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An easy-to-implement approach for analyzing
case–control and case-only studies assuming
gene–environment independence and
Hardy–Weinberg equilibrium
Wen-Chung Lee,a∗† Liang-Yi Wangb and K. F. Chengc

The case–control study is a simple and an useful method to characterize the effect of a gene, the effect of an exposure, as well
as the interaction between the two. The control-free case-only study is yet an even simpler design, if interest is centered on
gene–environment interaction only. It requires the sometimes plausible assumption that the gene under study is independent of
exposures among the non-diseased in the study populations. The Hardy–Weinberg equilibrium is also sometimes reasonable to
assume. This paper presents an easy-to-implement approach for analyzing case–control and case-only studies under the above
dual assumptions. The proposed approach, the ‘conditional logistic regression with counterfactuals’, offers the flexibility for
complex modeling yet remains well within the reach to the practicing epidemiologists. When the dual assumptions are met, the
conditional logistic regression with counterfactuals is unbiased and has the correct type I error rates. It also results in smaller
variances and achieves higher powers as compared with using the conventional analysis (unconditional logistic regression).
Copyright © 2010 John Wiley & Sons, Ltd.
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Introduction

The occurrences of most human diseases are the results of interplay between genes and environmental exposures [1, 2].
The case–control study is a simple and an useful method to characterize the effect of a gene, the effect of an exposure,
as well as the interaction between the two, whereas the control-free case-only study is yet an even simpler design, if
interest is centered on gene–environment interaction only [3, 4].

It is sometimes reasonable to assume that the gene under study is in Hardy–Weinberg equilibrium (HWE) and is
independent of exposures (GE independence) among the non-diseased subjects in the study population: the population
genetics theory dictates that a gene will achieve HWE within one generation of random mating in any given population
[5]; and a subject’s genes which are determined from birth often will not predict his/her subsequent environmental
exposures. The previous studies showed that imposing GE independence and/or HWE can improve the statistical efficiency
of a case–control study [6--9], whereas the GE independence is a necessary condition for the validity of a case-only
study [10].

In this paper, we show how to analyze case–control and case-only studies assuming GE independence and HWE with
readily available statistical packages. We demonstrate the method in a real data set. We also perform the Monte–Carlo
simulation to investigate the statistical performances of the method.
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Backgrounds and notations

Assume that we are interested in characterizing the effect of a gene, the effect of an exposure, and possible gene–
environment interactions, on the risk of a specific disease. Let G =0, 1, and 2, represent the number of variant alleles
a subject carries. We define G1 to be 1, if G =1, and 0, otherwise; and G2 to be 1, if G =2, and 0, otherwise.
(G1 and G2 are the corresponding dummy variables for the 3-level G.) Let E represent the exposure status of a
subject: E =1 for an exposed subject, E =0 for an unexposed subject. (For now, we assume one single binary exposure
variable. The situations of exposure in any measurement scale, binary, categorical or continuous, and of multiple
exposures will be discussed later.) The disease status of a subject is denoted by D, with D =1 for diseased and D =0
otherwise.

We assume that the disease risk in the study population follows a logistic model:

log

(
Pr(D =1|G, E)

Pr(D =0|G, E)

)
=�+�1G1 +�2G2 +�E +�1G1 E +�2G2 E . (1)

For a rare disease, this is simply multiplicative in risk. The exp(�) is the background disease odds in the population.
The exp(�1)=�1 is the odds ratio of disease for those carrying one variant allele versus those carrying none, and the
exp(�2)=�2, the odds ratio for those carrying two versus those carrying none. The exp(�) is the odds ratio associated with
the environmental exposure variable, and the exp(�1) and exp(�2) are the odds ratios associated with gene–environment
interactions. We also assume GE independence and HWE among the non-diseased subjects in the study population,
that is,

Pr(G|E, D =0) = Pr(G|D =0)

= (1− p)2 ×2G1 ×[p/(1− p)]G

= Pr(G =0|D =0)×exp(G1 log2+�G), (2)

where p is allele frequency of the variant allele among the non-diseased subjects and �= log[p/(1− p)] is log allele
frequency odds.

A case–control study (and a case-only study) recruits only a certain number of subjects in the study population but
not all. Denote R as the recruitment status of a subject, R =1, if the subject is recruited in the study; R =0, if otherwise.
(R is a random variable and plays a pivotal role in this paper as will be evident in the subsequent developments.)
Appendix A shows that for a case–control study conducted in the above population, the likelihood function is

Pr(D,G|E, R =1)= exp(G1 log2+�G +�∗D+�1G1 D+�2G2 D+�ED+�1G1ED+�2G2ED)∑1
d=0

∑2
g=0 exp(g1 log2+�g+�∗d +�1g1d +�2g2d +�Ed+�1g1Ed+�2g2Ed)

, (3)

where �∗ =�+ log[Pr(R =1|D =1)/Pr(R =1|D =0)] is a nuisance parameter. For a case-only study composed of disease
subjects only, the likelihood function is

Pr(G|E, R =1)= exp(G1 log2+�∗G +�G2 +�1G1 E +�2G2 E)∑2
g=0 exp(g1 log2+�∗g+�g2 +�1g1 E +�2g2 E)

, (4)

where �∗ =�+�1 (a nuisance parameter) and �=�2 −2�1. We call (3) and (4) the ‘conditional-on-exposure’ likelihoods.
It is of interest to note that the original logistic model in (1) is conditional on both G and E . But with the dual
assumptions in (2) imposed, the likelihoods in (3) and (4) become conditional on E only.

The � parameter [exp(�)=�2/�
2
1] in (4) deserves special attention. It measures the departure from a multiplicative

gene-dose model, with value of 0 implying a perfect multiplicative model (�2 =�2
1) or that the gene has no effect on

disease risk (�1 =�2 =1); value>0, a supra-multiplicative model (e.g. an autosomal recessive model); and value<0, a
sub-multiplicative model (e.g. an autosomal dominant model).

Implementing the conditional-on-exposure analysis

We adopt a counterfactual approach for fitting the above conditional-on-exposure likelihoods. The counterfactual analysis
has been used in many other genetic or epidemiologic settings [11--19]. Here, we found it applicable to the present
context as well. To be specific, we create 5 counterfactual subjects (all of them with R =0) to each recruited subject
(R =1) for the case–control data. The exposure variable (E) of these counterfactual subjects is deliberately set to be
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exactly the same as the recruited subject himself/herself, but the status of disease (D) and gene (G) is different (the five
subjects represents the five different ways of making [D,G]-different counterfactuals). Treating the recruitment status
(R) of a subject, factual or counterfactual, as a random variable, we perform a conditional logistic regression analysis
(based on the 1:5 matched data) with the following regression equation: G1 log2+�G +�∗D+�1G1 D+�2G2 D+�ED+
�1G1ED+�2G2ED. Although this regression equation appears daunting involving interactions terms between two factors
(‘gene×disease’, ‘environment×disease’) and even up to between three factors (‘gene×environment×disease’), it is
actually a very simple linear function in terms of the regression coefficients, �, �∗, �1, �2, �, �1, �2, and can be fitted
using the readily available statistical packages. (The G1 log2 is to be declared as the ‘offset’ term.) One should note
that such a conditional logistic regression analysis for 1:5 matched data has exactly the same likelihood as in (3), and
therefore represents an easy way to implement the conditional-on-exposure analysis.

For the case-only data, we create 2 counterfactual R =0 subjects to each R =1 subject, with the counterfactuals
having exactly the same E as the factual subject but different genes (there are two ways of making this). And the
conditional logistic regression has the following linear form: G1 log2+�∗G +�G2 +�1G1 E +�2G2 E . This regression
equation requires up to two-factor interaction terms. Such a conditional logistic regression analysis for 1:2 matched data
has exactly the same likelihood as in (4).

SAS codes for implementing the above ‘conditional logistic regression with counterfactuals’ are presented in Appen-
dices B (for case–control study) and C (for case-only study).

An example

We use the data of a case–control study conducted by Sam et al. [20] as an example. The study examined the relationship
between CYP1A1 polymorphisms and smoking on the risks of upper aerodigestive tract (UADT) cancers in an Indian
population. Table I shows the distribution of CYP1A1 genotypes (CYP1A1∗2A being the variant allele) and smoking
status among the subjects in that study. We test the assumptions of GE independence and HWE in the control subjects
in this dataset, the p values are 0.7563 (for GE independence) and 0.6789 (for HWE), respectively.

As the dual assumptions of GE independence and HWE are tenable, we perform the conditional logistic regression
with counterfactuals for this data. The results are presented in Table II. For comparison, we also present the results using
the standard (unconditional) logistic regression for this same data. It can be clearly seen that the proposed conditional
logistic regression with counterfactuals results in smaller standard errors for all the corresponding regression coefficients
as compared with the conventional unconditional logistic regression.

In both the approaches, the individuals with the CYP1A1∗2A/∗2A genotype (G =2) (the �2 coefficient) or those who
smoke (E =1) (the � coefficient) have a statistically significant risk for UADT cancers. However, using the standard uncon-
ditional logistic regression, we found that the UADT cancer risk among individuals with the CYP1A1∗2A/∗1A genotype
(G =1) (the �1 coefficient) is not significantly different (p=0.0735) from the risk of those with the CYP1A1∗1A/∗1A
genotype (G =0). But using the proposed conditional logistic regression with counterfactuals, the difference in risks
reaches the statistical significance (p=0.0026). The interactions between CYP1A1 gene and smoking (the �1 and �2
coefficients) do not reach statistical significance using either approach, though.

For a demonstration, we also perform a case-only analysis to the case subjects in Sam et al.’s study (results also
presented in Table II). With the dual assumptions of HWE and GE independence imposed, the results for gene–
environment interactions (the estimates and the standard errors of �1 and �2) using a case-only analysis are exactly the
same as the results when using a case–control analysis. In addition, there is an exact equality between �∗ (=−0.3698, in
case-only analysis) and �+�1 (=−0.9923+0.6226=−0.3698, in case–control analysis) and between � (=−0.3234, in
case-only analysis) and �2 −2�1 (=0.9217−2×0.6226=−0.3234, in case–control analysis). The �∗ is nuisance but �
is informative. We see that � is not significant in this data (p=0.3574), implying that the relationship between CYP1A1
genotypes and UADT cancers is conforming to a multiplicative gene-dose model or that the CYP1A1 gene has no effect
on UADT cancers risk.

Table I. Distribution of CYP1A1 genotypes and smoking status among the subjects in Sam et al.’s study [20].

Smokers Non-smokers

CYP1A1 Number of cases Number of controls Number of cases Number of controls

∗2A/∗2A 44 5 19 9
∗2A/∗1A 123 29 76 62
∗1A/∗1A 91 45 55 70

Copyright © 2010 John Wiley & Sons, Ltd. Statist. Med. 2010, 29 2557--2567
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Table II. Analysis results for the data in Table I.

exp(Regression coefficient)

Regression term Regression coefficient Estimate Standard error P value Estimate 95 per cent confidence interval

Standard unconditional logistic regression (cases and controls)
Intercept �∗ −0.2412 0.1802 0.1808 0.79 0.55–1.12
G1 �1 0.4448 0.2485 0.0735 1.56 0.96–2.54
G2 �2 0.9884 0.4430 0.0257 2.69 1.13–6.40
E � 0.9454 0.2563 0.0002 2.57 1.56–4.25
G1 E �1 0.2959 0.3709 0.4250 1.34 0.65–2.78
G2 E �2 0.4822 0.6724 0.4733 1.62 0.43–6.05

Conditional logistic regression with counterfactuals (cases and controls)
G � −0.9923 0.1073 <0.0001 0.37 0.30–0.46
D �∗ −0.3108 0.1693 0.0663 0.73 0.53–1.02
G1 D �1 0.6226 0.2070 0.0026 1.86 1.24–2.80
G2 D �2 0.9217 0.3419 0.0070 2.51 1.29–4.91
ED � 1.0828 0.2212 <0.0001 2.95 1.91–4.56
G1ED �1 −0.0221 0.2246 0.9217 0.98 0.63–1.52
G2ED �2 0.3362 0.3233 0.2984 1.40 0.74–2.64

Conditional logistic regression with counterfactuals (cases only)
G �∗ −0.3698 0.1770 0.0367 0.69 0.49–0.98
G2 � −0.3234 0.3514 0.3574 0.72 0.36–1.44
G1 E �1 −0.0221 0.2246 0.9217 0.98 0.63–1.52
G2 E �2 0.3362 0.3233 0.2984 1.40 0.74–2.64

A simulation study

We perform a small-scale simulation study to examine the statistical properties of the conditional logistic regression
with counterfactuals. For simplicity, we assume a binary exposure E (E =0,1) and a gene G (G =0,1,2). For the
non-diseased subjects in the study population, we assume GE independence and HWE with the allele frequency and the
exposure prevalence both being set at 0.5. We assume two scenarios for the genetic effects. In scenario I, a null gene
is assumed. It has no bearing on the disease risk whatsoever (genetic main effects: �1 =�2 =0.0000; gene–environment
interactions: �1 =�2 =0.0000). For scenario II, an autosomal recessive gene is assumed. Its genetic main effects are:
�1 =0.0000 (odds ratio=1.0 for those with G =1 as compared to those with G =0) and �2 =0.4055 (odds ratio=1.5 for
those with G =2 as compared to those with G =0), respectively. And its gene–environment interaction parameters are
�1 =0.0000 and �2 =0.4055, respectively. As for the environmental main effect, we assume that the odds ratio for those
with E =1 as compared to those with E =0 is 2.0 (�=0.6931) for both the scenarios.

In a case–control study conducted in the study population, we assume 500 cases (the diseased subjects) and
various numbers of controls (the non-diseased subjects): 250, 500, 750, and 1000, respectively. The disease proba-
bilities of subjects in the study population are assumed to follow the logistic model in (1), with parameters given
in the preceding paragraph. The controls are assumed to be a random sample of the non-diseased subjects in the
population.

The conditional logistic regression with counterfactuals is employed for the analysis of the simulated case–control
data. (For a comparison, we also perform the standard unconditional logistic regression.) The simulation was done for
a total of 10 000 times for each setting. The bias of a regression coefficient is calculated as the difference between the
mean of the estimates and its true value. The variance of a regression coefficient is calculated as the sample variance
of the estimates. We also calculate the average of the estimated variances. The type I error rates (for �1, �2, �1, and �2
in scenario I; �1 and �1 in scenario II) and the powers (for � in scenario I; �2, � and �2 in scenario II) are calculated
as the total number of rejections of the null hypothesis that a specific regression coefficient is zero divided by 10 000
using a significance level of 0.05.

Table III presents the biases and variances of the regression coefficients in scenarios I and II. We see that the conditional
logistic regression with counterfactuals produces regression coefficients that are approximately unbiased. We also see
that the averages of the estimated variances closely match with the corresponding empirical variances of the estimates,
indicating that the standard estimates of variances in the conditional logistic regression with counterfactuals are quite
accurate.

Figure 1 (A: scenario I; B: scenario II) shows the (empirical) variances of the regression coefficients for the conditional
logistic regression with counterfactuals (solid lines). It can be seen that as the number of control subjects increases, the
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Table III. Biases and variances of the regression coefficients in the conditional logistic regression with counterfactuals.

Scenario I: a null gene Scenario II: an autosomal recessive gene

Number of control subjects Number of control subjects
Regression
coefficient 250 500 750 1000 250 500 750 1000

Bias
�1 0.0096 0.0058 0.0050 0.0050 0.0066 0.0087 0.0100 0.0035
�2 0.0037 −0.0028 −0.0010 −0.0018 0.0082 0.0048 0.0040 0.0016
� 0.0107 0.0060 0.0029 0.0055 0.0070 0.0106 0.0065 0.0075
�1 −0.0075 −0.0013 0.0001 −0.0026 −0.0018 −0.0063 −0.0035 −0.0023
�2 −0.0066 0.0032 0.0023 0.0023 −0.0034 0.0009 0.0022 −0.0005

Variance of the estimates
�1 0.0445 0.0411 0.0394 0.0389 0.0540 0.0500 0.0488 0.0478
�2 0.0814 0.0659 0.0606 0.0576 0.0835 0.0672 0.0623 0.0589
� 0.0529 0.0453 0.0424 0.0405 0.0615 0.0545 0.0519 0.0493
�1 0.0541 0.0544 0.0545 0.0554 0.0688 0.0692 0.0683 0.0672
�2 0.0727 0.0746 0.0739 0.0738 0.0737 0.0740 0.0739 0.0722

Average of the estimated variances
�1 0.0448 0.0407 0.0393 0.0386 0.0541 0.0502 0.0488 0.0480
�2 0.0813 0.0652 0.0598 0.0571 0.0832 0.0674 0.0620 0.0592
� 0.0528 0.0447 0.0420 0.0407 0.0621 0.0541 0.0515 0.0500
�1 0.0549 0.0548 0.0548 0.0548 0.0688 0.0689 0.0689 0.0687
�2 0.0734 0.0735 0.0734 0.0733 0.0731 0.0732 0.0733 0.0731

variances for the genetic (�1 and �2) and environmental (�) main effects decrease. On the other hand, the variances for
the gene–environment interactions (�1 and �2) remain roughly constant, irrespective of the number of control subjects.
In contrast, we see that the variances of the regression coefficients for the standard unconditional logistic regression
(dotted lines) are much larger than those in the logistic regression with counterfactuals.

Table IV presents the type I error rates and powers of the conditional logistic regression with counterfactuals. We see
that the type I error rates (underlined) are very close to the nominal significance level of 0.05. As for the powers, we
see that as the number of control subjects increases, the powers for testing the genetic (�2 for the autosomal recessive
gene in scenario II) and the environmental (�) main effects increase. But the powers for testing the gene–environment
interaction (�2 for the autosomal recessive gene in scenario II) remain roughly constant, irrespective of the number of
control subjects. By comparison, we see that the powers of the regression coefficients for the standard unconditional
logistic regression (in parenthesis) are lower as compared to those in the logistic regression with counterfactuals.

We also perform a case-only analysis based on the simulated 500 cases for the scenario II autosomal recessive gene.
Again, the conditional logistic regression with counterfactuals produced approximately unbiased estimates for the �1
(bias=−0.0047), �2 (bias=0.0014) and � (=�2 −2�1) (bias=−0.0171) parameters. It is also notable that the variance
of �1 (=0.0699) and the variance of �2 (=0.0759) are approximately equal to the corresponding values produced from
a case–control analysis using the conditional logistic regression with counterfactuals in Figure 1B.

Discussion

In this paper, we employ the conditional logistic regression with counterfactuals for fitting the conditional-on-exposure
likelihoods. An alternative is to use the multinomial logistic regression. The likelihood (3) can be treated as a 6-class
multinomial logistic regression, and the likelihood (4), a 3-class multinomial logistic regression, both with class-specific
intercepts and slopes. However, for the case–control study in (3), one needs to impose special constraints on the model
parameters (detailed in Appendix D) and we know of no commercial statistical package that can impose such constraints.
Therefore, we recommend using the counterfactual approach.

To accommodate an exposure variable, E , in any measurement scale, the disease risk model in (1) can be extended to

log

(
Pr(D =1|G, E)

Pr(D =0|G, E)

)
=�+�1G1 +�2G2 +btf(E)+ct

1f1(E)G1 +ct
2f2(E)G2,

where f(·), f1(·) and f2(·) are vector functions for the coding of E , and the b, c1 and c2 are vectors of parameters. This
is the most general formulation, as it allows the shape of the exposure risk to differ by genotype. The case–control

Copyright © 2010 John Wiley & Sons, Ltd. Statist. Med. 2010, 29 2557--2567
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Figure 1. Variances of the regression coefficients for the conditional logistic regression with counterfactuals (solid lines) and the
standard unconditional logistic regression (dotted lines): (A) scenario I: a null gene; (B) scenario II: an autosomal recessive gene.

Table IV. Type I error rates (underlined) and powers of the conditional logistic regression with counterfactuals. Shown in
parenthesis are the powers of the standard unconditional logistic regression.

Scenario I: a null gene Scenario II: an autosomal recessive gene

Number of control subjects Number of control subjects
Regression
coefficient 250 500 750 1000 250 500 750 1000

�1 0.0442 0.0484 0.0462 0.0513 0.0466 0.0457 0.0469 0.0464
�2 0.0488 0.0448 0.0480 0.0489 0.2970 0.3443 0.3712 0.3810

(0.2212) (0.2877) (0.3240) (0.3439)
� 0.8744 0.9191 0.9345 0.9464 0.8140 0.8702 0.8835 0.8992

(0.5937) (0.7591) (0.8262) (0.8713) (0.5592) (0.7188) (0.7754) (0.8211)
�1 0.0461 0.0496 0.0481 0.0511 0.0491 0.0517 0.0474 0.0465
�2 0.0452 0.0511 0.0502 0.0500 0.3263 0.3305 0.3333 0.3275

(0.1399) (0.1930) (0.2291) (0.2364)

likelihood in (3) becomes

Pr(D,G|E, R =1)= exp[G1 log2+�G +�∗D+�1G1 D+�2G2 D+btf(E)D+ct
1f1(E)G1 D+ct

2f2(E)G2 D]∑1
d=0

∑2
g=0 exp[g1 log2++�g+�∗d +�1g1d +�2g2d +btf(E)d +ct

1f1(E)g1d +ct
2f2(E)g2d]
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and the case-only likelihood in (4) becomes

Pr(G|E, R =1)= exp[G1 log2+�∗G +�G2 +ct
1f1(E)G1 +ct

2f2(E)G2]∑2
g=0 exp[g1 log2+�∗g+�g2 +ct

1f1(E)g1 +ct
2f2(E)g2]

.

Note that mis-specifying f(·), the main effect of E , will confound the case–control analysis [21]. However, the term
cancels out from the case-only analysis. And an anonymous reviewer correctly pointed out that a hypothesis testing for
gene–environment interaction in a case-only study cannot be biased by mis-specification of f(·), though getting f1(·) and
f2(·) wrong could affect power.

Both the case–control study and the case-only study are vulnerable to ‘population stratification biases’ [22--24]. The
method proposed in this paper can be extended to the situation when the study population is not a homogeneous one
but instead is composed of several population strata. The assumptions of GE independence and HWE hold within each
stratum, but do not hold in the study population taken as a whole. Let S1, . . . , Sq (indexed by i) be the stratum indicators
for a subject, such that Si is 1, if the subject belongs to the i th stratum, and 0, otherwise. For stratum adjustment,
we need to condition on S1, . . . , Sq (if these information are available) as well as on E . For case–control study, this
becomes:

Pr(D,G|S1, . . . , Sq, E, R=1)= exp(G1 log2+∑
i �i Si G+∑

i �
∗
i Si D+�1G1 D+�2G2 D+�ED+�1G1ED+�2G2ED)∑1

d=0
∑2

g=0 exp(g1log2+∑
i�iSi g+∑

i�
∗
i Si d+�1g1d+�2g2d+�Ed+�1g1 Ed+�2g2 Ed)

.

The additional ‘stratum×gene’ interaction term allows the allele frequency odds to vary between strata, and the additional
‘stratum×disease’ interaction terms, the background disease odds to vary. And for the case-only study, it becomes:

Pr(G|S1, . . . , Sq , E, R =1)= exp(G1 log2+∑
i �

∗
i Si G +�G2 +�1G1 E +�2G2 E)∑2

g=0 exp(g1 log2+∑
i �

∗
i Si g+�g2 +�1g1 E +�2g2 E)

.

There is only one additional term: the ‘stratum×gene’ interaction term. The above ‘conditional-on-stratum-and-exposure’
analyses can also be implemented using the conditional logistic regression with counterfactuals. The exposure variables
and the stratum indicators of these counterfactual subjects are set to be exactly the same as the recruited factual subject
himself/herself.

In this paper, we impose dual assumptions of GE independence and HWE. With simple modifications, one can impose
only the GE independence but not the HWE. The case–control likelihood in (3) is to be modified as

Pr(D,G|E, R =1)= exp(ε1G1 +ε2G2 +�∗D+�1G1 D+�2G2 D+�ED+�1G1ED+�2G2ED)∑1
d=0

∑2
g=0 exp(ε1g1 +ε2g2 +�∗d +�1g1d +�2g2d +�Ed +�1g1 Ed +�2g2 Ed)

,

where ε1 = log[Pr(G =1|D =0)/Pr(G =0|D =0)] and ε2 = log[Pr(G =2|D =0)/Pr(G =0|D =0)]. Compared to (3)
where both assumptions were made, this likelihood has one extra number of parameters. The case-only likelihood in
(4) is to be modified as

Pr(G|E, R =1)= exp(ε∗
1 G1 +ε∗

2 G2 +�1G1 E +�2G2 E)∑2
g=0 exp(ε∗

1 g1 +ε∗
2 g2 +�1g1 E +�2g2 E)

,

where ε∗
1 =ε1 +�1 (ε1 and �1 are confounded) and ε∗

2 =ε2 +�2 (ε2 and �2 are confounded). Note that without imposing
the HWE assumption, we are no longer able to estimate the � parameter (�=�2 −2�1) that measures the departure from
a multiplicative gene-dose model.

For brevity, we only consider one single exposure in this paper. Extension to multiple exposures is straightforward. If
every exposure is independent of the study gene, we can simply condition on all of them simultaneously (as exposure
variables). If there is GE independence for some of the exposures but not for the others, we still condition on all of them.
In the conditioning, those GE independent exposures are treated as the exposure variables, but the others are treated as
‘stratification variables’ (see above). That is, we allow the allele frequency odds to vary across the various strata defined
by the cross-classification of these GE non-independent exposures.

The unconditional logistic regression has been the mainstay for analysis of case–control data for nearly half a century.
On the other hand, it has also been known for long that its efficiency may be less than ideal, because it disregards
completely the information contained in the distribution of covariates themselves (e.g. GE independence and HWE) when
in fact it may be informative for the model parameters [25]. To exploit the covariates information of GE independence
and/or HWE for the analysis of case–control data, the recent decade witnessed a plethora of methods which preach the
conditional-on-exposure principle [6--9]. This paper is not a theoretical advance over previous works. Nevertheless, we
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do present herein an easy-to-implement counterfactual approach, which offers the flexibility for the complex modeling
yet remains well within the reach to the practicing epidemiologists.

As compared to the case–control study, the case-only design for studying gene–environment interactions is a recent
invention [3, 4, 10]. Attempts have been made to cast the case-only study in a regression framework [10, 26, 27]. However,
those studies considered the GE independence assumption only and did not say what to do with the HWE assumption in
a case-only study. Lee [28] on the other hand assumed HWE and proposed to use the case-only study as a gene hunting
tool (by testing whether or not �2 =�2

1). However, he did not consider the environmental exposures.
In this paper, we present a method to analyze case–control and case-only studies assuming GE independence and

HWE with the readily available statistical packages. When both assumptions are met, the method (conditional logistic
regression with counterfactuals) is unbiased and has the correct type I error rates. It also results in smaller variances
and achieves higher powers as compared to using conventional analysis (unconditional logistic regression). However,
when the assumptions are not met, conditional logistic regression with counterfactuals will be biased. In the analysis
of Sam et al.’s data, we tested the assumptions of GE independence (p=0.7563) and HWE (p=0.6789) in the control
subjects before applying the conditional logistic regression with counterfactuals. However, these ad hoc empirical checks
may lack adequate power to support (or reject) the assumptions of GE independence and HWE. Recently, a number of
researchers [29--32] have been working on methods that can enjoy the best of the two worlds, that is, to have smaller
variances when the assumptions are met (efficiency), and are less biased when the assumptions are not (robustness).
However, their methods are computationally much more involved and are beyond the scope of this paper.

Appendix A: Derivation of case–control and case-only likelihoods enforcing GE independence
and HWE

From (2), we have,

Pr(D =0,G|E) = Pr(D =0|E)×Pr(G|E, D =0)

= Pr(D =0|E)×Pr(G =0|D =0)×exp(G1 log2+�G).

From (1), we have,

Pr(D =1,G|E)=Pr(D =0,G|E)×exp(�+�1G1 +�2G2 +�E +�1G1 E +�2G2 E).

And therefore,

Pr(D =1,G|E) = Pr(D =0|E)×Pr(G =0|D =0)

×exp(G1 log2+�G +�+�1G1 +�2G2 +�E +�1G1 E +�2G2 E).

Since both Pr(D =0,G|E) and Pr(D =1,G|E) have the same multiplier: Pr(D =0|E)×Pr(G =0|D =0), we see that

Pr(D,G|E)= exp(G1 log2+�G +�D+�1G1 D+�2G2 D+�ED+�1G1ED+�2G2ED)∑1
d=0

∑2
g=0 exp(g1 log2+�g+�d +�1g1d +�2g2d +�Ed +�1g1 Ed +�2g2 Ed)

.

Because subject recruitment in a case–control study is dependent only on disease status but not on gene or exposure,
we have Pr(R =1|D =1,G, E)=Pr(R =1|D =1) and Pr(R =1|D =0,G, E)=Pr(R =1|D =0). It is easy to further show
that among the subjects recruited for study, the above conditional-on-exposure probability becomes

Pr(D,G|E, R =1)= exp(G1 log2+�G +�∗D+�1G1 D+�2G2 D+�ED+�1G1ED+�2G2ED)∑1
d=0

∑2
g=0 exp(g1 log2+�g+�∗d +�1g1d +�2g2d +�Ed +�1g1 Ed +�2g2 Ed)

,

where �∗ =�+ log[Pr(R =1|D =1)/Pr(R =1|D =0)]. For a case-only study, we have

Pr(G|E, R =1) = Pr(D =1,G|E, R =1)

= Pr(D =1,G|E)×Pr(R =1|D =1,G, E)∑2
g=0 Pr(D =1,g|E)×Pr(R =1|D =1,g, E)
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=
Pr(D =1,G|E)

Pr(D =0|E)×Pr(G =0|D =0)
×Pr(R =1|D =1)

∑2
g=0

[
Pr(D =1,g|E)

Pr(D =0|E)×Pr(G =0|D =0)
×Pr(R =1|D =1)

]

= exp(G1 log2+�G +�+�1G1 +�2G2 +�E +�1G1 E +�2G2 E)∑2
g=0 exp(g1 log2+�g+�+�1g1 +�2g2 +�E +�1g1 E +�2g2 E)

= exp(G1 log2+�∗G +�G2 +�1G1 E +�2G2 E)∑2
g=0 exp(g1 log2+�∗g+�g2 +�1g1 E +�2g2 E)

,

where �∗ =�+�1 and �=�2 −2�1.

Appendix B: SAS codes for case–control study

/** Prepare your SAS data set (data=casecontrol) **/
/** that contains variables: ID, G, E, and D **/
/** ID: subject identification **/
/** G=0,1,2: the number of variant alleles **/
/** E: exposure status **/
/** D: disease status **/

data counterfactual;
set casecontrol;
do temp_i=0 to 5;

R=(temp_i=0);
temp_g=mod((G+temp_i), 3);
temp_d=mod((D+temp_i), 2);
output;
end;

run;

data counterfactual;
set counterfactual;
G=temp_g; D=temp_d;
G1=(G=1); G2=(G=2);
sur=1-R;
G1D=G1*D; G2D=G2*D;
ED=E*D;
G1ED=G1*E*D; G2ED=G2*E*D;
offset=G1*log(2);
drop temp_g temp_d temp_i;
run;

/* Conditional logistic regression with counterfactuals (cases and controls)*/
proc phreg data=counterfactual nosummary;

model sur*R(0)=D G G1D G2D ED G1ED G2ED/offset=offset ;
strata ID;
run;
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Appendix C: SAS codes for case-only study

/** Prepare your SAS data set (data=caseonly) **/
/** that contains variables: ID, G, and E **/
/** ID: subject identification **/
/** G=0,1,2: the number of variant alleles **/
/** E: exposure status **/

data counterfactual;
set caseonly;
do temp_i=0 to 2;

R=(temp_i=0);
temp_g=mod((G+temp_i), 3);
output;
end;

run;

data counterfactual;
set counterfactual;
G=temp_g;
G1=(G=1); G2=(G=2);
sur=1-R;
G1E=G1*E; G2E=G2*E;
offset= G1*log(2);
drop temp_g temp_i;
run;

/* Conditional logistic regression with counterfactuals (cases only)*/
proc phreg data=counterfactual nosummary;

model sur*R(0)=G G2 G1E G2E/offset=offset;
strata ID;
run;

Appendix D: Multinomial logistic regression

For the case–control study, the conditional-on-exposure likelihood involves six classes defined by the cross-classification
of disease status (D =0 or 1) and genotypes (G =0, 1, or 2). Define the class indicator as k =3D+G (k =0,1, . . . ,5)
and the multinomial likelihood as

Pr(class=k|E)= exp(G1 log2+ak +bk E)∑5
j=0 exp(G1 log2+a j +b j E)

.

Comparing this with (3) in the text, we found that for the two likelihoods to be exactly the same, we need to impose the
following two sets of special constraints for this multinomial likelihood: (1) b1 =b2 =0 (for GE independence among
the controls); and (2) a2 =2a1 (for HWE among the controls), in addition to the usual constraints of a0 =b0 =0. Also,
we found that the parameters in these two likelihoods are related through the following equations: �=a1, �∗ =a3,
�1 =a4 −a1 −a3, �2 =a5 −a2 −a3, �=b3, �1 =b4 −b3, and �2 =b5 −b3. For the case-only study, define the class indicator
as l =G (l =0,1,2) and the multinomial likelihood as

Pr(class= l|E)= exp(G1 log2+al +bl E)∑2
j=0 exp(G1 log2+a j +b j E)

.

Besides the usual a0 =b0 =0, no special constraint is needed this time. (The case-only study does not have a control
group upon which to impose the two assumptions of GE independence and HWE.) This multinomial likelihood is exactly
the same as (4) in the text, with the following relationships: �∗ =a1, �=a2 −2a1, �1 =b1, and �2 =b2.
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