3	Osthole Regulates Inflammatory Mediator Expression
4	through Modulating NF-KB, Mitogen-Activated Protein
5	Kinases, Protein Kinase C, and Reactive Oxygen Species
6	
7	PEI-CHUN LIAO ^{∇, #} , SHIH-CHANG CHIEN ^{§, #} , CHEN-LUNG HO ^{‡, ±} , EUGENE I-CHEN
8	Wang [‡] , Shu-Ching Lee [‡] , Yueh-Hsiung Kuo [◆] , Narumon Jeyashoke [¶] , Jie
9	Chen ⁺ , Wei-Chih Dong ^{∇} , Louis Kuoping Chao ^{+,*} , Kuo-Feng Hua ^{$\nabla, \perp, *$}
10	
11	$^{\nabla}$ Institute of Biotechnology, National Ilan University, Ilan, Taiwan, [§] School of Chinese
12	Medicine Resources, China Medical University, Taichung, Taiwan, [‡] Division of Wood
13	Cellulose, Taiwan Forestry Research Institute, Taipei, Taiwan, [•] Graduate Institute of
14	Chinese Pharmaceutical Science, China Medical University, Taichung, Taiwan,
15	[¶] School of Bioresources and Technology, King Mongkut's University of Technology
16	Thonburi, Bangkok, Thailand, ⁺ Department of Cosmeceutics, China Medical
17	University, Taichung, Taiwan, [⊥] Graduate Institute of Drug Safety, School of Pharmacy,
18	China Medical University, Taichung, Taiwan.
19	*To whom correspondence should be addressed. [#] co-first author

20	LK. Chao: Tel: +886-4-22053366-5311; E-mail: lkpchao@yahoo.com.tw; or
21	KF. Hua: Tel: +886-3-9357400-585; E-mail: kfhua@niu.edu.tw
22	ABSTRACT
23	Osthole, a coumarin compound, has been reported to exhibit various biological
24	activities; however the cellular mechanism of its immune modulating activity has not
25	yet been fully addressed. In this study we isolated osthole from the seeds of Cnidium
26	<i>monnieri</i> and demonstrated that osthole inhibited TNF- α , NO and COX-2 expression
27	in LPS-stimulated macrophages, without reducing the expression of IL-6.
28	Furthermore, the phosphorylation of p38, JNK1/2, PKC- α and PKC- ϵ induced by
29	LPS were inhibited by osthole; however, the phosphorylation of ERK1/2 and PKC- δ
30	were not reduced by osthole. Osthole also inhibited NF-kB activation and ROS
31	release in LPS-stimulated macrophages. Our current results indicated that osthole is
32	the major anti-inflammatory ingredient of Cnidium monnieri seeds ethanol extract.
33	
34	KEYWORDS: Osthole; LPS; inflammation; signaling
35	ABBREVIATIONS: LPS, lipopolysaccharide; TNF- α , tumor necrosis factor- α ; NO,
36	nitric oxide; COX-2, cyclooxygenase-2; IL-6, interleukin-6; TLR, Toll-like receptor;
37	NF-κB, nuclear transcription factor kappa-B; MAPKs, mitogen-activated protein
38	kinases; PKC, protein kinase C

39 INTRODUCTION

40	Cnidium monnieri Cuss. is not only a traditional Chinese herb but also an
41	economically important agricultural product via artificial planting, especially in China
42	in recent years. Osthole (7-methoxy-8-isopentenoxycoumarin), a coumarin compound
43	isolated from the seeds of C. monnieri, exhibits significant bioactivities including:
44	induction of apoptosis in HER2-overexpressing breast cancer cells (1); inhibition of
45	voltage-gated Na ^{$+$} channels in mouse neuroblastoma N2A cells (2); inhibition of rat
46	vascular smooth muscle cell proliferation (3) ; suppression of the secretion of hepatitis
47	B virus through increasing the glycosylation of hepatitis B surface antigen which are
48	important steps for the viral particle maturation (4); inhibition of contact dermatitis in
49	experimental animals (5); and inhibition of cytokine expression in rat peritoneal cells
50	and human peripheral blood mononuclear cells (6). However, the molecular
51	mechanism of osthole-mediated downregulation of tumor necrosis factor-alpha
52	(TNF- α), nitric oxide (NO) and cyclooxygenase-2 (COX-2) expression in
53	macrophages is unclear.
54	The innate immunity of mammals is triggered by pathogen-associated molecular
55	patterns that are shared by groups of different microbial pathogens; these are
56	recognized by Toll-like receptors (TLRs) expressed on the cell surface of
57	macrophages (7). Lipopolysaccharide (LPS), one of the most important

58	pathogen-associated molecular patterns, activates macrophages by binding to TLR4,
59	followed by stimulating nuclear transcription factor kappa-B (NF- κ B) activation. This
60	leads to the production of pro-inflammatory mediators from macrophages, including
61	TNF- α , interleukin-1 β (IL-1 β), interleukin-6 (IL-6) and NO (8). Protein kinase C
62	(PKC) is one of the signaling molecules in an LPS-mediated inflammatory response,
63	and regulates a downstream signal transduction cascade via modulation of the
64	mitogen-activated protein kinase (MAPK) pathways, such as extracellular signal
65	regulated kinase $1/2$ (ERK1/2), c-Jun N-terminal kinase $1/2$ (JNK1/2) and p38 MAP
66	kinase (9) . Recently, the development of potential therapeutic approaches to modulate
67	inflammatory disease has become ever more popular and important. These therapeutic
68	approaches include inhibition of pro-inflammatory mediator production (10).
69	In our previous study we found that ethanol extract of C. monnieri seeds
70	inhibited cytokine production in LPS-stimulated macrophages. In addition, Zimecki et
71	al reported that osthole inhibited concanavalin A- and pokeweed mitogen-induced
72	mouse splenocyte proliferation and inhibited TNF- α production in rat peritoneal cells
73	and human peripheral blood mononuclear cells (6). This finding promoted us to
74	isolate osthole, the major component of the ethanol extract of C. monnieri seeds and
75	dissected its anti-inflammatory mechanisms in macrophages. We demonstrated that
76	osthole inhibited TNF- α , NO and COX-2 expression through inhibiting activation of

NF-κB, p38, JNK1/2, PKC- α , PKC- ε and reactive oxygen species (ROS) in

- 78 LPS-activated macrophages. Our results provide support for the potential for the
- future pharmaceutical application of osthole for immune modulation purposes.

80

81 MATERIALS AND METHODS

- 82 Materials. Seeds of *C. monnieri* were purchased from a traditional Chinese
- 83 medicine dispensary in Taiwan. LPS (from *Escherichia coli* 0111:B4),
- 84 anti-phospho-ERK1/2 antibody, anti-phospho-JNK1/2 antibody, anti-phospho-p38
- 85 antibody and anti-actin antibody were purchased from Sigma (St. Louis, MO).
- 86 Anti-phospho-IKK- α antibody, anti-IKK- α antibody, anti-phospho-I κ B- α antibody,
- 87 anti-I κ B- α antibody, anti-COX-2 antibody, anti-phospho-PKC- α antibody,
- 88 anti-phospho-PKC- δ antibody, anti-phospho-PKC- ϵ antibody, anti-ERK1/2 antibody,
- anti-JNK1/2 antibody and anti-p38 antibody were obtained from Santa Cruz
- 90 Biotechnology (Santa Cruz, CA). TNF-α and IL-6 ELISA kits were purchased from
- 91 R&D Systems (Minneapolis, MN).
- 92 Extraction and Purification. C. monnieri seeds (580 g dry weight) were treated
- 93 with 15 L of ethanol (95% v/v, 10 days repeat 3 times) at room temperature. The
- 94 extracts were then concentrated to produce alcoholic extracts (AE) ca. 42.54 g (yield
- 95 % = 7.33%). AE (240 mg) was dissolved in 2 ml ethanol and then purified by

96	semi-preparative high-performance liquid chromatography (HPLC) (Knauer 100
97	pump with a Knauer RI 2400 refractive index detector) with a Phenomenex Luna
98	Silica (2) column (250 mm length, 10 mm i.d., particle shape/size 5.0μ m). Five pure
99	compounds were obtained. The separation conditions were as follows: 500 μ l was
100	injected for each separation; flow rate, 4 ml/min; mobile phase, acetone/hexane = $1/6$.
101	The structures of the five pure compounds were identified by physical and spectral
102	data (mp, EIMS, ¹ H-NMR, UV, IR) compared with previous research values. UV and
103	IR spectra were recorded on Jasco V-550 and Bio-Rad FTS-40 spectrophotometers,
104	respectively. Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker
105	Avance 400 MHz FT-NMR spectrometer. Mass spectra (MS) were obtained using a
106	Finnigan MAT-95S mass spectrometer.
107	Five pure compounds isolated from C. monnieri seeds ethanol extract whose
108	characteristics are described as follows:
109	Osthole (1) – Colorless prisms from ether; mp 79-81 °C; EI-MS m/z (%): 244
110	(M ⁺ , 100), 229 (38), 213 (23), 201 (28), 189 (38), 131 (25); UV MeOH λ_{max} : 249, 258,
111	322; IR KBr, λ_{max} , cm ⁻¹ : 1720, 1610; ¹ H-NMR δ: 7.61 (1H, d, <i>J</i> = 9.4 Hz), 7.29 (1H, d,
112	<i>J</i> = 8.7 Hz), 6.83 (1H, d, <i>J</i> = 8.7 Hz), 6.23 (1H, d, <i>J</i> = 9.4 Hz), 5.22 (1H, t, <i>J</i> = 7.4 Hz),
113	3.92 (3H, s), 3.52 (2H, d, <i>J</i> = 7.4 Hz), 1.84 (3H, s), 1.67 (3H, s).
114	Imperatorin (2) – mp 97.5-99 °C; UV MeOH λ_{max} : 301, 249, 218; IR KBr, λ_{max} ,

115 cm⁻¹: 1722, 1707 1587, 1150, 838; ¹H-NMR (CDCl₃) δ : 7.76 (1H, d, J = 9.3 Hz),

116 7.69 (1H, d, *J* = 2.4 Hz), 7.36 (1H, s), 6.81 (1H, d, *J* = 2.4 Hz), 6.37 (1H, d, *J* = 9.3

117 Hz), 5.61 (1H, t-like, *J* = 7.3 Hz), 5.01 (2H, d, *J* = 7.3 Hz), 1.74 (3H, s), 1.72 (3H, s).

- 118 Xanthotoxin (**3**) mp 146-148 °C; UV MeOH λ_{max} : 299, 248, 218; IR KBr, λ_{max} ,
- 119 cm⁻¹: 1710, 1620, 1586, 1155, 821; ¹H-NMR (CDC1₃) δ : 7.77 (1H, d, *J* = 9.3 Hz),

120 7.70 (1H, d, *J* = 2.4 Hz), 7.36 (1H, s), 6.83 (1H, d, *J* = 2.4 Hz), 6.37 (1H, d, *J* = 9.3

- 121 Hz), 4.30 (3H, s).
- 122 Isopimpinellin (4) Colorless prism; mp 150 °C; EI-MS m/z (%): 246 (M⁺, 95),

123 231 (100), 203 (15), 188 (25), 175 (22), 160 (20), 147 (14); IR KBr, λ_{max} , cm⁻¹: 1720,

124 1590, 1478, 1352; ¹H-NMR (CDCl₃) δ : 8.12 (1H, d, J = 9.7 Hz), 7.63 (1H, d, J = 2.3

125 Hz), 7.00 (1H, d, *J* = 2.3 Hz), 6.29 (1H, d, *J* = 9.7 Hz), 4.17 (3H, s), 4.16 (3H, s).

126 Peroxyauraptenol (5) – Colorless prisms from ether; mp 114-116 °C; EI-MS m/z

127 (%): 259, 244, 243, 190 (67), 189 (100), 175 (16), 159, 146, 131 (84), 118, 103; UV

128 MeOH λ_{max} : 248, 257, 322; IR KBr, λ_{max} , cm⁻¹: 3500, 1730, 1610; ¹H-NMR δ : 8.46

129 (1H, br s), 7.64 (1H, d, *J* = 9.4 Hz), 7.36 (1H, d, *J* = 8.7 Hz), 6.87 (1H, d, *J* = 8.7 Hz),

130 6.26 (1H, d, *J* = 9.4 Hz), 4.94 (1H, s), 4.88 (1H, s), 4.60 (1H, dd, *J* = 5.4, 7.7 Hz),

131 3.95 (3H, s), 3.27 (1H, dd, *J* = 7.7, 13.8 Hz), 3.16 (1H, dd, *J* = 5.4, 13.8 Hz), 1.91 (3H,

132 s).

133 Cell Cultures. Murine macrophages J774A.1 and RAW 264.7 were obtained

134	from the American Type Culture Collection (Rockville, MD). RAW 264.7
135	macrophages stably transfected with the NF- κ B reporter gene (RAW-Blue TM cells)
136	were purchased from InvivoGen (San Diego, CA). J774A.1 and RAW 264.7 cells
137	were propagated in RPMI-1640 medium supplemented with 10% heat-inactivated
138	fetal calf serum and 2 mM L-glutamine (Life Technologies, Carlsbad, CA), and
139	cultured at 37 °C in a 5% CO ₂ incubator (RAW-Blue TM cells cultured in the presence
140	of Zeocin TM).
141	Microculture Tetrazolium (MTT) Assay for Cell Viability. Cells were seeded
142	in 96-well plates at a density of 5×10^3 cells/well. Cells were incubated with or
143	without osthole in the absence or presence of LPS for 24 h. Cell viability was
144	determined using colorimetric MTT assays, as described in a previous report (11).
145	Enzyme-Linked Immunosorbent Assay (ELISA). J774A.1 macrophages were
146	seeded in 6-well plates at a density of 1×10^6 cells/ml, and then incubated with or
147	without LPS (1 μ g/ml) in the absence or presence of osthole for 24 h. The effects of
148	osthole on TNF- α and IL-6 production were measured by ELISA according to the
149	manufacturer's protocol. In brief, 50 μl of biotinylated antibody reagent and 50 μl of
150	supernatant were added to an anti-mouse TNF- α and IL-6 precoated stripwell plate,
151	and incubated at room temperature for 2 h. After washing the plate three times with
152	washing buffer, 100 μ l of diluted streptavidin-HRP (horseradish peroxidase)

153	concentrate was added to each well and incubated at room temperature for 30 min.
154	The washing process was repeated; then 100 μ l of a premixed tetramethylbenzidine
155	substrate solution was added to each well and developed at room temperature in the
156	dark for 30 min. Following the addition of 100 μ l of stop solution to each well to stop
157	the reaction, the absorbance of the plate was measured by a microplate reader at a 450
158	nm wavelength.
159	NO Inhibitory Assay. RAW 264.7 cells were seeded in 24-well plates at a
160	density of 2×10^5 cells/ml, and then incubated with or without LPS (1 µg/ml) in the
161	absence or presence of osthole for 24 h. The effects of osthole on NO production were
162	measured indirectly by analysis of nitrite levels using the Griess reaction (11).
163	NF-KB Reporter Assay. RAW-Blue TM cells (InvivoGen) – RAW 264.7
164	macrophages which stably express a secreted embryonic alkaline phosphatase (SEAP)
165	gene inducible by NF- κ B, and are resistant to the selectable marker Zeocin – were
166	seeded in 60 mm dishes at a density of 4×10^5 cells/ml, and grown overnight in a 5%
167	CO ₂ incubator at 37 °C. After pretreatment with osthole, followed by LPS stimulation
168	for 24 h, the medium was harvested. Medium samples (20 μ l) were then mixed with
169	QUANTI-Blue TM (InvivoGen) medium (200 μ l) in 96-well plates at 37 °C for 15 min.
170	The results of SEAP activity were assessed by measuring the optical density at 655
171	nm using an ELISA reader (11).

172	Western Blot Assay. Whole cell lysates were separated by SDS-PAGE and
173	electrotransferred to a PVDF membrane. The membranes were incubated in blocking
174	solution – 5% nonfat milk in phosphate buffered saline (PBS) with 0.1% Tween $20 - $
175	at room temperature for 1 h. Each membrane was incubated with specific primary
176	antibody at room temperature for 2 h. After washing three times in PBS with 0.1%
177	Tween 20, the membrane was incubated with an HRP-conjugated secondary antibody
178	directed against the primary antibody. The membrane was developed by an enhanced
179	chemiluminescence Western blot detection system.
180	Measurement of Intracellular ROS Production. Intracellular ROS stimulated
181	by LPS was measured by detecting the fluorescence intensity of
182	2',7'-dichlorofluorescein diacetate (H2DCFDA) oxidized product (DCF) (Molecular
183	Probes, Eugene, OR). Briefly, J774A.1 macrophages $(1 \times 10^6/\text{ml})$ grown in a phenol
184	red-free RPMI medium for 24 h were then preincubated with 2 μ M H ₂ DCFDA,
185	osthole (10 μ g/ml), or NAC (10 mM) at 37 °C for 30 min in the dark; this was
186	followed by adding medium containing LPS for an additional incubation period of
187	0-180 min. The relative fluorescence intensity of fluorophore DCF, formed by
188	peroxide oxidation of the non-fluorescent precursor, was detected at an excitation
189	wavelength of 485 nm and an emission wavelength of 530 nm with a CytoFluor 2300
190	fluorometer (Millipore, Bedford, MA).

191 Statistical Analysis. All values are given as mean ± SE. Data analysis involved
192 one-way ANOVA with a subsequent Scheffé test.

RESULTS

195	Effect of Osthole on the Proliferation of Macrophages. Five compounds were
196	isolated from the ethanol extract of seeds of <i>C. monnieri</i> , including: (1) osthole (yield
197	rate: 43.1%); (2) imperatorin (yield rate: 28.4%); (3) xanthotoxin (yield rate: 3.3%);
198	(4) isopimpinellin (yield rate: 4.2%); and (5) peroxyauraptenol (yield rate: 2.5%).
199	Since osthole is the major compound of the ethanol extracts of seeds of C. monnieri,
200	the goal of this study was to investigate the effect of osthole on the
201	immune-modulating functions of macrophages. Considering that J774A.1
202	macrophages are normal immune cells, the dosage of osthole used in this study should
203	not affect their survival. To examine the toxicity of osthole, J774A.1 macrophages
204	were treated with osthole at various concentrations (0, 1, 3 and 10 μ g/ml) in the
205	absence or presence of LPS (1 μ g/ml) for 24 h. Cell viability was analyzed by MTT
206	assay. The results revealed that the cell survival rate did not differ obviously when
207	J774A.1 macrophages were treated with $\leq 10 \ \mu g/ml$ osthole (data not shown). At these
208	osthole concentrations, even the presence of LPS at 1 μ g/ml did not affect the cell
209	survival rate (data not shown). Cinnamaldehyde was used as a positive control for

210	reducing cell viability (12) . In addition, osthole was found to be not toxic to another
211	murine macrophage cell line, RAW 264.7, at concentrations $\leq 10 \ \mu g/ml$ (data not
212	shown).

213	Osthole Decreases the Production of TNF- α and NO by LPS-Activated
214	Macrophages. TNF- α is one of the important cytokines produced by activated
215	macrophages in response to LPS stimulation (11, 12). In this study, the TNF- α levels
216	in the supernatant of J774A.1 macrophages cultured with osthole at various doses
217	were measured by ELISA. The experimental results indicated that osthole treatment
218	did not alter the background level of TNF- α in J774A.1 macrophages, but it decreased
219	the production of TNF- α by LPS-activated J774A.1 macrophages in a dose-dependent
220	manner (Figure 1A). In addition to TNF- α expression, we investigated the inhibitory
221	effects of osthole on the LPS-induced production of NO. The NO levels in the
222	supernatant of RAW 264.7 macrophages cultured with osthole at various doses were
223	measured by Griess reaction. The experimental results indicated that osthole treatment
224	did not alter the background level of NO in RAW 264.7 macrophages, but it decreased
225	the production of NO by LPS-activated RAW 264.7 macrophages in a dose-dependent
226	manner (Figure 1B). We next investigated the effect of osthole on the protein
227	expression of COX-2. Treatment with osthole reduced the expression of COX-2
228	protein obviously when compared with LPS treatment alone (Figure 1C). By contrast,

229	treatment with osthole increased IL-6 expression in LPS-activated J774A.1
230	macrophages (Figure 1D). These results indicated that osthole modulated
231	inflammatory mediator expression in LPS-activated macrophages.
232	Osthole Inhibits the Activation of MAPK in LPS-Activated Macrophages.
233	LPS potently induces macrophage activation and the production of pro-inflammatory
234	cytokines by the activation of TLR4 through many signaling pathways, including the
235	MAPK signaling pathways (11). To examine whether the effects of osthole on
236	LPS-induced macrophages are associated with MAPK signaling cascades, J774A.1
237	macrophages were treated with LPS in the presence or absence of osthole. The
238	phosphorylation levels of MAPK, including p38, JNK1/2 and ERK1/2, were
239	determined by Western blot analysis. The experimental results showed that osthole
240	inhibited the phosphorylation levels of p38 obviously, and JNK1/2 modestly, in
241	LPS-activated macrophages (Figure 2A and 2B). In contrast, osthole increased the
242	phosphorylation levels of ERK1/2 in LPS-activated macrophages (Figure 2C). These
243	results indicated that osthole modulated the activation of the MAPK signaling
244	cascades in LPS-activated macrophages.
245	Osthole Inhibits the Activation of NF-KB in LPS-Activated Macrophages.
246	In resting macrophages, NF- κ B is sequestered in the cytoplasm as an inactive
247	precursor complex by its inhibitory protein, IkB. Upon LPS stimulation, IkB is

248	phosphorylated by IkB kinase (IKK), ubiquitinated, and rapidly degraded via
249	proteasomes to release NF- κ B (13). We investigated whether osthole could inhibit
250	LPS-stimulated phosphorylation of IKK- α in macrophages. We found that osthole
251	inhibited the phosphorylation of IKK- α obviously in LPS-activated macrophages
252	(Figure 3A). We further investigated whether osthole could inhibit the
253	LPS-stimulated phosphorylation of $I\kappa B-\alpha$ in macrophages. The results showed that
254	the phosphorylation of IkB- α was reduced by osthole in 30-min and 60-min
255	LPS-stimulated macrophages (Figure 3B). In addition, LPS induced degradation of
256	I κ B- α protein obviously; in contrast, treatment with osthole reversed the degradation
257	of I κ B- α protein upon LPS stimulation (Figure 3B). We also attempted to test
258	whether osthole could inhibit NF- κ B activity in LPS-activated macrophages. Using
259	NF- κ B-dependent alkaline phosphatase reporter cells, we demonstrated that NF- κ B
260	transcriptional activity in LPS-stimulated macrophages was reduced by osthole
261	(Figure 3C). These results indicated that osthole could inhibit the activation of the
262	NF-κB signaling cascades in LPS-activated macrophages.
263	Osthole Inhibits the Phosphorylation of PKC- α and PKC- ϵ in
264	LPS-Activated Macrophages. PKC is one of the components of the TLR4 signaling
265	pathway, and thereby plays some roles in macrophage activation in response to LPS
266	(9). We tested the effect of osthole on LPS-induced PKC activation. The

267	phosphorylation levels of PKC- α , PKC- δ and PKC- ϵ were increased after LPS
268	stimulation. LPS-mediated phosphorylations of PKC- α and PKC- ϵ were reduced by
269	osthole; however osthole did not affect the phosphorylation of PKC- δ (Figure 4).
270	Osthole Inhibits ROS Production in LPS-Activated Macrophages. In our
271	previous study, we noted that ROS play important roles in LPS-mediated cytokine
272	expression (12). To test whether osthole has antioxidant activity, intracellular ROS
273	production in LPS-stimulated macrophages was measured. We found that LPS
274	stimulation of cells rapidly induced ROS production when compared with that of
275	control cells. In contrast, pretreatment with N-acetyl cysteine (NAC), a potent
276	antioxidant, quickly reduced the production of LPS-induced ROS. Interestingly, we
277	found that cells pretreated with osthole obviously reduced LPS-stimulated ROS
278	production (Figure 5). This result indicated that osthole possesses antioxidant activity.
279	
280	DISCUSSION
281	Osthole is a coumarin compound present in plant medicines as an active
282	component, and possesses a variety of pharmacological activities including
283	anti-osteoporotic (14), anti-proliferative (3), anti-allergic (15, 5), anti-seizure (16),
284	anti-diabetic (17), and anti-microbial effects (18, 19). The innate immune system
285	plays essential roles in host defense against infections such as bacteria and viruses.

286	When macrophages are activated by pathogen associated molecular pattern,
287	inflammatory cytokines such as TNF- α and IL-6 are generated as an initial immune
288	response (8). Recent reports have shown that osthole inhibits inflammatory diseases
289	such as arthritis and hepatitis through modulating inflammatory cytokines: TNF- α ,
290	interferon-gamma (IFN-γ) and interleukins (15, 19, 20, 21). However no studies have
291	been conducted on the cellular mechanism involved in the osthole-mediated
292	regulation of pro-inflammatory mediators in LPS-stimulated macrophages. Here we
293	provide evidence for the potential role of osthole in reducing LPS-induced
294	inflammation through inactivation of NF-κB, p38, JNK1/2, PKCs and ROS pathways.
295	A report on the cytotoxicity of osthole in a carcinoma cell line (22) indicated
296	that osthole inhibited the growth of a human cervical tumor cell line, HeLa, with IC_{50}
297	values of 19 and 15 $\mu g/ml$ for 24 and 48 h, respectively. In addition, osthole could
298	induce apoptosis in P-388 D1 cells in vivo and prolong the survival days of P-388 D1
299	tumor-bearing CDF1 mice. Another study demonstrated that osthole prevents anti-fas
300	antibody-induced hepatitis in mice by inhibiting caspase-3 activity (20). Although the
301	cell line and dosage in these studies were different, it appears that osthole exerts
302	certain actions that enhance cell survival. To exclude the possibility that osthole may
303	affect the viability of macrophages, the toxicity of osthole in macrophage cells was
304	investigated in our study. Our results indicate that osthole is not toxic to murine

305	macrophage cell lines J774A.1 and RAW 264.7 at concentrations $\leq 10 \ \mu g/ml$.
306	TNF- α and NO are produced by activated macrophages, as well as by many
307	other cell types. In this study, the inhibitory effects of osthole on TNF- α secretion,
308	NO production and COX-2 expression were observed in LPS-stimulated RAW 264.7
309	macrophages in a dose-dependent manner (Figure 1A-C). Our results suggest that the
310	inhibitory capacity of osthole in LPS-induced pro-inflammatory molecule expression
311	may offer an advantage in protecting the host from endotoxic shock. Previous
312	research has shown that osthole, isolated from Clausena guillauminii (Rutaceae), had
313	an inhibitory effect on iNOS protein expression at 6 μ g/ml in mouse RAW 264.7
314	macrophages (23). Our study demonstrated that osthole exhibited an obvious
315	inhibiting effect on NO production. This suggests that osthole may reduce NO
316	production in LPS-stimulated RAW 264.7 macrophages through inhibition of iNOS
317	protein expression.
318	Protein kinase C (PKC) is one of the signaling molecules in an LPS-mediated
319	inflammatory response (24). Previous reports have demonstrated that PKC- α
320	modulates LPS- and IFN- γ -induced COX-2 expression (24). PKC- ϵ is required for
321	macrophage activation and defense against bacterial infection (25). Classical (cPKC)
322	isoenzymes, especially PKC- β , mediate the upregulation of iNOS expression and NO
323	production in activated macrophages (26). In addition, LPS regulates downstream

and $\mathbf{P} \mathbf{A} \mathbf{W} \mathbf{264} \mathbf{7}$ at concentrations < 10 µg/m] 205 nacronhaga call li 1774 1

324	MAPKs and NF-κB activation through PKC signaling in macrophages (27).
325	According to our previous study, inhibition of PKC- α by Gö6976 reduced JNK1/2
326	and NF- κ B activation as well as TNF- α and NO expression in LPS-stimulated
327	macrophages (11). Another investigation also demonstrated that PKC- ε is involved in
328	JNK1/2 activation that mediates LPS-induced TNF- α (27). These findings suggest
329	that PKC isoenzymes play an important role in inflammatory response and in the
330	regulation of downstream MAPKs and NF- κ B signaling, which are involved in
331	LPS-induced cytokine secretion and pro-inflammatory molecule expression in
332	macrophages. The present study demonstrated that LPS-mediated PKC- α and - ϵ
333	phosphorylation was reduced by osthole, indicating that osthole inhibited PKC- α and
334	- ϵ activation upon LPS stimulation. Furthermore, LPS-induced TNF- α secretion, NO
335	production and COX-2 expression were downregulated by osthole. These results
336	suggest that osthole-mediated downregulation of TNF- α , NO, and COX-2 expression
337	may be due, at least in part, to inhibition of PKC- α and PKC- ϵ activation.
338	MAPKs regulate inflammatory mediator expression in LPS-activated
339	macrophages $(11, 12)$. In this study we found that osthole inhibited p38 activation
340	obviously, and JNK1/2 modestly, in LPS-activated macrophages. Inhibition of p38
341	and JNK1/2 reduced NF- κ B activation in LPS-activated macrophages (11). The
342	inhibitory effects of osthole on LPS-induced NF- κ B activation as well as TNF- α , NO,

343	and COX-2 expression may, at least in part, due to down-regulation of p38 and
344	JNK1/2 activation. Interestingly, osthole increased IL-6 expression in LPS-activated
345	macrophages (Figure 1D). We have demonstrated that inhibition of ERK1/2 pathway
346	reduced IL-6 expression in LPS-stimulated macrophages (12). This result indicated
347	that LPS induces IL-6 expression through activation of ERK1/2. In this study, we
348	found that osthole increased IL-6 expression and ERK1/2 phosphorylation. According
349	to these results we speculated that osthole-mediated up-regulation of IL-6 expression
350	in LPS-activated macrophages may be due, at least in part, to the increasing of
351	ERK1/2 phosphorylation. ROS played an important role in LPS-mediated signaling
352	and cytokine gene expression in macrophages (28). The present study has
353	demonstrated that osthole inhibited LPS-induced ROS release in macrophages;
354	recently, osthole also has been reported to reduce ROS release in
355	1-methyl-4-phenylpyridinium ion-stimulated rat adrenal pheochromocytoma PC12
356	cells (29).
357	In conclusion, our results suggest that osthole inhibits LPS-induced TNF- α , NO
358	and COX-2 expression through, at least in part, inhibition of PKC- α , PKC- ϵ , JNK1/2,
359	p38, ROS and NF-κB pathways (Figure 6). As a powerful anti-inflammatory, osthole
360	could offer an advantage in protecting the host from endotoxic shock. To achieve a
361	more comprehensive understanding of the details of such a mechanism, further in vivo

362 investigation is clearly warranted.

363

364 Acknowledgements

365	This work w	as supported	by the	National Science	Council,	Taiwan; and b	y China
			~		,	,	

366 Medical University: contract grant numbers: NSC 98-2320-B-039-003-MY2 (KF

367 Hua); NSC 098-2811-B-197-001- (KF Hua); CMU97-259 (KF Hua). NSC

368 95-2313-B-039-005-MY3 (LK Chao); NSC 96-2116-M-039-001-MY3 (LK Chao)

369 LITERATURE CITED

371	(1)	Lin, V. C.; Chou, C. H.; Lin, Y. C.; Lin, J. N.; Yu, C. C.; Tang, C. H.; Lin, H. Y.;
372		Way, T. D. Osthole suppresses fatty acid synthase expression in
373		HER2-overexpressing breast cancer cells through modulating Akt/mTOR
374		pathway. J. Agric. Food Chem. 2010, 58, 4786-4793.
375	(2)	Leung, Y. M.; Kuo, Y. H.; Chao, C. C.; Tsou, Y. H.; Chou, C. H.; Lin, C. H.;
376		Wong, K. L. Osthol is a use-dependent blocker of voltage-gated Na+ channels in
377		mouse neuroblastoma N2A cells. Planta Med. 2010, 76, 34-40.
378	(3)	Guh, J. H.; Yu, S. M.; Ko, F. N.; Wu, T. S.; Teng, C. M. Antiproliferative effect
379		in rat vascular smooth muscle cells by osthole, isolated from Angelica pubescens.
380		Eur. J. Pharmacol. 1996, 298, 191-197.
381	(4)	Huang, R. L.; Chen, C. C.; Huang, Y. L.; Hsieh, D. J.; Hu, C. P.; Chen, C. F.;
382		Chang, C. Osthole increases glycosylation of hepatitis B surface antigen and
383		suppresses the secretion of hepatitis B virus in vitro. Hepatology 1996, 24,
384		508-515.
385	(5)	Matsuda, H.; Tomohiro, N.; Ido, Y.; Kubo, M. Anti-allergic effects of Cnidii
386		monnieri Fructus (dried fruits of Cnidium monnieri) and its major component,
387		osthol. Biol. Pharm. Bull. 2002, 25, 809-812.

388	(6)	Zimecki, M.; Artym, J.; Cisowski, W.; Mazol, I.; Włodarczyk, M.; Gleńsk, M.
389		Immunomodulatory and anti-inflammatory activity of selected osthole
390		derivatives. Z. Naturforsch. C 2009, 64, 361-368.
391	(7)	Medzhitov, R.; Janeway, C. A. Innate immunity: the virtues of a nonclonal
392		system of recognition. Cell 1997, 91, 295-298.
393	(8)	Takeda, K.; Kaisho, T.; Akira, S. Toll-like receptors. Annu. Rev. Immunol. 2003,
394		21, 335-376.
395	(9)	Spitaler, M.; Cantrell, D. A. Protein kinase C and beyond. Nat. Immunol. 2004, 5,
396		785-790.
397	(10)	Kwon, K. H.; Murakami, A.; Hayashi, R.; Ohigashi, H. Interleukin-1beta targets
398		interleukin-6 in progressing dextran sulfate sodium-induced experimental colitis.
399		Biochem. Biophys. Res. Commun. 2005, 337, 647-665.
400	(11)	Chao, L. K.; Liao, P. C.; Ho, C. L.; Wang, E. I.; Chuang, C. C.; Chiu, H. W.;
401		Hung, L. B.; Hua, K. F. Anti-inflammatory bioactivities of honokiol through
402		inhibition of protein kinase C, mitogen-activated protein kinase, and the
403		NF-kappaB pathway to reduce LPS-induced TNFalpha and NO expression. J.
404		Agric. Food Chem. 2010, 58, 3472-3478.
405	(12)	Chao, L. K.; Hua, K. F.; Hsu, H. Y.; Cheng, S. S.; Lin, I. F.; Chen, C. J.; Chen, S.
406		T.; Chang, S. T. Cinnamaldehyde inhibits pro-inflammatory cytokines secretion

407	from monocytes/macrophages through suppression of intracellular signaling.
408	Food Chem. Toxicol. 2008, 46, 220-231.
409	(13) Baeuerle, P. A. IkappaB-NF-kappaB structures: at the interface of inflammation
410	control. Cell 1998, 95, 729–731.
411	(14) Kuo, P. L.; Hsu, Y. L.; Chang, C. H.; Chang, J. K. Osthole-mediated cell
412	differentiation through bone morphogenetic protein-2/p38 and extracellular
413	signal-regulated kinase 1/2 pathway in human osteoblast cells. J. Pharmacol.
414	Exp. Ther. 2005, 314, 1290-1299.
415	(15) Chiu, P. R.; Lee, W. T.; Chu, Y. T.; Lee, M. S.; Jong, Y. J.; Hung, C. H. Effect of
416	the Chinese herb extract osthol on IL-4-induced eotaxin expression in BEAS-2B
417	cells. Pediatr. Neonatol. 2008, 49, 135-140.
418	(16) Luszczki, J. J.; Andres-Mach, M.; Cisowski, W.; Mazol, I.; Glowniak, K.;
419	Czuczwar, S. J. Osthole suppresses seizures in the mouse maximal electroshock
420	seizure model. Eur. J. Pharmacol. 2009, 607, 107-109.
421	(17) Liang, H. J.; Suk, F. M.; Wang, C. K.; Hung, L. F.; Liu, D. Z.; Chen, N. Q.; Chen,
422	Y. C.; Chang, C. C.; Liang, Y. C. Osthole, a potential antidiabetic agent,
423	alleviates hyperglycemia in db/db mice. Chem. Biol. Interact. 2009, 181,
424	309-315.

425 (18) Zhou, J.; Wang, S. W.; Sun, X. L. Determination of osthole in rat plasma by

- 426 high-performance liquid chromatograph using cloud-point extraction. Anal.
- 427 *Chim. Acta* **2008**, 608, 158-164.
- 428 (19) You, L.; Feng, S.; An, R.; Wang, X. Osthole: a promising lead compound for
- 429 drug discovery from a traditional Chinese medicine (TCM). *Nat. Prod. Commun.*
- **2009**, *4*, 297-302.
- 431 (20) Okamoto, T.; Kawasaki, T.; Hino, O. Osthol prevents anti-Fas antibody-induced
- 432 hepatitis in mice by affecting the caspase-3-mediated apoptotic pathway.
- 433 Biochem. Pharmacol. 2003, 65, 677-681.
- 434 (21) Yang, L. L.; Wang, M. C.; Chen, L. G.; Wang, C. C. Cytotoxic activity of
- 435 coumarins from the fruits of *Cnidium monnieri* on leukemia cell lines. *Planta*
- 436 *Med.* **2003**, *69*, 1091-1095.
- 437 (22) Chou, S. Y.; Hsu, C. S.; Wang, K. T.; Wang, M. C.; Wang, C. C. Antitumor
- 438 effects of osthol from *Cnidium monnieri*: an in vitro and in vivo study. *Phytother*.
- 439 *Res.* **2007**, *21*, 226-230.
- 440 (23) Nakamura, T.; Kodama, N.; Arai, Y.; Kumamoto, T.; Higuchi, Y.;
- 441 Chaichantipyuth, C.; Ishikawa, T.; Ueno, K.; Yano, S. Inhibitory effect of
- 442 oxycoumarins isolated from the Thai medicinal plant *Clausena guillauminii* on
- the inflammation mediators, iNOS, TNF-alpha, and COX-2 expression in mouse
- 444 macrophage RAW 264.7. J. Nat. Med. 2009, 63, 21-27.

445	(24) Giroux, M.; Descoteaux, A. Cyclooxygenase-2 expression in macrophages:
446	modulation by protein kinase C-alpha. J. Immunol. 2000, 165, 3985-3991.
447	(25) Castrillo, A.; Pennington, D. J.; Otto, F.; Parker, P. J.; Owen, M. J.; Boscá, L.
448	Protein kinase C ϵ is required for macrophage activation and defense against
449	bacterial infection. J. Exp. Med. 2001, 194, 1231-1242.
450	(26) Salonen, T.; Sareila, O.; Jalonen, U.; Kankaanranta, H.; Tuominen, R.; Moilanen,
451	E. Inhibition of classical PKC isoenzymes downregulates STAT1 activation and
452	iNOS expression in LPS-treated murine J774 macrophages. Br. J. Pharmacol.
453	2006 , <i>147</i> , 790-799.
454	(27) Comalada, M.; Xaus, J.; Valledor, A. F.; López-López, C.; Pennington, D. J.;
455	Celada, A. PKC epsilon is involved in JNK activation that mediates
456	LPS-induced TNF-alpha, which induces apoptosis in macrophages. Am. J.
457	Physiol. Cell Physiol. 2003, 285, C1235-1245.
458	(28) Hsu, H. Y.; Wen, M. H. Lipopolysaccharide-mediated reactive oxygen species
459	and signal transduction in the regulation of interleukin-1 gene expression. J. Biol.
460	Chem. 2002, 277, 22131-22139.
461	(29) Liu, W. B.; Zhou, J.; Qu, Y.; Li, X.; Lu, C. T.; Xie, K. L.; Sun, X. L.; Fei, Z.
462	Neuroprotective effect of osthole on MPP(+)-induced cytotoxicity in PC12 cells
463	via inhibition of mitochondrial dysfunction and ROS production. Neurochem.

464 Int. **2010**, *57*, 206-215.

465 FIGURE LEGENDS

467	Figure 1. Effect of osthole on the expression of inflammatory mediators. (A) J774A.1
468	macrophages (1 \times 10 ⁶ /ml) were pretreated with osthole or DMSO (vehicle) for 30
469	min, followed by stimulating with LPS (1 μ g/ml) for 6 h. TNF- α concentration in
470	culture medium was assayed by ELISA. Data are expressed as mean \pm SE from three
471	separate experiments. * $p < 0.05$; ** $p < 0.01$. (B) RAW 264.7 macrophages (5 ×
472	10^{5} /ml) were pretreated with osthole or DMSO (vehicle) for 30 min, followed by
473	stimulating with LPS (1 μ g/ml) for 24 h. Nitric oxide concentration in culture
474	medium was assayed by Griess reaction. Data are expressed as mean \pm SE from three
475	separate experiments. * $p < 0.05$; ** $p < 0.01$. (C) RAW 264.7 macrophages (5 ×
476	10^{5} /ml) were pretreated with osthole or DMSO (vehicle) for 30 min, followed by
477	stimulating with LPS (1 $\mu\text{g/ml})$ for 24 h. COX-2 expression was assayed by Western
478	blot. The result of one of three separate experiments is shown. Quantification of
479	COX-2 protein was normalized to actin using a densitometer. (D) J774A.1
480	macrophages (1 \times 10 ⁶ /ml) were pretreated with osthole or DMSO (vehicle) for 30
481	min, followed by stimulating with LPS (1 μ g/ml) for 6 h. IL-6 concentration in
482	culture medium was assayed by ELISA. Data are expressed as mean \pm SE from three
483	separate experiments. $*p < 0.05$; $**p < 0.01$.

485	Figure 2. Effect of osthole on MAPKs phosphorylation. J774A.1 macrophages $(1 \times$
486	10^{6} /ml) were pretreated with osthole or DMSO (vehicle) for 30 min, followed by
487	stimulating with LPS (1 μ g/ml) for 0–60 min. Phosphorylation levels of (A) p38, (B)
488	JNK1/2, and (C) ERK1/2 were analyzed by Western blot. The result of one of three
489	separate experiments is shown. Quantification of p38, JNK1/2 and ERK1/2
490	phosphorylation was normalized to p38, JNK1, and ERK1/2, respectively, using a
491	densitometer.
492	
493	Figure 3. Effect of osthole on NF- κ B activation. RAW 264.7 macrophages (1 ×
494	10^{6} /ml) were pretreated with osthole or DMSO (vehicle) for 30 min, followed by
495	stimulating with LPS (1 μ g/ml) for 0–60 min. The phosphorylation level of IKK- α (A)
496	and phosphorylation level of I κ B- α and protein level of I κ B- α (B) were analyzed by
497	Western blot. The result of one of three separate experiments is shown. Quantification
498	of IKK- α and I κ B- α phosphorylation was normalized to IKK- α and actin,
499	respectively, using a densitometer. (C) RAW- $Blue^{TM}$ cells were pretreated with
500	osthole or DMSO (vehicle) for 30 min, followed by stimulating with LPS (1 μ g/ml)
501	for 24 h. SEAP activity was measured by QUANTI-Blue TM . Data are expressed as
502	mean \pm SE from three separate experiments. * $p < 0.05$; ** $p < 0.01$.

504	Figure 4. Effect of osthole on PKC phosphorylation. J774A.1 macrophages (1 \times
505	10^{6} /ml) were pretreated with osthole or DMSO (vehicle) for 30 min, followed by
506	stimulating with LPS (1 μ g/ml) for 0–60 min. The phosphorylation levels of PKC- α ,
507	PKC- δ , and PKC- ϵ were analyzed by Western blot. The result of one of three separate
508	experiments is shown.
509	
510	Figure 5. Effect of osthole on ROS production. J774A.1 macrophages were pretreated
511	with CM-DCFDA (2 μ M) for 30 min, followed by substitution with fresh medium.
512	Cells were treated with osthole (10 $\mu g/ml$), NAC (10 mM) or DMSO (vehicle) for 30
513	min, followed by incubating with LPS (1 μ g/ml) for 0–180 min. The fluorescence
514	intensity of fluorophore CM-DCF was detected as described in "Materials and
515	Methods." Data are expressed as relative mean fluorescence intensity (MFI) \pm SE
516	from three independent experiments.
517	

518 Figure 6. Proposed diagram of signaling pathways regulating anti-inflammatory519 effect of osthole.