
A Novel Preprocessing Method Using Hilbert Huang
Transform for MALDI-TOF and SELDI-TOF Mass
Spectrometry Data
Li-Ching Wu1,2*, Hsin-Hao Chen1, Jorng-Tzong Horng1,3,4, Chen Lin1, Norden E. Huang1,5, Yu-Che

Cheng6, Kuang-Fu Cheng7,8

1 Graduate Institute of System Biology and Bioinformatics, National Central University, Jhongli, Taiwan, 2 Research Center for Biotechnology and Biomedical Engineering,

National Central University, Jhongli, Taiwan, 3 Department of Computer Science and Information Engineering, National Central University, Jhongli, Taiwan, 4 Department

of Bioinformatics, Asia University, Wu-feng, Taiwan, 5 Research Center for Adaptive Data Analysis, National Central University, Jhongli, Taiwan, 6 Proteomics Laboratory,

Cathay Medical Research Institute, Cathay General Hospital, Xizhi, Taiwan, 7 Graduate Institute of Statistics, National Central University, Jhongli, Taiwan, 8 Graduate

Institute of Statistics, China Medical University, Taichung, Taiwan

Abstract

Motivation: Mass spectrometry is a high throughput, fast, and accurate method of protein analysis. Using the peaks
detected in spectra, we can compare a normal group with a disease group. However, the spectrum is complicated by scale
shifting and is also full of noise. Such shifting makes the spectra non-stationary and need to align before comparison.
Consequently, the preprocessing of the mass data plays an important role during the analysis process. Noises in mass
spectrometry data come in lots of different aspects and frequencies. A powerful data preprocessing method is needed for
removing large amount of noises in mass spectrometry data.

Results: Hilbert-Huang Transformation is a non-stationary transformation used in signal processing. We provide a novel
algorithm for preprocessing that can deal with MALDI and SELDI spectra. We use the Hilbert-Huang Transformation to
decompose the spectrum and filter-out the very high frequencies and very low frequencies signal. We think the noise in
mass spectrometry comes from many sources and some of the noises can be removed by analysis of signal frequence
domain. Since the protein in the spectrum is expected to be a unique peak, its frequence domain should be in the middle
part of frequence domain and will not be removed. The results show that HHT, when used for preprocessing, is generally
better than other preprocessing methods. The approach not only is able to detect peaks successfully, but HHT has the
advantage of denoising spectra efficiently, especially when the data is complex. The drawback of HHT is that this approach
takes much longer for the processing than the wavlet and traditional methods. However, the processing time is still
manageable and is worth the wait to obtain high quality data.
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Introduction

Mass spectrometry is currently used to explore protein profiles

expressed under different physiological and pathophysiological

conditions [1]. Moreover, recent progress has opened up new

avenues for tumor-associated biomarker discovery [2]. A mass

spectrum of a sample is a profile representing the distribution of

components by mass-to-charge ratio. Spectra of tissues or fluids,

like serum, are studied for possible profile changes that further

disease diagnosis. Matrix assisted laser desorption ionization

(MALDI) and surface-enhanced laser desorption ionization

(SELDI) time of flight (TOF) are the two commonly techniques

used to generate profiles from experimental samples. The chief

feature of mass spectra is the peaks detected in terms of their

intensity values and time of flight values. Further peak identi-

fication can be done if tandem mass spectrometry is available [3].

Since each spectrum contains ten thousands of time of flight

points with various intensities, noise in the spectra is unavoidable.

Therefore, it is important to develop a suitable algorithm for

data preprocessing that improves performance when analyzing

spectra.

Recently, various data preprocessing methods have been used

and these usually comprise several steps. First, baseline

subtraction is often used to rescale the plots with the aims of

removing systematic artifacts produced by small clusters of matrix

material [4]. Next, denoising attempts to remove noise signals

that are added to the true spectra from the matrix material and

by sample contaminants (chemical noise) together with noise

caused by the physical characteristics of the machine (electrical

noise) [5,6]. Furthermore, alignment is a required for combining

unusual groups of data together. The same peak may be present,

but with small gaps between the different biological samples due
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to unavoidable inaccuracy in the spectrum. Peak detection is still

necessary across every method and is a key feature of preprocess-

ing the data. It is necessary to detect each peak by relying on their

peak intensity and time of flight. Finally, normalization helps us

to have a uniform format for the analysis of the data and this

corrects any systematic variation between the different spectra

[7].

There are many studies that have described preprocessing of

mass spectrum data [6,8,9,10,11,12,13] and have explored their

approach’s influence on the raw data. In the study of Meuleman,

Engwegen et al. [14], they compared various different algorithms

that can be used for normalization. In another, Beyer, Walter et al.

[15] compared the performance of the package ‘‘Ciphergen Express

Software 3.0’’, which is produced by Ciphergen against the ‘‘R

package PROcess’’. Recently, Cruz-Marcelo, Guerra et al. [7]

compared a number of widely used algorithms, namely ‘‘Pro-

teinChip� Soft-ware 3.1’’ (Ciphergen Biosystems), ‘‘Biomarker’’

Wizard (Ciphergen Biosystems), ‘‘PROcess’’, which was written by

Xiaochun Li as the ‘‘BioConductor’’ package, ‘‘Cromwell’’ written

using Matlab scripts, ‘‘SpecAlign’’ developed by Wong, Cagney et

al. [11], and ‘‘MassSpecWavelet’’ developed by Du, Kibbe et al.

[12] as a ‘‘BioConductor’’ package. Nevertheless, although many

preprocessing methods have been put forward, the preprocessing

algorithm can still be improved.

In the past, the scientists have tried to compute a formula for

noise that consists of chemical and machine noise using a statistical

method and then constructing a model based on this. However,

the chemical noise is generally due to true peaks, namely organic

acids, which are part of the matrix used in mass spectrometry. The

matrix has two purposes: ionization and protection. It provides

hydrogen ions to the peptides or proteins, which are then allowed

to undergo ionization and flight in the machine. In addition, the

matrix protects the peptide or protein during the laser flash.

Matrix noise usually appears in the low mass-to-charge ratio

regions (,1000DA). Nonetheless, we need to understand that

peaks in the low mass-to-charge ratio region are not only due to

chemical noise but also contain true signal peaks. If we mixed the

chemical noise with the machine noise as part of preprocessing, we

might conclude that the noise strongly affecting the low mass-to-

charge ratio region is due to the abundance of organic acids in this

region. However, if we take into account the difference between

chemical and machine noise when we analyze the spectra, we

ought to be able to separate chemical noise from machine noise;

this is because the peaks in the low mass-to-charge ratio regions

are due to the organic acids and thus distinct from machine noise.

The machine noise may come from variety of different sources

includes air dust, electric detection limitation, electric white noise,

and even earth magnetic field. These noises may not have fixed

frequences since the m/z value have measurement shifting

problem.

In the present study we present a novel preprocessing

method using Hilbert Huang transformation (HHT) that is used

to decompose a non-linear and non-stationary model. By using

HHT, the data can be decomposed into different trends which

separate some noises from signals. The main advantage of

HHT is non-stationary. It does not make strong assumption

that the signal respond to the axis to be stationary distributed.

Since the m/z axis exist shifting problem, the HHT can

Figure 1. Components decomposed using HHT. HHT decomposes the spectrum into sixteen components. From bottom to top, we call them as
C1, C2, and so on. Summation of all components can is the original spectrum.
doi:10.1371/journal.pone.0012493.g001
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eliminate more non-stationary noises than stationary method

such as wavelet. The disadvantage is the calculation time will

much longer then stationary method. We then compare our

algorithm with three familiar preprocessing methods and with

another algorithm that has been suggested by Cruz-Marcelo,

Guerra et al. [7].

Figure 2. Before and after HHT preprocessing. (a) The average of fifty ovarian cancer datasets. There are greater amounts of noise in the low
region than in the high region. The scale is approximately ten to the ninth power. (b) The same figure after using the Hilbert Huang transformation
formula and the various modifications carried out after preprocessing. When comparing with (a), it can be seen that the chief peaks and the profile
are maintained.
doi:10.1371/journal.pone.0012493.g002

Using HHT on Mass Spectrometry

PLoS ONE | www.plosone.org 3 August 2010 | Volume 5 | Issue 8 | e12493



Materials and Methods

Hilbert Huang transformation
HHT [16] is an adaptive data analysis method for non-linear

and non-stationary processes. We use HHT to define the trends in

a spectrum. In the past, we have defined the trend that represents

the baseline and the noise as a straight line, which is then fitted to

the spectrum; then we removed the straight line to yield a zero-

mean residue. However, such trends are not suitable for non-linear

data and the real-world. Noise exists non-linearly and is non-

stationary. In reality, the line is non-linear and non-stationary

when we try to rescale spectra.

The main feature of the HHT is the empirical mode

decomposition (EMD) method with which any complicated data

can be decomposed into a finite and often a small number of

components called intrinsic mode functions (IMF). We define the

IMF if the intrinsic mode of oscillation satisfies two conditions:

firstly that the number of the extrema and the number of the zero-

crossings must either equal or differ at most by one in the whole

dataset and, secondly, the mean value of the envelope defined by

the local minima is zero at any point. The IMFs by the EMD

method are chiefly obtained by an approach called the sifting

process. Actually, the number of IMFs is closed to log2N where N

denotes the total number of data points. The sum of all IMFs is

equal to the original data.

We chose one of the ovarian cancer datasets from the National

Cancer Institute published by Kwon, Vannucci et al. [6] to

undergo the HHT process. Sixteen IMF components were

identified while applying sifting process to our data. As is shown

in the Figure 1, the later components, namely the ones from the

fourteenth IMF to the sixteenth IMF, can be removed for the

purpose of rescaling; we also removed the components from first

IMF to sixth IMF for the purpose of denoising. Thus a significant

part of the chemical noise can be separated from the main

spectrum by removing the first components.

Subsequent Modifications
In addition to using the HHT for de-noising, the baseline needs

to be adjusted. Here we apply SpecAlign software for baseline

estimation, which is available at PHYSCHEM.OX.AC.UK/

,JWONG/SPECALIGN [11]. For removing the baseline, the

software has two user-defined options: window size of the baseline

and subtraction of the baseline. We set the window size as 20, and

then we remove the baseline. After baseline subtraction, we

rescaled the spectrum to positive. We moved the whole spectrum

to be positive by changing the intensity values. However, we did

not change other parameters. Our method, which we have called

HHTMass, consists of using the Hilbert Huang transformation for

denoising followed by modification of the spectrum by baseline

subtraction and rescaling. The spectrum before and after the

HHT preprocessing are shown in Figure 2(a) and 2(b) (spectrum

source shown in data source section).

Peak detection
We apply three methods, namely MassSpecWavelet [12],

SpecAlign [11], and PROcess [9] for peak detection. The major

feature of MassSpecWavelet is that the package does not contain any

preprocessing method. According to Cruz-Marcelo, Guerra

et al. [7], MassSpecWavelet has the best performance in terms of

peak detection. PROcess is a BioConductor package by Li [9], which

has high quality of peak quantification. SpecAlign, written by Wong

[11], is a well known spectrum analysis software package; it has the

useful property of containing many user defined options that increase

choice. The preprocessing methodology linked to MassSpec-Wavelet

Figure 3. Sample pancreatic cancer data. Original data of pancreatic cancer provided by Ge and Wong (2008). In this dataset, there is more noise
where the peaks exist.
doi:10.1371/journal.pone.0012493.g003
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was designated as HHTMass1, that linked to SpecAlign as

HHTMass2, and that linked to PROcess as HHTMass3.

Data source
Two different samples are used in this study. Ovarian cancer data

is acquired from the authors of [6] in National Cancer Institute.

Serum samples from women diagnosed with ovarian cancer and

women hospitalized for other conditions were collected at the Mayo

Clinic from 1980 to 1989. The dataset was analyzed by SELDI-

TOF MS using the CM10 chip type [17]. The ProteinChip

Biomarker System was used for protein expression profiling.

The spectrum has two properties, m over z and intensity. The

dataset consists of fifty samples after 1986. The m over z ranges

are between 58Da and 101453Da. The intensity ranges are

between 23.27E7 and 2.14E9. Based on the results of Cruz-

Marcelo, Guerra et al. et al. [7] and Kwon, Vannucci et al. [6], in

this study we examined the m over z range from 2000Da to

15000Da. Each sample has 21552 points.

Figure 4. Different peaks detected by different peak selection method. (a) The ovarian cancer dataset preprocessed by HHTMass1. The
chosen area is from 4000DA to 6000DA. The figure is the original spectrum and the circled points are the peaks detected by HHTMass1. HHTMass1
detected 32 peaks in this region. (b) The ovarian cancer dataset preprocessed by HHTMass2. The chosen area is from 4000DA to 6000DA. The figure is
the original spectrum and the circled points are the peaks detected by HHTMass2. HHTMass1 detected 17 peaks in this region. (c) The ovarian cancer
dataset preprocessed by HHTMass3. The chosen area is from 4000DA to 6000DA. The figure is the original spectrum and the circled points are the
peaks detected by HHTMass3. The largest peak in the region between 5000DA and 6000DA was not detected by HHTMass3. HHTMass3 detected 18
peaks in this region.
doi:10.1371/journal.pone.0012493.g004

Figure 5. Spectrum data after using HHT preprocessing. The data after using Hilbert Huang transformation without modification. The high
frequency noises are removed.
doi:10.1371/journal.pone.0012493.g005

Table 1. The amount of the peaks detected in our three algorithms.

Algorithm Total region Region A Region B Region C Region D Region E Region F Region G

HHTMass1 218 35 32 27 21 44 38 21

HHTMass2 80 18 17 6 11 8 9 3

HHTMass3 108 21 18 19 13 14 13 10

The table shows the results of different preprocessing methods. Region A represents the m over z value between 2000DA and 4000DA. Similarly, B, C, D, E, F, and G
represent the region of 4000DA to 6000DA, 6000DA to 8000DA, 8000DA to 10000DA, 10000DA to 12000DA, 12000DA to 14000DA, and 14000DA to 15000DA, whereas
the total region means the area between 2000DA and 15000DA.
doi:10.1371/journal.pone.0012493.t001
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As we see the Figure 2(a), the spectrum is full of noise,

especially in low m over z value region. Several different

denoising methods have been developed to handle this type of

data [6,13,18,19]. In general, these approaches use a simulated

model for comparing the performance of preprocessing methods.

However, the above preprocessing methods seem to be pre-

justified in their model. The real distribution of noise is more

irregular in real experiments because we cannot understand

completely how electrical and chemical noise is generated in a

spectrum. Therefore, in this study we compared our approach

with the other methods using real data rather than simulated

data. It is well-known that Morris, et al. [20] proposed a model

using Gaussian white noise and that Cruz-Marcelo, Guerra et al.

[7] proposed the ARMA model. However, there is no evidence to

show which model fits real data. The preprocessing methods

proposed up to now fit their data and their model. For example,

we requested a pancreatic cancer dataset from [21] and

compared it to the ovarian cancer data. In the Figure 3, the

pancreatic cancer spectrum has high amounts of noise in the

regions where peaks exist, which is different from [6], where the

noise is greater in the low region. Therefore, approaches to

constructing the model cannot be uniform. In this context then it

is clear that real data is the best target when carrying out

comparisons.

In fact, while processing the mass spectrum data, we substituted

the scale of time of flight for the scale of m/z values. The

transform was carried out according to the formula (1).

m=z

U
~sign t{t0ð Þ:a: t{t0ð Þ2:b ð1Þ

Here t denotes the time of flight, U = 25000, a = 3.36E8,

b = 0.00235, and t0 = 3.7071E-7. A single spectrum has 21

551data points in our experiments [6]. After the above pre-

processing step, we should be able to compare the spectra and

distinguish biomarkers that identify the differences between

healthy and diseased individuals.

Methods of comparison
Previously, scientists have compared performance mainly in

terms of peak detection and peak quantification. Peak detection

means that we compare the number of detected prevalent peaks

between the different preprocessing methods. Peak quantification

means the differences in m over z values and the differences in

intensity between the detected prevalent peaks and original

spectrum are compared. Using the three methods in the present

study, the number of detected peaks is quite different. As can be

seen in Figure 4(a) and Figure 4(b), HHTMass1 detects the

most peaks and HHTMass2 detects the least peaks; furthermore,

Figure 4(c) shows that HHTMass3 failed to detect the biggest

peak in the B (4000DA,6000DA) region. Therefore, it is clear

that the number of the peaks detected is not the only reference

material that we need to consider when assessing the performance

of preprocessing methods and these are explored below.

In this context, we would expect that the profile of the

preprocessed spectrum should be similar to that of the original,

especially the intensity of the obvious peaks. However, part of

preprocessing aims at decreasing the large scale of the spectrum.

The scale of the ovarian dataset is very large and is full of

complex signals. With such a large scale, noise exists to a very

significant extent across the spectrum. The best approach to this

problem is to maintain the exterior of the profile; therefore we

decreased the scale by about 50% in proportion to the original.

Figure 2(a) represents the original data and Figure 2(b)
represents the data after using Hilbert Huang transformation

formula and other modifications during preprocessing. When the

two figures are compared, it can be seen that the chief peaks and

the exterior profile of the spectrum are maintained. Nevertheless,

the approach has attempted to remove the signaling errors due

to machine and chemical noise. Although we have tried to

maintain the exterior profile of the spectrum, we still need to

determine whether the peaks present in the preprocessed

spectrum are noise or true signals. Finally, when correcting

spectra and for visual calibrating purposes, it is better if the

baseline of the spectrum is moved to the origin point of the

coordinates. Therefore, the final goals of a preprocessing method

include retaining the spectrum profile, removing noise, and

adjusting the baseline.

Using a comparison of peak numbers is only one way of

assessing the performance of a preprocessing method. In this study

we not only calculated the number of detected peaks but also

assessed the real location of the peaks in the spectrum. When the

dataset has a large scale, which is the case with the present dataset,

peak quantification as an assessment method needs to be replaced

because once we have rescaled the spectrum but maintained the

spectrum profile then the relative intensity of the peaks becomes

meaningless. Therefore, in this analysis, we used visual comparison

as the means of assessing performance rather than peak

quantification. In this context, the visual comparison involves

comparing the distance between the peaks and appearance of the

peaks as detected before and after preprocessing.

Figure 6. Different peaks detected by different peak selection method on full spectrum us HHTMass. (a) The ovarian cancer dataset
preprocessed by HHTMass1. The detected peaks cover most raised peaks. HHTMass1 detected 218 peaks in the whole region. (b) The ovarian cancer
dataset preprocessed by HHTMass2. HHTMass2 tends to detect the more obvious peaks. This algorithm detected 80 peaks across the whole region.
(c) The ovarian cancer dataset preprocessed by HHTMass3. HHTMass3 misses the third largest peak close to 6000DA. HHTMass3 detected 108 peaks
in the whole region.
doi:10.1371/journal.pone.0012493.g006

Table 2. The amount of the peaks detected in several
popular algorithms.

Region

Algorithm All A B C D E F G

PRO1 145 46 24 19 18 16 16 6

PRO2 114 40 23 8 12 13 14 4

HHTMass3 (HHT+PRO) 108 21 18 19 13 14 13 10

MSW 188 51 39 25 24 22 20 7

HHTMass1(HHT+MSW) 218 35 32 27 21 44 38 21

PROMSW 198 54 37 33 25 23 18 8

SpecAlign 186 67 43 21 18 16 14 7

HHTMass2(HHT+Specalign) 80 18 17 6 11 8 9 3

PRO1 and PRO2 mean different way to estimate the baseline in PROcess. MSW
is the abbreviation of MassSpecWavelet. PROMSW is the combination
preprocessing method of PROcess for peak quantification and
MassSpecWavelet for peak detection. HHTMass1, HHTMass2, HHTMass3 only
replace the preprocess method and use the original peak selection method
respectively.
doi:10.1371/journal.pone.0012493.t002
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Figure 7. Peaks detected by PRO1 and PRO2. (a) The ovarian cancer dataset preprocessed by PRO1. PRO1 missed the three largest peaks. PRO1
detected 145 peaks in the whole region. (b) The ovarian cancer dataset preprocessed by PRO2. PRO2 misses the two largest peaks. PRO2 detected
114 peaks in the whole region.
doi:10.1371/journal.pone.0012493.g007
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Cruz-Marcelo, Guerra et al. [7] suggested several methods of

dealing with a spectrum and these included MassSpecWavelet [12]

for peak detection and PROcess [9] for peak quantification. Cruz-

Marcelo, Guerra et al. [7] suggested that a combined method

involving both MassSpecWavelet and PROcess could be used. In

addition to the above, we also used the commonly available tool

SpecAlign. [11]. Thus, in this analysis, we compare our

preprocessing method with those mentioned above and these are

abbreviated to SpecA-lign SA, MassSpecWavelet MSW and

PROcess PRO as shown in the Result sections.

Results

We computed the average of fifty original ovarian cancer

spectrums and then identified with symbols where the various

methods detected peaks using the average raw data. This allows

performance to be more obviously compared. Our preprocessing

method was then utilized and the best peak detection system

identified; then we compare the results of five well known

preprocessing methods with our preprocessing approach.

Results after Hilbert Huang transformation and
modification

We used HHT to preprocess the ovarian cancer data. The raw

data is obviously full of noise, especially in the low region. HHT

decomposed each spectrum into sixteen components. We called

these components Ci for i [1,2,…,16] (Figure 1). Figure 1

indicates that the components from C1 to C7 contain mostly noise,

while components from C14 to C16 are associated with the trend

of the spectrum. When these components are removed (Figure 5)

then the wave pattern become much smoother. After HHT, the

spectrum is made up of both positive and negative parts. Based on

the results of the modification shown in Figure 2(b), we subtract

the baseline from spectra and rescale the spectrum to be positive.

Results of a comparison between our methods
After HHT and the follow up modifications, we used

MassSpecWavelet, SpecAlign, and PROcess for peak detection.

It should be note that these algorithms were not used for

preprocessing, which was only carried out by HHTMass. We

marked an area on the original spectrum and separate this into

seven regions for convenience. As shown in Table 1, HHTMass1

detected the most number of peaks, namely 218. In contrast,

HHTMass2 detected the least number of peaks. Nevertheless,

although HHTMass2 (Figure 6(b)) detected the least number of

peaks, those detected covered all of the obvious peaks in the

original spectrum. This differed from HHTMass3, which missed

several significant peaks (Figure 6(c)). Based on the above results,

we chose HHTMass1 and HHTMass2 as our approaches to

spectrum analysis and rejected HHTMass3.

Results of comparison between our method and other
methods

According to Cruz-Marcelo, Guerra et al. [7], the algorithms

PROcess [9] and MassSpecWavelet [12] gave the best perfor-

mance in terms of peak quantification and peak detection. The

authors then suggest a combination of PROcess for peak quan-

tification and MassSpecWavelet for peak detection. In addition,

SpecAlign [11] is a well-known software package used to handle

mass spectrum data. Therefore, we compared our algorithms,

HHTMass1 and HHTMass2, with PROcess, MassSpecWavelet,

SpecAlign, and a combination of PROcess and MassSpecWavelet

[7]. The combination of PROcess and MassSpecWavelet is

abbreviated to PROMSW in this study.

PROcess used two methods to estimate the baseline. One uses

local interpolation and the other uses local regression. Based on

Cruz-Marcelo, Guerra et al. [7], the former was designated PRO1

and the latter PRO2. Table 2 shows that HHTMass1 is able to

detect the most peaks and HHTMass2 detects the least peaks.

When Figure 7(a) and Figure 7(b) are examined, PRO1 and

PRO2 miss the two most obvious peaks whereas the other

algorithms detect these peaks. MSW (Figure 8(a)) and

PROMSW Figure 8(b)) seem to cover most of the obvious

peaks on visual assessment. However, as we amplify the spectra,

some marked peaks are counted twice with MSW and PROMSW.

SpecAlign (Figure 8(c)) performs well in terms of visual

assessment; however, as can be seen from Table 2, SpecAlign

detects more peaks than the other approaches in the range

between 2000Da and 6000Da. If the associated documents

produced by BIO-RAID Laboratories for the Proteinchip matrices

(ProteinChipH) are examined, there are three common Pro-

teinchip matrices that are used in SELDI technology, namely:

N Alpha-cyano-4-hydroxycinnamic acid (CHCA), which enables

efficient laser desorption and ionization of small proteins

(,30 kDa).

N Sinapinic acid (SPA), which enables efficient laser desorption

and ionization of larger proteins (10–150 kDa).

N EAM-1, a proprietary formulation, that enables efficient laser

desorption and ionization of glycosylated proteins and proteins

in the 15–50 kDa range

As suggested by the manufacturer’s documents, low regions

such as 2000Da to 6000Da are usually ignored due to the large

amount of noise and the restrictions caused by the Proteinchip

matrices and samples. Therefore, when looked at from either the

statistical point of view [6], or the biological point of view, the

Figure 8. Peaks detected by other methods. (a) The ovarian cancer dataset preprocessed by MassSpecWavelet. MassSpecWavelet produced
some redundancies when detecting peaks. For example, the biggest peak is detected twice. MassSpecWavelet detected 188 peaks. (b) The ovarian
cancer dataset preprocessed by PROMSW. PROMSW produced some redundancies when detecting the peaks and the result is similar to Figure 8(a).
(c) The ovarian cancer dataset preprocessed by SpecAlign. The peaks detected by SpecAlign are concentrated in the region between 2000DA and
6000DA. SpecAlign detected 186 peaks in the whole region.
doi:10.1371/journal.pone.0012493.g008

Table 3. CPU time of different approach (in seconds).

Algorithm Sample No. HHT MASCAP (wavelet)

Plasma P_1 4084.7777 8.724561

Plasma P_2 3949.6833 8.996664

Plasma P_3 3908.3151 8.151383

Plasma P_4 4049.2662 7.785374

Plasma P_5 3939.0311 8.117013

Average 3986.2147 8.4094196

doi:10.1371/journal.pone.0012493.t003
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peaks located in the this low region are less significant. As shown in

Table 2, SepcAlign has a disadvantage when preprocessing such

data and HHTMass is able to conquer this problem. HHTMass1

detects fewer peaks between 2000Da and 6000Da but detects

more peaks between 10 kDa and 15kDa. Overall, HHTMass2 is

more uniform when examining the low and high regions. This

Figure 9. The spectrum of background. The organic acid used in the experiment is CHCA, which has a molecular weight of less than 1000 Da.
doi:10.1371/journal.pone.0012493.g009

Figure 10. The spectrum of VrD1. VrD1 is a small protein with a molecular weight of about 5119 Da.
doi:10.1371/journal.pone.0012493.g010

Using HHT on Mass Spectrometry

PLoS ONE | www.plosone.org 12 August 2010 | Volume 5 | Issue 8 | e12493



Using HHT on Mass Spectrometry

PLoS ONE | www.plosone.org 13 August 2010 | Volume 5 | Issue 8 | e12493



may result to the non-stationary feature if HHT which remove

different amount of noises in high and low m/z region.

Analysis execution time
The major drawback of non-stationary analysis processes as

described here is that they takes a longer time for the processing a

set of data. For comparison, the experiments using the different

methods were carried out on an Intel Pentium 4 personal

computer running at 3.0 Gz with 1.5 gigabytes of memory; the

computer used Windows XP (c) SP3 and MATLAB(c) R2006a.

The dataset used in this test was the MASCAP plasma sample

numbers P1,P5 [22], available at http://www.unich.it/proteo-

mica/bioinf. Each sample contains mass data from about 500DA

to 22200DA. Table 3 shows the different times needed for the

different approaches, such as wavelet method (MASCAP) and

HHT. It is clear that HHT is about 5006 slower than wavelet

methods such as MASCAP. Using HHT, the user will have to wait

more than 1 hour before the analysis is finished but a linear

method like MASCAP takes less than 9 seconds. Processing time is

an issue that is being addressed at the moment, but it is unlikely

that any changes instituted will result in HHT being as fast as the

linear methods. Although the longer processing time is a

drawback, biologists using mass spectrometry for diagnosis are

more interested in accuracy and the processing time at present is

not extraordinary (such as days). Methods such as using GPU to

accelerated the computation in [23] can easily be reduced (also by

improving the computer in terms of CPU, memory and operating

system), but a better result is still a better result whether it takes

1 hour or 10 minutes.

Validation using experimental data
The quality of the peaks ins more important than the number

of peaks, but we did not know which peak is correct in the current

data. To show that known protein can be detect in our method,

we proceed with biology experimental data validation (which did

not done in many method discussed in related works). We

acquired experimental data from Cathay General Hospital. The

dataset consists of two main parts. The first sample contains only

water and the molecular weight of water is approximate 18Da,

which is closed to zero. The second sample contains the protein,

VrD1, which has a molecular weight of about 5119 Da. In both

experiments, we use the same organic acid CHCA, which has a

molecular weight of less than 1000 Da. Figure 9 shows the

spectrum obtain from the water sample and this is distributed

almost completely across a region that is less than 1000 Da.

Figure 10 shows the spectrum of VrD1, which has several peaks

that are larger than 1000 Da. However, some noise exists in

Figure 9 because the molecular weight of CHCA is less than

1000 Da. Moreover, if we consider VrD1 with the double charge,

then this would create a significant peak located on (5119+1)/

Figure 11. Peak detection on VrD1 data. (a) Peak detection of VrD1 by MassSpecWavelet. The circled purple points are the peaks detected by
MassSpecWavelet. (b) Peak detection of VrD1 by SpecAlign. The circled purple points are the peaks detected by SpecAlign. (c) Peak detection of VrD1
by HHTMass2. The circled purple points are the peaks detected by HHTMass2.
doi:10.1371/journal.pone.0012493.g011

Figure 12. HHTMass on the VrD1 data. HHTMass2 detected the most significant peaks of VrD1, namely the ones at 5119 Da and 2560 Da.
doi:10.1371/journal.pone.0012493.g012
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2 Da. The major peaks larger than 1000 Da therefore should be

at approximate 5119 Da and 2560 Da and the rest of the peaks

can be considered to be noise in the VrD1 spectrum. If we use the

region of the VrD1 spectrum larger than 1000 Da, MassSpec-

Wavelet detects 340 peaks as shown in Figure 11(a) and

SpecAlign detects 355 peaks as shown in Figure 11(b).
However, HHTMass2 detects only 22 peaks as shown in

Figure 11(c). Using this dataset, the most significant peaks are

closed to 5119 Da and 2560 Da. HHTMass2 detects the correct

significant peaks as shown in Figure 12. However, while

MassSpecWavelet and SpecAlign are also able to detect the

correct significant peaks, these events are masked because these

approaches also detect many more of the redundant peaks, which

confuse the results.

Discussion

The mass spectrometry data exist shifting problem which make

the m/z scale not stationary. In this study we describe a novel

preprocessing method that is better adapted to mass spectrometry

data. We use the Hilbert Huang transformation to remove noise

from the data by decomposing the spectrum into sixteen

components. It should be noted that the total number of

components is not always the same. Then by removing the

components, we are able to pinpoint the significant information

that is the real data. Finally, we estimate the baseline of the

spectrum and remove the baseline.

Two peak detection methods, HHTMass1 and HHTMass2, are

proposed here. When these are compared, HHTMass1 detects the

most of the peaks. Although the number of peaks detected by

PROMSW is close to that of HHTMass1, the peaks detected by

PROMSW show too much redundancy. HHTMass2 detects the

least peaks but these peaks are the most significant peaks. Although

the results from SpecAlign are similar to HHTMass2, this program

detects too many peaks in the low region of the spectrum, which is

generally regarded as a region full of noise. Based on these

comparisons, we conclude that using the Hilbert Huang transfor-

mation as a preprocessing step and carrying out the relevant

modifications to the spectrum is able to improve peak detection

performance. The two preprocessing methods, HHTMass1 and

HHTMass2, have different advantages and therefore the choice of

peak detection method can be split into two distinct policies. Firstly,

HHTMass1 is suitable for constructing a model that is able to

distinguish a disease group from control group. Secondly,

HHTMass2 is suitable for picking out significant biomarkers. In

terms of the experimental validation, the use of HHTMass2

decreases redundancy and noise when we used a known protein as a

marker, which helped us to separate the important peaks in the

spectrum from the noise. In contrast, MassSpecWavelet and

SpecAlign tended to detect all peaks present in the sample whether

the peaks are significant or not. Our preprocessing approach fits

both MALDI and SELDI spectra and using our approach, even if

the noise varies between different diseases or between different

machines, HHTMass2 is able to ignore these effects.

The preprocessing method used is quite important when

analyzing mass spectrometry data because these datasets suffer

from unknown amounts of interference from chemical and electrical

noise. In addition, in many cases the scale of the spectrum tends to

be over large. This increases the difficulty that biologists encounter

when analyzing these dataset and constructing a statistical model.

The use of a preprocessing method is able to help distinguish the

control group from the disease group more easily and increases the

accuracy of identifying the correct biomarker.
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