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Recently, microarray technology has widely used on the study of gene expression in cancer diagnosis. The
main distinguishing feature of microarray technology is that can measure thousands of genes at the same
time. In the past, researchers always used parametric statistical methods to find the significant genes.
However, microarray data often cannot obey some of the assumptions of parametric statistical methods,
or type I error may be over expanded. Therefore, our aim is to establish a gene selection method without
assumption restriction to reduce the dimension of the data set. In our study, adaptive genetic algorithm/
k-nearest neighbor (AGA/KNN) was used to evolve gene subsets. We find that AGA/KNN can reduce the
dimension of the data set, and all test samples can be classified correctly. In addition, the accuracy of
AGA/KNN is higher than that of GA/KNN, and it only takes half the CPU time of GA/KNN. After using
the proposed method, biologists can identify the relevant genes efficiently from the sub-gene set and
classify the test samples correctly.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Since microarray technology has widely used on the study of
gene expression in cancer diagnosis, much attention has been di-
rected to microarray data analysis. Compared to traditional tech-
niques, microarray technology can find patterns of normal and
abnormal tissues (or cells) more easily and quickly because it can
measure thousands of genes in an experiment. However, research
funds for microarray technology are often limited and the sample
size of microarray data is usually less than its gene size (Alon
et al., 1999; Golub et al., 1999; Khan et al., 2001).

In order to identify the relevant and significant genes in micro-
array studies, researchers often use parametric statistical methods
to test the significant genes found by cluster analysis. For instance,
t-test and permutation t-test were used in the early days of micro-
array analysis (Dudoit, Yang, Callow, & Speed, 2002). However,
there are some problems with using parametric statistical methods
to analyze the microarray data. First, microarray data often cannot
obey some of the assumptions of parametric statistical methods
such as the assumption of normal distribution or independent. Sec-
ond, microarray data contain thousands of genes, so the type I error
will be over expanded. For those reasons, several statistical ap-
proaches have been performed to identify the differentially ex-
pressed genes in multiple testing, i.e., simultaneous test for each
ll rights reserved.
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gene of the null hypothesis of equal expression. Dudoit et al.
(2002) successfully used the method of maxT adjusted p-value to
analyze the mice apo AI data. The adjusted p-value for the multiple
testing procedures controlled the family-wise type I error rate.
However, type I error may still be over expanded due to the high
dimensionality of microarray data. Therefore, some researchers
exploited the joint behavior of genes and sought clusters of genes
to discriminate between normal and tumor tissue samples (Li, Dar-
den, Weinberg, Levine, & Pedersen, 2001; Li, Pedersen, Darden, &
Weinberg, 2002). Li et al. employed genetic algorithm/k-nearest
neighbor (GA/KNN) to analyze the microarray data with good re-
sults. Owing to the slow evolution speed of GA, many methods have
been created to improve GA such as KGA (Kuncheva & Jain, 1999)
and IGA (Ho, Shu, & Chen, 1999). Our arm is to develop a method
that can be used without assumption restriction and can provide
dimension reduction for the microarray data. We call the method
adaptive genetic algorithm/k-nearest neighbor (AGA/KNN).

There are some reasons to use AGA and KNN. First, most vari-
able selection methods need some assumptions, and they are not
suitable to use for high-dimensional space. AGA is a search tool
of machine learning and imitates the biological system to find
the near optimal solution, so it is suitable to analyze high-dimen-
sional, noisy data. Second, KNN is one of the most widely used clas-
sification techniques (Kuncheva, 1995) due to its simplicity and
effectiveness (Ho, Liu, & Liu, 2002; Kuncheva & Bezdek, 1998; Kun-
cheva & Jain, 1999). Each sample can be classified according to the
classification of its k nearest neighbors which are determined by
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Euclidean distance (Enas & Choi, 1986). Unlike many other classi-
fiers which assuming a multivariate normal distribution of the fea-
ture values (Raymer, Punch, Goodman, Sanschagrin, & Kuhn, 1997),
KNN does not depend on the data following any particular
distribution.

Although various research domains of AGA and KNN have been
well characterized (Li et al., 2001a; Srinivas & Patnaik, 1994), this is
the first reported use of the combination to analyze microarray
data.

The paper is organized as follows: first, the data sets used in this
study and AGA/KNN method are described; second, the results of
gene selection and sample classification, and comparison of AGA/
KNN and GA/KNN are reported; finally, the conclusion and future
work are given.
2. Material and method

2.1. Data sets

In this study three data sets were used to validate the perfor-
mance of AGA/KNN. The first data set is an original colon data
which is a high-density oligonucleotide chip (Alon et al., 1999).
This set consists of 2000 gene expression levels for each sample.
There are 62 samples of 40 tumor tissues and 22 normal tissues.
But five samples (N34, N36, T30, T33, and T36) were identified as
likely to have been contaminated and were removed (Li, Weinberg,
Darden, & Pedersen, 2001b). We log-transformed the data and then
divided them into a training set (the first 40 samples) and a test set
(the remaining 17 samples).

The second data set is mice apo AI data which is a cDNA chip
(Callow, Dudoit, Gong, Speed, & Rubin, 2000). This data set con-
tains 6,384 gene expression levels for each sample. There are 8
apo AI knockout mice and 8 normal mice (reference mice) samples.
Because this data set only had 16 samples, a cross-validation strat-
egy was used.

In order to verify that AGA/KNN can distinguish the data set
with several categories, the cDNA microarray data of the small,
round blue cell tumors (SRBCTs) of childhood (Khan et al., 2001)
was also used. The SRBCTs data set includes four distinct diagnostic
cancers such as neuroblastoma (NB), rhabdomyosarcoma (RMS),
nonHodgkin lymphoma (NHL) and the Ewing family of tumors
(EWS). Because the four distinct cancers are similar on tumor his-
tology, it is difficult to distinguish among them (Khan et al., 2001).
This data set contains 2,308 gene expression levels for each sam-
ple. There are 63 training samples of 23 tumors (13 EWS and 10
RMS) and 40 cell lines (10 EWS, 10 RMS, 12 NB and 8 NHL). Twenty
test samples contain 14 tumors (5 EWS, 5 RMS and 4 NB) and 6 cell
lines (1 EWS, 2 NB and 3NHL).
Fig. 1. The flow chart of AGA/KNN.
2.2. Adaptive genetic algorithm/k-nearest neighbor (AGA/KNN)

Holland (1975) first proposed genetic algorithm (GA) which
imitated the natural evolution and selection (Li et al., 2001a). This
algorithm can find the near optimal solution through imitation of
the biological evolution system (Goldberg, 1989; Liu et al., 2004).
The evolution speed of GA may be slow, so we developed AGA by
the addition of three methods: (1) elitist strategy, (2) adaptive
probabilities of crossover and mutation, and (3) extinction and
immigration strategy.

Because GA just finds the nearest optimal solution, the best
string of each run is often not the same, especially in high-dimen-
sional space. To solve this problem, we generated many near opti-
mal solutions by running the AGA/KNN procedure repeatedly and
then computed the frequency of the results. The dimension of
the data set was reduced by the rank of the gene frequency. There
Please cite this article in press as: Lee, C.-P., et al. Gene selection and sample cla
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are five major components of AGA: encoding, initial population, fit-
ness function, genetic operators (this component contains selec-
tion and the adaptive probabilities of crossover and mutation),
and termination. The following subsections will describe the de-
tails of AGA. A flow chart of AGA/KNN is shown in Fig. 1.

2.2.1. Encoding
Each gene has to be encoded and transformed into characters

before performing AGA/KNN. There are many encoding methods
available but we used binary code in this study to allow each string
to contain all combinations of genes (characters). When encoding
with binary code, if a character was encoded to 1, that character
would be sent to the fitness function and computed; otherwise
that character would not be computed. A string is made of all char-
acters and is analogous to a chromosome in the biological system,
and a character of a string is analogous to a gene in a chromosome.

2.2.2. Initial population
Because AGA/KNN uses the binary code, 2g – 1 string would be

generated where g is the gene size of that data set; thus AGA/KNN
will need more CPU time to train when all strings are used. There-
fore, 150 strings were selected into the initial population at ran-
dom to decrease the computation time.
ssification on microarray data based on adaptive genetic algorithm/k-near-
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2.2.3. Fitness function
The fitness function is analogous to the theory of ‘‘survival of

the fittest”. The survival rate (or fitness value) of a string is com-
puted based on the fitness function. We aim to find the minimum
solution set for the relevant gene. Therefore, the fitness function,
analogous to the definition of the report of Hernandez, Duval,
and Hao (2008), was determined by

fitness ¼ ð1� KÞ þ S
g
; ð1Þ

where K is the classification rate determined by KNN; S is the total
number of characters equal to 1 for each string; and g is the gene
size of the data set. Thus, the lower the fitness value of a particular
string is, the better the survival rate of that string is. Furthermore,
for cancer diagnosis, if two selected gene subsets have the same
classification ability, the smaller gene size is preferred (Hernandez
et al., 2008). In addition, for the process of AGA/KNN, the decision
of the fitness value is critically important. A plot of learning trend,
the fitness value calculated in AGA/KNN through the training gener-
ations, is shown in Fig. 2. According to the limitation of the fitness
value for 1000 training generations in AGA/KNN, the critical value of
the fitness function in our study was set to 0.27.

2.2.4. Genetic operators
2.2.4.1. Selection and elitist strategy. When the initial population
does not contain any string with fitness values less than the critical
value of the fitness function, a new population (or second genera-
tion) must be generated through genetic operators. Basically, the
roulette wheel method of selection is often used in the first step
of the genetic operators. However, if each string is randomly se-
lected for the second generation, the fitness values of some strings
may be too low. For this reason, De Jong (1975) used the elitist
strategy based on the genetic adaptive system to make sure the
best fitness value of each successive generation would not be
worse than the previous generation. In this method, 20% of the
strings with better fitness values would be saved and put into
the new population without performing the other genetic opera-
tors. Besides, the roulette wheel method of selection was also used
on the remaining 80% to generate the next generation.

2.2.4.2. Adaptive probabilities of crossover and mutation. The next
two steps of the genetic operator are crossover and mutation.
Crossover enhances the ability of evolution by exchanging the
information of the parent generation; while mutation enhances
the ability of evolution by introducing new characters into the
strings. In fact, the fitness value of a string may become worse
when either the crossover rate or mutation rate is too high. Be-
cause the crossover rate and the mutation rate of simple genetic
algorithms (SGA) were not fluctuating rates, new crossover and
mutation operators were determined according to the concept
of De Jong (1975). Srinivas and Patnaik (1994) determined adap-
tive probabilities of crossover and mutation to improve the SGA
Training generations
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Fig. 2. The learning trend of fitness value in AGA/KNN.
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technique. Consequently, the crossover rate in our study was
determined analogously by

Pc ¼ k1 f 0�fminð Þ
�f�fminð Þ ; f 0 6 �f ;

Pc ¼ k1; f 0 > �f ;

8<
: ð2Þ

where fmin is the minimum fitness value of strings in the popula-
tion; �f is the mean fitness value of strings in the population; f0 is
the small fitness value between two strings which was performed
with crossover operator; k1 is a constant.

The mutation rate was determined by

Pm ¼ k2 f 0�fminð Þ
�f�fminð Þ ; f 0 6 �f ;

Pm ¼ k2; f 0 > �f ;

8<
: ð3Þ

where f0 is the fitness value of strings which was performed with
mutation operator; k2 is a constant. As Srinivas and Patnaik
(1994) suggested, the constants, k1 and k2, used for AGA/KNN were
chosen as k1 = 1 and k2 = 0.5 to result in 0 6 Pc 6 1 and
0 6 Pm 6 0:5.

As mentioned before, SGA involved the non-fluctuating cross-
over and mutation rates to improve the convergence speed. How-
ever, the crossover and mutation rates were always fixed in SGA;
hence the behavior of optimal string with high fitness value might
become poorer if either rate was unsuitable. In the AGA/KNN pro-
cess, we used the adaptive probabilities of crossover and mutation
to improve the above problem. In other words, as the process of
evolution in AGA/KNN fell into local optima or could not converge,
the situation could be adapted opportunely by increasing the
crossover rate and the mutation rate simultaneously.

2.2.4.3. Extinction and immigration strategy. The strings of the new
generation will become similar to one another after several gener-
ations. In other words, the variance of the strings will be close to 0,
and the evolution will be hold. Therefore, we developed an extinc-
tion and immigration strategy to increase the variation of the pop-
ulation. Yao and Sethares (1994) theorized that extinction and
immigration strategy should behave like the mutation operator
while the mutation rate was close to 1. Therefore, we determined
that when the variance of the best fitness value of the previous 5
generations equals 0, new strings should be generated to replace
the strings with fitness values that are larger than the mean fitness
value of the population.

2.2.5. Termination
After performing the extinction and immigration strategy, AGA/

KNN must verify that at least one string has a fitness value that is
less than the critical value; if not, AGA/KNN must return to the fit-
ness function (this is called a ‘‘loop”), as shown in Fig. 1; if so, those
found strings would be saved. The path from ‘‘start” to ‘‘save the
strings” in Fig. 1 is called a run. After saving the strings, AGA/
KNN must confirm that the number of runs matches our requested
number; if not, AGA/KNN must return to encoding; if so, AGA/KNN
will stop execution. In the AGA/KNN procedure, a run can be gen-
erated by many loops, and a run can find one or more strings with
fitness values that are less than the critical value. After repeating
AGA/KNN run several times requested, many strings would be
saved.

3. Results and discussion

3.1. Gene selection for colon data

The training set of colon data (Alon et al., 1999) was analyzed by
AGA/KNN. After repeating AGA/KNN by 100 runs, 133 strings were
ssification on microarray data based on adaptive genetic algorithm/k-near-
wa.2010.07.053

http://dx.doi.org/10.1016/j.eswa.2010.07.053


Fig. 4. Plot of the first vs. second principal component using the 50 smallest p-value
genes of MaxT adjusted p-value. Note: N12 is an outlier.
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saved. The frequency of each gene was computed according to
those 133 strings, and each gene was ranked through their fre-
quency. We assume that the 50 most frequently appearing genes
should contain the relevant genes. The following statistical ap-
proaches were employed to confirm it.

3.2. Visual display of results

Since cluster tree analysis can group genes or samples according
to their similarity, we used this technique on the results with three
gene groups to verify the classification ability of the selected gene.
The three gene groups are described below:

� Gene group 1: The 50 most frequently selected genes of AGA/
KNN.
� Gene group 2: The 50 smallest p-value genes of maxT adjusted

p-value.
� Gene group 3: A random selection of 50 genes.

As the result of the cluster trees shown (see http://web.nchu.e-
du.tw/~bjkuo/AGA/), the gene group 1 using the 50 most fre-
quently selected genes by AGA/KNN could resolve samples in the
training set of colon data into two clusters (tumor and normal tis-
sues samples) obviously. However, the gene group 2 using the 50
smallest p-value genes from MaxT adjusted p-value could not eas-
ily get the pattern of samples. The gene group 3 using 50 randomly
selected genes did not find any patterns of samples at all.

Next, principal component analysis (PCA) was applied to the co-
lon data. The plots of the first two components were used to reveal
the patterns of the data set. We also used the 3 gene groups de-
scribed previously to classify between the normal and tumor sam-
ples by projecting samples onto the plot of the first vs. second
principal component.

Fig. 3 shows that the first two components explained approx-
imately 67% of the total variation of gene group 1. Obviously, tu-
mor and normal samples were separated, with the normal tissue
samples on the top and tumor tissue samples on the bottom with
one outlier, T3. In contrast, the first two components explained
approximately 72% of the variation of gene group 2, and normal
tissue samples and tumor tissue samples were separated with
one outlier, N12 (Fig. 4). For Gene group 3 (Fig. 5), the first two
Fig. 3. Plot of the first vs. second principal component using the 50 most frequently
selected genes by AGA/KNN. Note: T3 is an outlier.
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components explained approximately 64% of the variation, and
two distinct clusters separating the groups were not easily found.

The results of cluster tree analysis and PCA confirmed that the
patterns of samples could not be found by using randomly selected
genes.

3.3. Classification analysis

The ability of finding the patterns of samples by AGA/KNN could
be better than maxT adjusted p-value and random selection had
been shown in Section 3.2. Because visual display result is subjec-
tive, an objective approach should be presented to verify this re-
sult. Therefore, for gene selected by AGA/KNN on the colon
(binary categories) and the SRBCTs (four categories) data sets, clas-
sification analyses, including KNN (k = 3) and support vector ma-
chine (SVM) (Brown et al., 2000), were employed to compare the
classification rate.
Fig. 5. Plot of the first vs. second principal component using 50 randomly selected
genes.
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Firstly, KNN was employed to classify the samples. For the colon
data set, all samples were classified correctly when using the 50
most frequently selected genes by AGA/KNN (Table 1). However,
when only the most frequently selected gene was used to classify
samples, 8 samples were classified correctly, and the classification
rate was only 47.06%. Although the classification rate increased to
82.35% when all genes were used to classify samples, the classifica-
tion rate dropped to 58.82% (11 samples were classified correctly)
when using the 50 least frequently selected genes.

Table 2 shows that 8 samples were classified correctly when the
gene with the smallest maxT adjusted p-value was used. Sixteen
samples were classified correctly when the 50 smallest maxT ad-
justed p-value genes were used. Three samples were classified
incorrectly when using all genes and the 50 largest maxT adjusted
p-value genes, respectively.

For the validation, the classification rate of AGA/KNN using the
50 most frequently selected genes (Table 1) and the classification
Table 1
Classification of the test set for AGA/KNN.

Test seta Experimentb Top 1 Top
50

All
genes

The least
50

T28 0 1 0 0 0
N28 1 1 1 1 1
N29 1 0 1 0 0
T29 0 0 0 0 1
T31 0 0 0 0 0
T32 0 0 0 0 1
N32 1 1 1 1 1
N33 1 0 1 1 1
T34 0 0 0 0 1
T35 0 0 0 1 1
N35 1 0 1 1 1
T37 0 1 0 0 0
T38 0 1 0 0 0
T39 0 1 0 1 1
N39 1 0 1 1 1
T40 0 0 0 0 1
N40 1 0 1 1 1

Classification
rate

47.06% 100% 82.35% 64.71%

a ‘‘0” denotes a normal sample and ‘‘1” denotes a tumor sample.
b Original classification based on Alon et al. (1999).

Table 2
Classification of the test set for MaxT adjusted p-value.

Test seta Experimentb Smallest 50
Smallest

All
genes

50
Largest

T28 0 1 0 0 0
N28 1 1 1 1 1
N29 1 0 1 0 0
T29 0 0 0 0 0
T31 0 0 0 0 0
T32 0 0 0 0 1
N32 1 1 1 1 1
N33 1 0 1 1 1
T34 0 0 0 0 0
T35 0 0 0 1 0
N35 1 0 1 1 1
T37 0 1 1 0 0
T38 0 1 0 0 0
T39 0 1 0 1 1
N39 1 0 1 1 1
T40 0 0 0 0 0
N40 1 0 1 1 1

Classification
rate

47.06% 94.12% 82.35% 82.35%

a ‘‘0” denotes a normal sample and ‘‘1” denotes a tumor sample.
b Original classification based on Alon et al. (1999).
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rate of maxT adjusted p-value using 50 smallest maxT adjusted
p-value genes (Table 2) were 100% and 94.12%, respectively. This
result also indicates that AGA/KNN performs better than maxT ad-
justed p-values. Furthermore, all samples were classified correctly
when using the most frequently selected genes ranging from 50 to
250 (Fig. 6). This implies that those genes should contain the rele-
vant genes. Hence, AGA/KNN could reduce the dimension of the
data set more easily than maxT adjusted p-values and it could be
used without assumption restriction.

Subsequently, SVM was also used to verify the classification
rate of the most frequently genes selected by AGA/KNN. For the co-
lon data set (binary categories), the classification rate of SVM
reaches to 100% when using 9 genes selected by AGA/KNN in both
training and test data sets (not shown here). Likewise, for the
SRBCTs data set (four categories), the classification rate could also
achieve 100% when using 14 genes selected by AGA/KNN in both
training and test data sets (Fig. 7). This result indicates that the
most frequently selected genes by AGA/KNN can be applied to clas-
sify multiple categories successfully.

As the above results shown, AGA/KNN cannot only reduce the
dimension of the data set but also have the excellent ability of clas-
sification regardless of using KNN or SVM method to classify the
samples. Because the idea of AGA/KNN is based on GA/KNN, two
algorithms were compared in the next subsection.
3.4. Comparison of AGA/KNN and GA/KNN

3.4.1. Accuracy of gene selection for mice apo AI data
Two algorithms were compared using mice apo AI data (Callow

et al., 2000). From this data, eight significant genes (Table 3)
Fig. 6. The graph of classification rate using KNN vs. the number of the top-ranked
genes selected by AGA/KNN for the training set and test set samples (colon data
set).
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Table 3
Genes with MaxT adjusted p-value < 0.05. For mice apo AI knockout data.

Rank Gene ID Gene name

1 2149 Apo AI, lipid-Img
2 540 EST, highly similar to A
3 5356 CATECHOLO–METHYLTRAN
4 4139 EST, weakly similar to C
5 1739 ApoCIII, lipid-Img
6 2537 ESTs, highly similar to
7 1496 Est
8 4941 Similar to yeast sterol
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Fig. 8. Accuracy of AGA/KNN vs. GA/KNN.

Fig. 9. CPU time of GA/KNN vs. AGA/KNN.
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previously identified and verified by Q–Q plot and maxT adjusted
p-value (Dudoit et al., 2002) were used to compare the selection
accuracy of genes selected by AGA/KNN and GA/KNN, respectively.
For instance, AGA/KNN and GA/KNN selected 20 genes from the
mice apo AI data individually and then the selection accuracy of
those 20 genes was compared. As shown in Fig. 8, the accuracy
of AGA/KNN was around 90% after 40 runs, and then it climbed
to about 100% after 70 runs. In contrast, the accuracy of GA/KNN
was only around 80% when more than 1,000 runs were executed.
According to these results, it is obvious that the accuracy of AGA/
KNN is better than that of GA/KNN. The parameters of AGA/KNN
and GA/KNN are presented in Table 4.

3.4.2. Comparison of the CPU time
The selection accuracy of genes of AGA/KNN was found to be

close to 100% after more than 120 runs and the selection accuracy
of genes of GA/KNN was around 80% after more than 1000 runs.
Therefore, for comparison, both algorithms were executed 10
times. The AGA/KNN algorithm was set to 120 runs while the
GA/KNN was set to 1000 runs (Fig. 9). Since the mean termination
time of AGA/KNN was about 10 min and that of GA/KNN was about
26 min, the evolution speed of AGA/KNN should be better than that
of GA/KNN.
Table 4
The parameters of GA/KNN and AGA/KNN.

Operator GA/KNN AGA/KNN

Algorithm runs 50–1200 10–130
Encoding Integer code Binary code
Population size 150 150
String length 50 6226
Selection method Roulette wheel Roulette wheel
Crossover ratio None 0 6 Pc 6 1
Mutation ratio 0.01 0 6 Pm 6 0:5
Elitist strategy Preserving the best

string
Preserving the 20% best
strings

Extinction and immigration
strategy

No Yes

Please cite this article in press as: Lee, C.-P., et al. Gene selection and sample cla
est neighbor method. Expert Systems with Applications (2010), doi:10.1016/j.es
4. Conclusion and future work

The results of this study indicate that AGA/KNN can be provided
as a useful tool with excellent performance for dimension reduc-
tion and gene selection on gene expression data. Comparing
AGA/KNN and GA/KNN, it can be concluded that both algorithms
are good for dimension reduction. However, the efficiency and
classification rate of AGA/KNN is better than that of GA/KNN when
the most frequently selected genes are used. Thus, researchers can
use AGA/KNN to perform dimension reduction when analyzing
microarray data. After using this proposed method, biologists can
identify the relevant genes efficiently from the sub-gene set and
classify the test samples correctly. The following recommendations
will be made for further study: to confirm the correlation between
runs and the dimension of the data set; and to confirm the corre-
lation between the number of gene selected and the dimension
of the data set.
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