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Abstract

Prostate cancer is the most commonly diagnosed malignancy in men and shows a 

predilection for metastasis to distant organs. Leptin, an adipocyte-derived cytokine that 

is closely associated with obesity, has recently been shown to be involved in 

carcinogenesis and cancer progression. The aim of this study was to investigate 

whether leptin is associated with the motility of prostate cancer cells. We found that 

leptin increased the migration of human prostate cancer cells and expression of v 3

integrin on these cells. Leptin-mediated migration and increased integrin expression 

were attenuated by OBRl receptor antisense oligonucleotide. Activation of insulin 

receptor substrate (IRS-1), phosphatidylinositol 3–kinase (PI3K), Akt, and NF- B

pathways after leptin treatment was demonstrated. Furthermore, leptin-induced 

integrin expression and migration activity were inhibited by specific inhibitors; 

siRNAs; and mutants of the IRS-1, PI3K, Akt, and NF- B cascades. Therefore, this 

study shows that leptin stimulates the migration of human prostate cancer cells, one of 

the mechanisms underlying leptin-directed migration was transcriptional up-regulation 

of v 3 integrin expression through the OBR1/IRS-1/PI3K/Akt/NF- B signal 

transduction pathway. 
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Introduction 
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M
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ostate cancer is the most commonly diagnosed malignancy in American men and is 

second only to lung cancer in terms of cancer mortalities in men (Robinson et al., 

2008). Early and localized prostatic tumors are most often successfully treated by 

surgery alone (i.e. radical prostatectomy). As with many cancers, however, the 

treatment of advanced disease states requires a systemic intervention to inhibit the 

growth and spread of secondary metastasis. 

etastasis, the major cause of mortality for cancer patients, is a complex and 

multi-stage process in which secondary tumors are formed in distant sites (Van't Veer 

and Weigelt, 2003). Typically, the development of metastasis involves several steps 

that comprise cellular transformation and tumor growth, angiogenesis and 

lymphangiogenesis, entry of cancer cells into the circulation by intravasation, 

anchorage and/or attachment on the target organ, invasion of the target organ by 

extravasation, and proliferation within the organ parenchyma (Hanahan and Weinberg, 

2000). The migratory ability of a cancer cell is important for many of these steps, and 

therefore is correlated with tumor metastasis. 

tegrins play a role in tumor metastasis. They are a family of transmembrane 

adhesion receptors comprising 19  and 8  subunits that interact noncovalently to 

form up to 24 different heterodimeric receptors (Giancotti and Ruoslahti, 1999; 

Humphries, 2000). The combination of different integrin subunits on the cell surface 

allows cells to recognize and respond to a variety of extracellular matrix proteins 

including fibronectin, laminin, collagen, and vitronectin (Stupack, 2007; Wang et al., 

2008). Activation and increased expression of integrin-coupled signaling effectors is 

involved in the induction of a wide variety of human cancers, including breast, colon, 

prostate, and ovary (White et al., 2004). In addition, the expression of integrin on 

tumor cells correlates with poor prognosis in cutaneous melanoma as well as in lung 

and pancreatic cancers (Nikkola et al., 2004; Oshita et al., 2004; Yao et al., 2007). 

Integrin also has been implicated in the metastasis of lung, breast, and prostate 

cancers (King et al., 2008; Pontier and Muller, 2008; Ritzenthaler et al., 2008). 



Le

In

ptin, the product of the ob gene, is a 16-kDa nonglycosylated peptide hormone 

synthesized almost exclusively by adipocytes that regulates appetite and energy 

expenditure at the hypothalamic level (Halaas et al., 1995). It has become increasingly 

apparent that leptin does, however, have other direct effects on nonneural cells (Chao 

et al., 2007). In recent years, the effects of leptin on tumorigenesis, angiogenesis, and 

metastasis have received particular attention (Surmacz, 2007; Vona-Davis and Rose, 

2007). Leptin receptors (OBR) are found in many tissues in several alternatively 

spliced forms (Campfield et al., 1995; Tartaglia et al., 1995). One form of the receptor, 

a long form (OBRl), is highly expressed in the hypothalamus, whereas a short form 

(OBRs), is highly expressed in microvessels at the blood-brain barrier (Campfield et 

al., 1995; Fei et al., 1997). Upon binding to OBRl, leptin activates janus kinase 2 

(JAK2), which then initiates downstream signaling pathway that includes members of 

the STAT (signal transducers and activators of transcription) family of transcription 

factors (Kloek et al., 2002). The leptin receptor, through the activation of JAK2, is able 

to phosphorylate insulin receptor substrate (IRS) proteins and induce the 

IRS-phosphatidylinositol 3-kinase (PI3K) signaling pathway (Niswender et al., 2001). 

Leptin also activates signaling via JAK2/STAT3, ERK, or JNK pathways in prostate 

cancer cells (Fruhbeck, 2006; Hoda et al., 2007; Miyazaki et al., 2008). 

 recent years, increased body weight has been shown to be associatedwith increased 

death rates for multiple types of cancers (Calle et al., 2003). Previous studies have 

consistently shown a positive association between adiposity and increased risk of 

cancer of the endometrium, kidney, colon, and breast cancer in postmenopausal women 

(Bergstrom et al., 2001; Peto, 2001). Leptin also increases the migration of human 

prostate cancer cells (Deo et al., 2008; Frankenberry et al., 2004). We hypothesized 

that leptin may regulate migration of prostate cancer cells through the up-regulation of 

integrin. In this study, we found that leptin increased the migration and the expression 

of integrin in human prostate cancer cells. In addition, OBRl receptor, IRS-1, PI3K, 

Akt, and NF- B signaling pathways may be involved in increasing integrin expression 

and cell migration by leptin. 



Materials and Methods 

Materials

An

T

ti-mouse and anti-rabbit IgG-conjugated horseradish peroxidase, rabbit polyclonal 

antibodies specific for p85, Akt, phospho-Akt (Ser473), p-IRS-1, IRS-1, IKK, p-I B ,

I B , p65 and the small interfering RNAs (siRNAs) against IRS-1 and control 

(negative control for experiments using targeted siRNA transfection; each consisted of 

a scrambled sequence that would not lead to the specific degradation of any known 

cellular mRNA) were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, 

USA). Rabbit polyclonal antibodies specific for IKK phosphorylated at Ser
180/181

and p65 phosphorylated at Ser
536
 were purchased from Cell Signaling and 

Neuroscience (Danvers, MA). Ly294002, Akt inhibitor 

(1L-6-hydroxymethyl-chiro-inositol-2-[(R)-2-O-methyl-3-Ooctadecylcarbonate], 

PDTC and TPCK were obtained from Calbiochem (San Diego, CA). A selective v 3

integrin antagonist, cyclic RGD (cyclo-RGDfV) peptide, and the cyclic RAD 

(cyclo-RADfV) peptide were purchased from Peptides International (Louisville, KY). 

Recombinant human leptin was purchased from PeproTech (Rocky Hill, NJ). Mouse 

monoclonal antibody (mAb) specific for v 3 integrin was purchased from 

Chemicon (Temecula, CA). The NF- B luciferase plasmid was purchased from 

Stratagene (La Jolla, CA). The p85 (p85; deletion of 35 amino acids from residues 

479-513 of p85) and Akt (Akt K179A) dominant-negative mutants were gifts from Dr. 

W.M. Fu (National Taiwan University, Taipei, Taiwan). The IKK (KM) and 

IKK (KM) mutants were gifts from Dr. H. Nakano (Juntendo University, Tokyo, 

Japan). pSV- -galactosidase vector and the luciferase assay kit were purchased from 

Promega (Madison, MA). All other chemicals were purchased from Sigma-Aldrich (St. 

Louis, MO). 

Cells and cell cultures 

he human prostate cancer cell lines (PC3, DU145 and LnCaP) were obtained from 

the American Type Culture Collection. The cells were maintained in RPMI-1640 



medium which was supplemented with 20 mM HEPES and 10% heat-inactivated FCS, 

2 mM glutamine, penicillin (100 U/ml) and streptomycin (100 g/ml) at 37°C in 5% 

CO2.

Migration assay 

The migration assay was performed using Transwell inserts (Costar, NY; pore 

size, 8-µm) in 24-well dishes. Before performing the migration assay, cells were 

pretreated for 30 min with different concentrations of inhibitors, including the 

Ly294002, Akt inhibitor, PDTC, TPCK, or vehicle control (0.1% DMSO). 

Approximately 1×10
4
 cells in 200 µl of serum-free medium were placed in the upper 

chamber, and 300 µl of the same medium containing leptin was placed in the lower 

chamber. The plates were incubated for 24 hr at 37°C in 5% CO2, and then cells were 

fixed in 1% formaldehyde for 5 min and stained with 0.05% crystal violet in PBS for 

15 min. Cells on the upper side of the filters were removed with cotton-tipped swabs, 

and the filters were washed with PBS. Cells on the underside of the filters were 

examined and counted under a microscope. Each clone was plated in triplicate in each 

experiment, and each experiment was repeated at least three times. The number of 

invading cells in each experiment was adjusted by the cell viability assay to correct 

for proliferation effects of the leptin treatment (corrected number of invading cells = 

number of counted invading cells/percentage of viable cells) (Tan et al., 2009). 

Flow cytometric analysis 

Human prostate cancer cells were plated in 6-well dishes. The cells were then washed 

with PBS and detached with trypsin at 37°C. Cells were fixed for 10 min in PBS 

containing 1% paraformaldehyde. After rinsing in PBS, the cells were incubated with 

mouse anti-human antibody against v 3 integrin (1:100) for 1 hr at 4°C. Cells were 

then washed again and incubated with fluorescein isothiocyanate-conjugated goat 

anti-rabbit secondary IgG (1:100; Leinco Tec. Inc., St. Louis, MO, USA) for 45 min 

and analyzed by flow cytometry using FACS Calibur and CellQuest software (BD 



Biosciences).

Western blot analysis 

Ce

Pr

qP

llular lysates were prepared, and proteins were then resolved by SDS–PAGE and 

transferred to Immobilon polyvinyldifluoride membranes. The blots were blocked with 

4% BSA for 1 h at room temperature and then probed with rabbit anti-human 

antibodies against p-IRS-1, IRS-1, p-IKK, IKK, p-p65, p65, or -actin (1:1000) for 1 h 

at room temperature. After three washes, the blots were subsequently incubated with a 

donkey anti-rabbit peroxidase-conjugated secondary antibody (1:1000) for 1 h at room 

temperature. The blots were visualized with enhanced chemiluminescence using 

Kodak X-OMAT LS film (Eastman Kodak, Rochester, NY).  

Oligonucleotide (ODN) transfection 

ostate cancer cells were cultured to confluence, and the complete medium was 

replaced with OPTI-MEM containing the antisense phosphorothioate oligonucleotides 

(5 µg/ml) that had been preincubated with Lipofectamine 2000 (10 µg/ml) for 30 min. 

The OPTI-MEM containing 20% FCS was added 4 h later. The cells were washed after 

24 h incubation at 37 °C. All ODNs were synthesized and high pressure liquid 

chromatography purified by MDBio (Taipei, Taiwan). The sequences used are as 

follows: OBRl antisense ODN (AS-ODN), AGACCGAGCGGGCGTTAA and 

missense ODN (MM-ODN), AGCCCGCGCGAGTGTTCA (Yang et al., 2009). 

Quantitative Real Time PCR 

CR analysis was carried out using TaqMan® one-step PCR Master Mix (Applied 

Biosystems, Foster City CA). Total cDNA (100 ng/25-µl reaction) was added along 

with sequence-specific primers and TaqMan® probes. Sequences for all target gene 

primers and probes were purchased commercially, and -actin was used as an internal 

control (Applied Biosystems, CA). Quantitative RT-PCR assays were carried out in 

triplicate on StepOnePlus sequence detection system. The cycling conditions were 



10-min polymerase activation at 95 C followed by 40 cycles at 95 C for 15 sec and 

60 C for 60 sec. The thresholdwas set above the non-template control background and 

within the linear phase of target gene amplification to calculate the cycle number at 

which the transcript was detected (denoted as CT).

Reporter assay

Pr

Fo

Le

ostate cancer cells were transfected with reporter plasmid using Lipofectamine

2000 (Invitrogen) according to the manufacturer's recommendations. Twenty-four 

hours after transfection, the cells were treated with inhibitors for 30 min and, and then 

leptin or vehicle was added for 24 hr. Cell extracts were then prepared, and luciferase 

and -galactosidase activitieswere measured (Tang and Lu, 2009). 

Statistics

r statistical analysis, the Mann-Whitney U-test for non-Gaussian parameters and 

the Student’s t-test for Gaussian parameters (including Bonferroni correction) were 

used. The difference was considered significant when the P value was <0.05. 

Results

Involvement of v  up-regulation in the leptin-directed migration of prostate cancer 

cells

ptin stimulates directional migration and invasion of human cancer cells (Aloulou 

et al., 2008; Yang et al., 2009). Leptin-triggered migration of prostate cancer cells was 

examined using the Transwell assay. Leptin induces cancer proliferation in some 

cancer cells (Lautenbach et al., 2009; Uddin et al., 2009). Therefore, to exclude 

possible cell proliferation effects of leptin in prostate cancer cells in the calculation of 

the number of cells that migrated, results of cell migration experiments were corrected 

(Yang et al., 2009). Leptin induced the migration of androgen-independent prostate 



cancer cells (PC3 and DU145 cells) in a concentration-dependent manner (Fig. 1A). 

Furthermore, leptin also induced the migration of androgen-dependent prostate cancer 

cells (LnCaP cells; Fig. 1A). There is significant expression of integrins in human 

prostate cancer cells (Bisanz et al., 2005; Tang and Lu, 2009). We therefore 

hypothesized that integrins may be involved in the leptin-mediated migration of 

prostate cancer cells. Flow cytometry analysis showed that leptin induced the cell 

surface expression of v 3 and  but not , or  integrin (Fig. 1B). In 

addition, leptin also increased the protein and mRNA expression of v and 3 integrin 

(Fig. 1C). Pretreatment of cells with anti- v  monoclonal antibody (mAb) (10 µg/ml) 

for 30 min markedly inhibited the leptin-induced migration of prostate cancer cells 

(Fig. 1D). The cyclic RGD peptide (cyclo-RGDfV) at low concentration binds v 3

with high affinity and effectively blocks its function (Tang et al., 2007). Treatment of 

cells with cyclic RGD inhibited the leptin-induced migration of prostate cancer cells; 

this effect was not seen in the presence of an inactive RGD analog, cyclic RAD (Fig. 

1D). These data suggest that leptin-induced cancer migration may occur via activation 

of the v 3 integrin receptor. 

Involvement of OBR1 receptor in leptin-mediated migration of prostate cancer cells 

Leptin exerts its effects through interactions with specific leptin receptors (OBRl and 

OBRs) (Campfield et al., 1995). OBRl mediates leptin-enhanced cell migration in 

chondrosarcoma cells (Yang et al., 2009). Therefore, we next examined whether OBR1 

was involved in leptin-mediated cell migration in human prostate cancer cells. 

Transfection of PC3 cells with OBRl AS-ODN but not OBRl MM-ODN reduced the 

mRNA expression of OBRl (data not shown). Transient transfection of cells with 

OBRl AS-ODN effectively inhibited the migration activity of prostate cancer cells Fig.

2A . In addition, OBRl AS-ODN also reduced leptin-enhanced integrin up-regulation 

(Fig. 2B). These data suggest that leptin/OBR1 receptor interactions play a key role in 

the migration of prostate cancer cells. 



The signaling pathways of IRS-1/PI3K, Akt are involved in the potentiating action of 

leptin stimulation

Leptin-induced signaling via JAK2 and phosphorylation of STAT3 or other pathways 

such as IRS-1 and PI3K has been reported (Niswender et al., 2001). We therefore 

directly measured the phosphorylation of IRS-1 in response to leptin treatment. 

Treatment of PC3 cells with leptin induced an increase in IRS-1 phosphorylation in a 

time-dependent manner (Fig. 2C). To further examine whether IRS-1 activation is 

involved in the signal transduction pathway leading to cell migration by leptin, IRS-1 

siRNA was used. IRS-1 siRNA specifically inhibited the expression of IRS-1 (Fig. 2D; 

upper panel). Leptin-induced cell migration and v 3 integrin up-regulation were also 

inhibited by IRS-1 siRNA (Fig. 2D&E). Therefore, IRS-1 is very important in 

leptin-induced migration in prostate cancer cells. We next examined whether leptin 

activated PI3K, a critical downstream target of IRS-1 (Niswender et al., 2001). 

Treatment of PC3 cells with leptin for 10-60 min increased phosphorylation of the p85 

subunit of PI3K (Fig. 3A). Pretreatment of cells with PI3K inhibitor (Ly294002) or 

transfection with a dominant negative mutant of p85 attenuated leptin-induced 

migration and v  integrin expression (Fig. 3B-E). Therefore, PI3K is involved in 

leptin-mediated cell migration in human prostate cancer cells. We next measured Akt 

phosphorylation in response to leptin. Treatment of PC3 cells with leptin resulted in a 

time-dependent phosphorylation of Akt (Fig. 4A). Pretreatment of prostate cancer cells 

for 30 min with Akt inhibitor or transfection with Akt mutant for 24 h markedly 

attenuated the leptin-induced cell migration and v 3 integrin up-regulation (Fig. 

4B-E). These results indicate that the IRS-1/PI3K/Akt pathway is involved in 

leptin-induced migration of human prostate cancer cells. 

NF- B signaling pathways is involved in the leptin-mediated integrin up-regulation 

and migration activity 

As previously mentioned, NF- B activation is necessary for the migration and 

invasion of human cancer cells (Fong et al., 2009; Huang et al., 2009). To examine 



whether NF- B activation is involved in leptin-induced cancer migration, an NF- B

inhibitor, PDTC, was used. Pretreatment with PDTC (10 µM) inhibited leptin-induced 

migration of prostate cancer cells (Fig. 5A). In an inactivated state, NF- B is 

normally held in the cytoplasm by the inhibitor protein I B. Upon stimulation, I B

proteins become phosphorylated, which subsequently targets I B for ubiquitination, 

and then are degraded by the 26S proteasome. Therefore, the I B protease inhibitor 

TPCK was further used. Cells pretreated with TPCK (3 µM) also reduced 

leptin-induced migration of cancer cells (Fig. 5A). Treatment of cells with PDTC or 

TPCK also antagonized leptin-induced expression of v 3 integrin (Fig. 5B). We 

further examined the upstream molecules involved in leptin-induced NF- B activation. 

Stimulation of cells with leptin induced IKK /  phosphorylation in a time-dependent 

manner (Fig. 5C). Furthermore, transfection with IKK  or IKK  mutants markedly 

inhibited the leptin-induced cancer cells migration (Fig. 5D). These data suggest that 

IKK /  activation is involved in leptin-induced migration of human prostate cancer 

cells. Treatment with prostate cancer cells with leptin also caused I B

phosphorylation in a time-dependent manner (Fig. 5C). Previous studies showed that 

p65 Ser
536
 phosphorylation increases NF- B transactivation (Madrid et al., 2001), and 

the antibody specific against phosphorylated p65 Ser
536
 was used to examine p65 

phosphorylation. Treatment of cells with leptin for various time intervals resulted in 

p65 Ser
536
 phosphorylation (Fig. 5C). These results indicated that NF- B activation is 

important for leptin-induced cancer cell migration and the expression of v  integrin. 

In addition, pretreatment of cells with Ly294002 or Akt inhibitor for 30 min reduced 

leptin-increased p65 phosphoryation (Fig. 6A). Therefore, these results indicated that 

NF- B may function as a downstream signaling molecule of PI3K and Akt in the 

leptin signaling pathway.  

To directly measure NF- B activation after leptin treatment, prostate cancer cells 

were transiently transfected with B-luciferase as an indicator of NF- B activation. 

Leptin treatment of prostate cancer cells for 24 h caused an increase in B-luciferase 

activity (Fig. 6B). Transfection of cells with OBRl AS-ODN or IRS-1 siRNA 



inhibited leptin-increased B-luciferase activity (Fig. 6B). In addition, Ly294002, Akt 

inhibitor, PDTC and TPCK also reduced leptin-mediated NF- B activity (Fig. 6C). 

Moreover, co-transfection of cells with a dominant-negative p85, Akt, IKK  or IKK

mutant antagonized leptin-induced NF- B activity (Fig. 6D). Taken together, these 

data suggested that activation of OBR1 and the IRS-1, PI3K and Akt signaling 

pathways are required for leptin-induced NF- B activation in prostate cancer cells. 

Discussion

Prostate cancer cells have a striking tendency to metastasize (Robinson et al., 

2008; Van't Veer and Weigelt, 2003). The analysis of trophic signals that control 

metastasis during prostate cancer is crucial for the identification of new molecular 

targets for anti-metastasis therapy. Although leptin expression was shown in a previous 

study to enhance tumorigenesis and metastasis of human cancer cells, its role in 

prostate cancer invasion was not elucidated (Gainsford et al., 1996). We hypothesized 

that leptin would help to direct the migration of prostate cancer cells. This study 

showed that leptin induced migration of human prostate cancer cells, and one of the 

mechanisms underlying leptin-directed migration was transcriptional up-regulation of 

v 3 integrin and activation of OBRl, IRS-1, PI3K, Akt, and NF- B pathways. In this 

study, we found that leptin increased migration and cell surface v 3 integrin 

expression dose-dependently (Fig. 1A; Supplementary Fig S1). The concentration of 

leptin at 1 M has most efficiency in cell migration and integrin expression. Therefore, 

we used leptin (1 M) to investigate the leptin-mediated signaling pathways. Although 

this concentration dose not cover the physiologic range in human. However, it’s may 

explain the pathologic condition of leptin in human. 

Prostate cancer is very common in developed countries and is widely variable in 

its clinical course. Most cases remain confined to the prostate and adjacent soft tissue 

and cause no harm. However, approximately one in eight cases metastasize widely, 



typically to bone (Mundy, 2002). Like the organ in which it arises, prostate cancer 

growth and survival are supported by androgenic hormones. Widely metastatic cases 

are therefore treated by androgen deprivation therapy. Here we found that leptin 

supported the chemomigration in androgen-dependent (LnCaP) and independent (PC3 

and DU145) prostate cancer cells. The inhibitors and mutants of IRS-1, PI3K, Akt and 

NF- B pathway reduced leptin-induced migration in three prostate cancer cell lines. 

Therefore, the same signaling pathway was required for the leptin-induced prostate 

cancer cell migration. 

Th

In

e leptin receptor belongs to the cytokine receptor superfamily (Campfield et al., 

1995). Human cancer cells express OBRl (Bergstrom et al., 2001; Yang et al., 2009); in 

addition, OBRl is involved in leptin-mediated cell motility (Yang et al., 2009). The role 

of OBRl in the motility of human prostate cancer cells is, however, largely unknown. 

We found that the OBRl AS-ODN but not the control OBRl MM-ODN reduced 

leptin-increased cell migration and integrin expression. Therefore, OBRl is very 

important in leptin-mediated motility. Collectively, the interpretation of our data 

would appear to encourage us to conclude that leptin/OBR1 plays a novel role in 

regulating prostate cancer cell migration in a clinical/experimental setting, and it 

would also appear to be feasible as a biological marker to predict the relative 

likelihood/extent of peritoneal metastasis following prostate cancer cells. 

tegrins link the extracellular matrix to intracellular cytoskeletal structures and 

signaling molecules and are implicated in the regulation of a number of cellular 

processes, including adhesion, signaling, motility, survival, gene expression, growth, 

and differentiation (Giancotti and Ruoslahti, 1999; Humphries, 2000). Here we found 

that leptin increased v  expression but not or  integrin expression, 

which plays an important role during tumor metastasis. Furthermore, leptin also 

increased mRNA and protein levels of v and integrins. In the present study, 

blocking v  integrin inhibited leptin-induced cancer cell migration. Also, cyclic 

RGD but not cyclic RAD inhibited leptin-induced migration activity, further 

confirming the involvement of v 3 integrin in leptin-mediated induction of cancer 



migration. 

Se

In

veral signaling pathways have been implicated in leptin-mediated cell migration 

and increased integrin expression. Upon leptin binding, OBR1 activates JAK2, which 

in turn phosphorylates tyrosine residues in the receptor tails, leading to the recruitment 

and activation of STAT-3 (Szanto and Kahn, 2000). OBR1 is also able to phosphorylate 

IRS proteins and stimulate the IRS-PI3K signaling pathway via activation of JAK2 

(Szanto and Kahn, 2000). Here we report that IRS-1 siRNA inhibited leptin-induced 

migration and integrin up-regulation, indicating the possible involvement of IRS-1 in 

these processes. Leptin also increases the association of tyrosine-phosphorylated 

IRS-1 with p85, the regulatory subunit of PI3K, via its Src homology 2 domains (Wang 

et al., 1997).  

 our study, pretreatment of leptin with PI3K inhibitor Ly294002 antagonized 

leptin-induced migration. Furthermore, the dominant-negative mutant of p85 also 

inhibited leptin-mediated migration and v 3 integrin expression. Others have shown 

that PI3K activation leads to phosphorylation of phosphatidylinositides, which then 

activate the downstream main target, Akt; Akt is a cytoplasmic serine kinase that is 

important in regulating cell growth, differentiation, adhesion, and inflammatory 

reactions (Hirsch et al., 2000). In this study, we demonstrated that both leptin-induced 

migration and integrin expression were inhibited by the Akt inhibitor. Furthermore, the 

leptin-induced increase in migration activity was also blocked by a dominant-negative 

Akt mutant. The cytoplasmic serine kinase Akt was found to be activated by leptin in 

human prostate cancer cells. Together these results provide evidence of 

IRS-1/PI3K-dependent Akt activation in leptin-mediated migration and integrin 

up-regulation in prostate cancer cells. 

In conclusion, we present evidence of a novel mechanism of leptin-mediated 

migration of prostate cancer cells by up-regulation of v  integrin expression and 

activity via OBRl, IRS-1, PI3K, Akt, IKK / , and NF- B-dependent pathways (Fig. 

6E). The discovery of a leptin-mediated signaling pathway helps us to understand 

mechanisms of human prostate cancer cell metastasis and may help us to develop 



effective therapy in the future. 
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Figure legends

Fig. 1 Leptin-directed migration of human prostate cancer cells involves up-regulation 
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