, M.P. (2004) Defenses against oxidative stress in *Neisseria gonorrhoeae* and *Neisseria meningitidis*: distinctive systems for different lifestyles. *J Infect Dis* **190**: 136– 147.
- Skaar, E.P., Tobiason, D.M., Quick, J., Judd, R.C., Weissbach, H., Etienne, F., *et al.* (2002) The outer membrane localization of the *Neisseria gonorrhoeae* MsrA/B is involved in survival against reactive oxygen species. *Proc Natl Acad Sci USA* **99**: 10108–10113.
- Smyth, G.K., Yang, Y.H., and Speed, T. (2003) Statistical issues in cDNA microarray data analysis. *Methods Mol Biol* **224:** 111–136.
- Stohl, E.A., Criss, A.K., and Seifert, H.S. (2005) The transcriptome response of *Neisseria gonorrhoeae* to hydrogen peroxide reveals genes with previously uncharacterized roles in oxidative damage protection. *Mol Microbiol* 58: 520–532.
- Storz, G., and Imlay, J.A. (1999) Oxidative stress. *Curr Opin Microbiol* **2:** 188–194.
- Storz, G., Jacobson, F.S., Tartaglia, L.A., Morgan, R.W., Silveira, L.A., and Ames, B.N. (1989) An alkyl hydroperoxide reductase induced by oxidative stress in *Salmonella typhimurium* and *Escherichia coli*: genetic characterization and cloning of *ahp. J Bacteriol* **171**: 2049–2055.
- Storz, G., Tartaglia, L.A., and Ames, B.N. (1990) Transcriptional regulator of oxidative stress-inducible genes: direct activation by oxidation. *Science* **248**: 189–194.
- Taha, M.K., Dupuy, B., Saurin, W., So, M., and Marchal, C. (1991) Control of pilus expression in *Neisseria gonorrhoeae* as an original system in the family of twocomponent regulators. *Mol Microbiol* 5: 137–148.
- Tettelin, H., Saunders, N.J., Heidelberg, J., Jeffries, A.C., Nelson, K.E., Eisen, J.A., *et al.* (2000) Complete genome sequence of *Neisseria meningitidis* serogroup B strain MC58. *Science* 287: 1809–1815.
- Toledano, M.B., Kullik, I., Trinh, F., Baird, P.T., Schneider, T.D., and Storz, G. (1994) Redox-dependent shift of OxyR-DNA contacts along an extended DNA-binding site: a mechanism for differential promoter selection. *Cell* **78**: 897–909.
- Tseng, H.J., Srikhanta, Y., McEwan, A.G., and Jennings, M.P. (2001) Accumulation of manganese in *Neisseria gonorrhoeae* correlates with resistance to oxidative killing by superoxide anion and is independent of superoxide dismutase activity. *Mol Microbiol* **40**: 1175–1186.
- Tseng, H.J., McEwan, A.G., Apicella, M.A., and Jennings, M.P. (2003) OxyR acts as a repressor of catalase expression in *Neisseria gonorrhoeae*. *Infect Immun* **71**: 550–556.
- Turner, S.M., Reid, E.G., Smith, H., and Cole, J.A. (2003) A novel cytochrome c peroxidase from *Neisseria gonorrhoeae*, a lipoprotein from a Gram-negative bacterium. *Biochem J* 373: 865–873.

Journal compilation © 2006 Blackwell Publishing Ltd, Molecular Microbiology, 63, 54-68

- Vergauwen, B., Pauwels, F., Jacquemotte, F., Meyer, T.E., Cusanovich, M.A., Bartsch, R.G., and Van Beeumen, J.J. (2001) Characterization of clutathione amide reductase from *Chromatium gracile*. Identification of a novel thiol peroxidase (Prx/Grx) fueled by glutathione amide redox cycling. *J Biol Chem* **276**: 20890–20897.
- Vergauwen, B., Pauwels, F., Vaneechoutte, M., and Van Beeumen, J.J. (2003) Exogenous glutathione completes the defense against oxidative stress in *Haemophilus influenzae. J Bacteriol* **185**: 1572–1581.
- Wen, Z.T., Suntharaligham, P., Cvitkovitch, D.G., and Burne, R.A. (2005) Trigger factor in *Streptococcus mutans* is involved in stress tolerance, competence development, and biofilm formation. *Infect Immun* **73**: 219– 225.
- Whittenbury, R. (1964) Hydrogen peroxide formation and catalase activity in the lactic acid bacteria. *J Gen Microbiol* **35:** 13–26.
- Wizemann, T.M., Moskovitz, J., Pearce, B.J., Cundell, D., Arvidson, C.G., So, M., *et al.* (1996) Peptide methionine sulfoxide reductase contributes to the maintenance of adhesins in three major pathogens. *Proc Natl Acad Sci* USA **93**: 7985–7990.

- Wood, Z.A., Schroder, E., Robin Harris, J., and Poole, L.B. (2003) Structure, mechanism and regulation of peroxiredoxins. *Trends Biochem Sci* 28: 32–40.
- Wu, H.J., Seib, K.L., Srikhanta, Y.N., Kidd, S.P., Edwards, J.L., Maguire, T.L., *et al.* (2006) PerR controls Mn-dependent resistance to oxidative stress in *Neisseria* gonorrhoeae. *Mol Microbiol* **60**: 401–416.
- Zheng, H.Y., Hassett, D.J., Bean, K., and Cohen, M.S. (1992) Regulation of catalase in *Neisseria gonorrhoeae*. Effects of oxidant stress and exposure to human neutrophils. *J Clin Invest* 90: 1000–1006.
- Zheng, M., Aslund, F., and Storz, G. (1998) Activation of the OxyR transcription factor by reversible disulfide bond formation. *Science* **279**: 1718–1721.
- Zheng, M., Wang, X., Doan, B., Lewis, K.A., Schneider, T.D., and Storz, G. (2001a) Computation-directed identification of OxyR DNA binding sites in *Escherichia coli. J Bacteriol* 183: 4571–4579.
- Zheng, M., Wang, X., Templeton, L.J., Smulski, D.R., LaRossa, R.A., and Storz, G. (2001b) DNA microarraymediated transcriptional profiling of the *Escherichia coli* response to hydrogen peroxide. *J Bacteriol* **183**: 4562– 4570.