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Abstract

Phosphodiesterase superfamily is the key regulator of 3’,5’-cyclic guanosine monophosphate 
(cGMP) decomposition in human body. Phosphodiesterase-5 (PDE-5) inhibitors, sildenafil, 
vardenafil and tadalafil, are well known oral treatment for males with erectile dysfunction. 
To investigate the inhibitory effects of traditional Chinese medicine (TCM) compounds to 
PDE-5, we performed both ligand-based and structure-based studies on this topic. Com-
parative molecular field analysis (CoMFA) and comparative molecular similarity indices 
analysis (CoMSIA) studies were conducted to construct three dimensional quantitative 
structure-activity relationship (3D-QSAR) models of series of known PDE-5 inhibitors. The 
predictive models had cross-validated, q2, and non cross-validated coefficient, r2, values of 
0.791 and 0.948 for CoMFA and 0.724 and 0.908 for CoMSIA. These two 3D-QSAR mod-
els were used to predict activity of TCM compounds. Docking simulations were performed 
to further analyze the binding mode of training set and TCM compounds. A putative binding 
model was proposed based on CoMFA and CoMSIA contour maps and docking simulations; 
formation of pi-stacking, water bridge and specific hydrogen bonding were deemed impor-
tant interactions between ligands and PDE-5. Of our TCM compounds, engeletin, satisfied 
our binding model, and hence, emerged as PDE-5 inhibitor candidate. 

Using this study as an example, we demonstrated that docking should be conducted for qualita-
tive purposes, such as identifying protein characteristics, rather than for quantitative analyses 
that rank compound efficacy based on results of scoring functions. Prediction of compound 
activity should be reserved for QSAR analyses, and scoring functions and docking scores should 
be used for preliminary screening of TCM database (http://tcm.cmu.edu.tw/index.php).

Key words: Phosphodiesterase-5; Nitric oxide; Comparative molecular field analysis (CoMFA); 
Comparative molecular similarity indices analysis (CoMSIA); Docking; Traditional Chinese 
medicine (TCM).

Introduction

Penile erection is a physiological response mediated by complex biochemical sig-
naling mechanism in which nitric oxide (NO) is emerging as the central component 
of the process (1). This molecule could stimulate soluble guanylate cyclase that 
converts guanosine triphosphate (GTP) to second messenger, 3’,5’-cyclic guanos-
ine monophosphate (cGMP), which could relax smooth muscle and leads to vaso-
dilatation (2). Thus, the release of NO from neural and endothelial components of 
the penile corporal body could increase blood flow to corpora cavernosa, leading 
to erection. 

Phosphodiesterase superfamily is the key enzyme for degrading the intracellular 
cGMP (3, 4). This superfamily of enzymes is a well studied drug target involved 
in treatment of many diseases, including heart failure, depression, asthma, and 
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inflammation (5-9). Phosphodiesterase-5, in particular, is most well known for 
being the target of sildenafil (Viagra) and tadalafil (Cialis) that are often used to 
treat erectile dysfunction. However, these two PDE-5 inhibitors are not without 
physiological side effects. Non-specific interaction of these inhibitors to PDE-6 or 
PDE-11 could cause headache and optical interruption (10-12).

In previous researches, natural compounds isolated have been shown to possess 
therapeutic potentials (13-15). To investigate the potential inhibitory effects of tra-
ditional Chinese medicine (TCM) compounds to PDE-5, we employed computation 
approaches, which are widely employed now for designing new therapeutics (16-19), 
to analyzed compounds from our TCM database (http://tcm.cmu.edu.tw/index.
php). We constructed comparative molecular field analysis (CoMFA) and compara-
tive molecular similarity indices analysis (CoMSIA) model based on tested PDE-5 
inhibitors, and used the models for predicting the activity of TCM products. Docking 
simulations were also performed to investigate the binding mode of cGMP, sildenafil, 
training set and TCM candidates. In our past experiences, both structure-based meth-
ods and ligand-based methods could be used for drug design (20-23). Three dimen-
sional structure-activity relationships (3D-QSAR) could point out major molecular 
properties of ligands (23), and structure-based studies, on the other hand, could ana-
lyze specific ligand-protein interactions in molecular dynamics simulations (24-29), 
protein structure analyses (30-34) and docking simulations (35-37). 

Methodology

Data set

The training set and the test set used for CoMFA and CoMSIA analyses were taken 
from previous researches (38-46) that have experimentally tested and measured 
compound IC50. Structures of compounds in the training set (56) and the test set 
(29) are shown in Table I. 

Three-dimensional structure building of the training set, test set and TCM com-
pounds were first drawn in two-dimension using ChemBioDraw Ultra 11.0 (Cam-
bridgeSoft Inc., USA) and then transformed to three-dimension using ChemBio3D 
Ultra 11.0 (CambridgeSoft Inc., USA). Energy minimizations were performed 
using the MM2 force field available in the CambridgeSoft ChemBio3D package. 

Molecular Modeling

CoMFA and CoMSIA QSAR analyses were conducted using SYBYL 8.0 package 
(Tripos Inc., St. Louis, MO, USA). The initial alignment of the training set (a require-
ment prior to CoMFA and CoMSIA studies) was obtained using the SYBYL atom-fit 
alignment feature. The core atoms used from alignment is shown in Figure 1 (a). 

CoMFA and CoMSIA model

In building the CoMFA model, the SYBYL default energy setting was used, and the 
two physicochemical properties computed, steric and electrostatic energies, were 
described by Lennard-Jones potentials and Coulomb potentials, respectively. As for 
the CoMSIA model, the energy cutoff setting was the same as CoMFA, and three 
property fields, namely hydrophobic, hydrogen bond acceptor and hydrogen bond 
donor, were evaluated in addition to steric and electrostatic properties.

The correlation between the property descriptors and biological activities, pIC50, 
was analyzed in partial least square (PLS) method. The predictive models built 
from the PLS analyses were tested in leave-one-out (LOO) cross validation. The 
cross-validated coefficient, q2, as well as the non cross-validated coefficient, r2, and 
standard error of estimate were computed. 
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Table I
Structure of compounds in training set and test set. 
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Compound R1 R2 R3 R4 R5 pIC50

Training Set
1 F OCH3 OCH3 - - 8.54 
2 Cl OCH3 OCH3 - - 7.44 
3 Br OCH3 OCH3 - - 7.47 
4 I OCH3 OCH3 - - 7.84 
5 - OCH3 OCH3 - - 8.64 
6 CH3 OCH3 OCH3 - - 8.62 
7 C2H5 OCH3 OCH3 - - 7.57 
8 C2H3 OCH3 OCH3 - - 6.27 
9 C5H11 OCH3 OCH3 - - 8.22 

10 F OCH3 OH - - 8.15 
11 I OCH3 OH - - 7.21 
12 - OCH3 OH - - 7.51 
13 CH3 OCH3 OH - - 7.70 
14 C2H5 OCH3 OH - - 7.35 
15 C2H3 OCH3 OH - - 7.21 
16 C4H9 OCH3 OH - - 6.44 
17 C5H11 OCH3 OH - - 7.54 
18 CH COOH OCH2CH3 - - 5.08 
19 CH CH2COOH OCH2CH3 - - 5.20 
20 CH (CH2)3COOH OCH2CH3 - - 5.09 
21 CH (CH2)5COOH OCH2CH3 - - 5.04 
22 N (CH2)3COOH OCH2CH3 - - 5.04 
23 CH COOH O(CH2)2CH3 - - 5.02 
24 CH CH2COOH O(CH2)2CH3 - - 5.09 
25 CH (CH2)3COOH O(CH2)2CH3 - - 5.13 
26 CH2CH3 - - - - 5.22 
27 - CN - - - 5.22 
28 CH3 CN - - - 5.19 
29 - - - - - 5.16 
30 - - - CH3 - 5.25 
31 - - CH3 - - 5.21 
32 - CH3 - - - 5.25 

(Continued)
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Table I (Continued)

Compound R1 R2 R3 R4 R5 pIC50

33 CH3 - - - - 5.21 
34 - Br - - - 5.26 
35 NH N C(CH2)2CH3 - OCH2CH3 8.30 
36 NCH3 N C(CH2)2CH3 OCH2CH3 - 7.04 
37 N N N(CH2)2CH3 OCH2CH3 - 7.82 
38 N N N-cyclopentane OCH2CH3 - 7.59 
39 O N C-cyclopentane OCH2CH3 - 8.30 
40 N C N-(CH2)2CH3 - - 7.39 
41 N(CH2)2CH3 N C-CH3 - - 7.05 
42 N(CH2)2CH3 N C-CH2CH3 - - 7.52 
43 CCH2CH3 N N-cyclopentane - - 7.00 
44 C(CH2)2CH3 N N-CH3 - - 7.22 
45 N-CH3 N N-cyclopentane - - 8.10 
46 (CH2)2CH3 - - - - 5.68 
47 isopropyl - - - - 5.72 
48 - CH3 NCH2 H - 6.32 
49 CH3 - N(CH2)3 H - 5.66 
50 - CH3 CH H - 5.51 
51 - CH3 CHCH2 H - 5.47 
52 -3 CH3 NCH2 CH2CH3 - 5.45 
53 - CH3 N-(CH2)3 CH2CH3 - 5.46 
54 - - - - 5.40 
55 - - - - 5.37 
56 - - - - 6.16 
Test Set
57 N (CH2)2OH 2,3-dihydrofuran - - 6.83 
58 N (CH2)2OH 3,4-dihydro-2H-pyran - - 5.47 
59 - CH3 CHCH2 CH2CH3 CH2CH3 5.42 
60 - CH3 N-(CH2)3 H H 5.47 
61 - CH3 CH H H 5.46 
62 - CH3 CHCH2 H H 5.45 
63 - - - CH3 - 5.45 
64 - - CH3 - - 5.42 
65 - CH3 - - - 5.49 
66 CH3 - - - - 5.53 
67 - Br - - - 5.47 
68 CH3 Br - 5.52 
69 CH3 Br - Br - 5.50 
70 CH3 - - - 5.46 
71 N N (CH2)2CH3 - - 5.15 
72 N N C-cyclopentane - - 8.30 
73 CCH3 (CH2)2OH - - - 7.92 
74 CCH2CH3 CH3 - - - 8.52 
75 O (CH2)2OH - - - 8.10 
76 NH C6H5 1,3-dioxolane - - 7.30 
77 NCH3 C6H5 1,3-dioxolane - - 7.00 
78 N(CH2)3CH3 C6H5 - - - 7.30 
79 N(CH2)3CH3 C6H5 1,3-dioxolane - - 6.70 
80 N(CH2)3CH3 C6H10 Cl - - 7.30 
81 NCH3 C6H10 OCH3 - - 7.40 
82 NCH3 C6H5 1,3-dioxolane - - 6.52 
83 N(CH2)3CH3 pyridine - - - 6.70 
84 N(CH2)3CH3 C6H5 Cl - - 6.86 
85 NCH2C6H5 C6H10 OCH3 - - 6.00 

Docking study

The LiangFit program of Accelrys Discovery Studio, version 2.5, was used to 
dock compounds into protein active site. LigandFit is a shape-directed docking 
method that generates ligand poses based on Monte Carlo conformational search 
and selects compounds most fitted to active site shape (47). We used this pro-
gram to dock compounds of our TCM library into the PDE-5 cGMP binding site. 
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Table II
PLS statistics of CoMFA model.

Parameters Model

No. of training set compounds 56
No. of test set compounds 30
q2 0.791
No. of components 6
r2 0.948 
SEE 0.296 
F value 151.255 
Steric region* 0.750 
Electrostatic region* 0.250

* = the contribution of the region.
SEE = Standard Error of Estimate.Table III

PLS statistics of CoMSIA model.

CoMSIA fields q2 Components SEE r2 F value

A 0.603 4 0.556 0.809 56.243
D 0.775 6 0.424 0.893 71.222
H 0.579 5 0.490 0.855 61.347
E 0.044 6 1.248 0.077 0.712
S 0.686 5 0.516 0.839 54.342
D+A 0.740 4 0.460 0.870 88.395
D+H 0.717 5 0.434 0.886 80.958
D+E 0.712 6 0.451 0.880 62.072
D+S 0.747 4 0.463 0.868 87.177
D+H 0.735 5 0.433 0.887 81.293
D+S+A 0.729 6 0.433 0.889 67.835
D+S+H 0.699 4 0.452 0.874 92.075
D+S+E 0.716 6 0.436 0.887 66.812
D+S+A+H 0.724 6 0.393 0.908 84.155
D+S+A+E 0.728 5 0.450 0.878 74.747
A+D+H+E+S 0.735 6 0.415 0.898 74.883

SEE = Standard Error of Estimate.
A: Hydrogen bond acceptor regions; D: Hydrogen bond donor regions; H: Hydrophobic regions, E: 
Electrostatic regions; S: Steric regions.

Figure 1:  (a) Scaffold of training set and test set. Core atoms 
were labeled by bold face blue lines. (b) The atom-fit alignment of 
training set molecules.

The three-dimensional structure of PDE-5 was downloaded from the Protein Data 
Bank (PDB ID: IUDT) (48). Sildenafil citrate was cocrystallized with PDE-5, and 
its binding position was used to define ligand docking site. All water molecules in 
the protein crystal structure were retained in the docking simulations and remained 
immobile. 

Chemistry at Harvard Macromolecular mechanics (CHARMm) forcefield (49) was 
applied to both protein and ligands prior to docking simulation steps. The maxi-
mum ligand poses retained after ligand-active site shape matching were set to 10. 
The Smart Minimizer option was used for final in situ ligand and protein minimiza-
tion. There are 2000 steps taken for minimization.

Results and Discussion

QSAR by CoMFA and CoMSIA

As illustrated in Figure 1(a, b), the reference atoms used in the molecular alignment 
of the training set are set in bold face, and most structural differences of training set 
compound are found in R2, R3 and R4 positions. 

The results of PLS analyses are shown in Tables II and III. The values of q2 and r2 
were 0.791 and 0.948 for CoMFA. Hydrogen bond donor, hydrogen bond acceptor, 
steric and hydrophobic fields were taken into consideration for CoMSIA model, 
and the value of q2 and r2 were 0.724 and 0.908 for CoMFA. Table III also shows 
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Table IV
Activities of training set and test set predicted by CoMFA and CoMSIA.

Compound pIC50
CoMFA 
Predict residual (⊿)

CoMSIA
Predict residual (⊿)

1 8.540 8.140 0.400 8.337 0.203
2 7.440 7.724 -0.284 7.769 -0.329
3 7.470 7.711 -0.241 7.676 -0.206
4 7.840 7.713 0.127 7.555 0.285
5 8.640 8.188 0.452 8.554 0.086
6 8.620 8.246 0.374 8.315 0.305
7 7.570 7.297 0.273 7.157 0.413
8 6.270 6.849 -0.579 6.938 -0.668
9 8.220 7.905 0.315 7.895 0.325
10 8.150 7.916 0.234 8.051 0.099
11 7.210 7.404 -0.194 6.905 0.305
12 7.510 7.768 -0.258 7.952 -0.442
13 7.700 8.093 -0.393 8.041 -0.341
14 7.350 7.300 0.050 7.600 -0.250
15 7.210 7.035 0.175 6.820 0.390
16 6.440 7.026 -0.586 7.102 -0.662
17 7.540 7.333 0.207 7.044 0.496
18 5.080 5.483 -0.403 5.048 0.032
19 5.200 5.390 -0.190 5.33 -0.130
20 5.090 4.928 0.162 4.867 0.223
21 5.040 4.908 0.132 4.997 0.043
22 5.040 4.628 0.412 5.132 -0.092
23 5.020 4.758 0.262 5.026 -0.006
24 5.090 5.237 -0.147 5.411 -0.321
25 5.130 4.862 0.268 4.968 0.162
26 5.40 5.415 -0.015 5.322 0.078
27 5.370 5.073 0.297 5.313 0.057
28 6.430 6.295 0.135 6.376 0.054
29 5.680 5.636 0.044 5.808 -0.128
30 6.160 6.105 0.055 6.031 0.129
31 5.720 5.753 -0.033 5.876 -0.156
32 6.320 6.185 0.135 6.190 0.130
33 5.660 5.576 0.084 5.786 -0.126
34 5.510 5.522 -0.012 5.768 -0.258
35 5.470 5.606 -0.136 5.302 0.168
36 5.450 5.568 -0.118 5.389 0.061
37 5.460 5.428 0.032 5.398 0.062
38 5.220 5.437 -0.217 5.381 -0.161
39 5.220 5.011 0.209 5.254 -0.034
40 5.190 5.211 -0.021 5.269 -0.079
41 5.160 5.442 -0.282 5.364 -0.204
42 5.250 5.147 0.103 5.28 -0.030
43 5.210 5.405 -0.195 5.376 -0.166
44 5.250 5.307 -0.057 5.144 0.106
45 5.210 5.508 -0.298 5.029 0.181
46 5.260 5.550 -0.290 5.158 0.102
47 8.300 8.180 0.120 7.902 0.398
48 7.040 7.725 -0.685 7.836 -0.796
49 7.820 7.704 0.116 7.867 -0.047
50 7.590 8.041 -0.451 7.942 -0.352
51 8.300 8.054 0.246 7.848 0.452
52 7.390 6.722 0.668 7.005 0.385
53 7.050 7.119 -0.069 7.277 -0.227
54 7.520 7.566 -0.046 7.230 0.290
55 7.000 7.187 -0.187 6.974 0.026
56 7.220 7.217 0.003 7.18 0.040
Test set
57 6.830 7.518 -0.6877 6.719 0.1111
58 5.470 5.513 -0.0433 5.243 0.2268
59 5.420 5.179 0.2413 5.268 0.152
60 5.470 5.579 -0.109 5.141 0.3287

(Continued)
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that electrostatic regions had low correlation to biological activity and hydrogen 
bond donor regions and steric regions had highest correlation.

Prediction by QSAR

The predicted activity of training set and test set molecules is shown in Table IV. 
Figure 2 shows the prediction curves, with test set in red and training set in blue. 
The distribution of the test set was similar to that of training set, and hence, sup-
porting the predictivity of our QSAR model. The 3D-QSAR models were then 
employed to predict the PDE-5 inhibitory activity of TCM compounds. The result 
of the TCM mapping is presented in Table V. The contour maps of CoMFA and 
CoMSIA are shown in Figures 3(a) and 3(b). 

Table IV (Continued)

Compound pIC50
CoMFA 
Predict residual (⊿)

CoMSIA
Predict residual (⊿)

61 5.460 5.166 0.2935 5.278 0.1822
62 5.450 5.922 -0.4718 5.535 -0.085
63 5.450 4.992 0.4579 5.279 0.1706
64 5.420 4.858 0.5624 5.263 0.1568
65 5.490 4.978 0.5122 5.257 0.2332
66 5.530 5.007 0.5231 5.222 0.3082
67 5.470 5.374 0.096 5.337 0.1332
68 5.520 4.946 0.5737 5.02 0.5
69 5.500 5.343 0.1571 5.032 0.4677
70 5.460 5.318 0.1416 4.913 0.5466
71 5.150 5.511 -0.3606 5.086 0.0638
72 8.300 8.123 0.1771 7.769 0.5315
73 7.920 7.792 0.128 7.952 -0.0319
74 8.520 7.823 0.6968 8.397 0.1227
75 8.100 8.099 0.0014 7.634 0.4655
76 7.300 7.777 -0.4766 7.782 -0.482
77 7.000 7.146 -0.1463 7.194 -0.1938
78 7.300 6.674 0.6262 7.167 0.1332
79 6.700 7.231 -0.5306 7.206 -0.506
80 7.300 6.843 0.4569 6.744 0.5562
81 7.400 6.567 0.8326 6.912 0.4876
82 6.520 6.944 -0.4243 6.787 -0.2668
83 6.700 7.015 -0.3154 7.229 -0.5288
84 6.860 6.708 0.1516 6.956 -0.0963
85 6.000 5.537 0.4631 5.979 0.0212
86 5.700 5.538 0.1618 6.016 -0.3159

(a) (b)

R
2
 = 0.9478

4

5

6

7

8

9

4 5 6 7 8 9

Observed

P
re

di
ct

ed

Training set Test set

R2 = 0.9474

4

5

6

7

8

9

4 5 6 7 8 9

Observed

P
re

di
ct

ed

Training set Test set

Figure 2:  Correlations bet
ween the actual pIC50 and the 
predicted pIC50 of the training 
set and the test set by (a) CoMFA 
and (b) CoMSIA.

Table V
PDE-5 inhibitory activities of TCM compounds 
predicted by using CoMFA and CoMSIA models. 
Compounds that have pIC50>7 are shown here.

Compound
CoMFA 
pIC50

CoMSIA
pIC50

  1.	 Coixol 7.226 7.513
  2.	 Genipin 7.352 7.378
  3.	 Tanshinone IIB 7.474 7.191
  4.	 Engeletin 7.398 7.131
  5.	 Beta-sitosterol1 7.598 7.181
  6.	 Preskimmianine 7.831 7.227
  7.	 Sarsasa-pogenin 7.515 7.082
  8.	 Schizandrer A 7.180 7.163
  9.	 Gardenia jasminoides 

eills 
7.092 7.192

10.	 Timospaponine1 7.063 7.631
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Figure 3:  (a) CoMFA contour maps. Steric favor 
contributions are shown in green, and disfavor 
contributions are shown in yellow. Electrostatic 
contributions are shown in blue for electropositive 
favored contours and in red for electronegative 
favored contours. (b) CoMSIA contour maps. 
Green contours indicate steric favor contributions 
while yellow contours represent the opposite effect. 
Electropositive contours are shown in blue, and 
electronegative contours are shown in red. 
Hydrophobic favored regions are shown in purple. 
(c) Ligand interaction diagram of No. 6 from 
training set.

Contour Maps and Ligand Interaction Diagrams

Docking simulations were performed to analyze binding mode of ligands and 
to test the reliability of CoMFA and CoMSIA models. Figures 3(a) and 3(b) 
shows the CoMFA and CoMSIA contour maps, with compound No. 6 from the 
training set as reference molecule. The docking pose of compound 6 is shown 
in interaction diagram in Figure 3(c) (refer to Table VI for graphic element 
descriptions). Steric favored contours were found near R4 site (refer to Figure 
1(a) for numbering system), consistent with the interaction diagram that shows 
a possible extension space in the binding site. Similar steric favored contribu-
tions were also found near R2 and R3 (Figures 3(a) and 3(b)), which were in 
agreement with the interactions observed and the binding site layout shown in 
Figure 3(c). 

Comparing cGMP and sildenafil interaction diagrams (Figure 4), we have found 
several common characteristics of two ligands that cannot be readily detected from 
3D-QSAR analyses: (i) presence of pi-stacking interaction to Phe820, (ii) requirement 
of water bridges in ligand-protein interaction, and (iii) key hydrogen bonding inter-
action to Gln817. As shown in Figure 4, cGMP and sildenafil share similar binding 
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model. Sildenafil has unreactive sulfur group instead of phosphate group of cGMP and 
is further stabilized with substituent. 

Water molecules in the binding site were also extensive analyzed. As illustrated in 
Figure 5, water molecules connect ligand to protein, forming water bridges. Based 
on our simulation results, water molecules were essential for cGMP and sildenafil 

Figure 4:  Graphic elements used in 
the interaction diagrams. This 
information could be obtained from 
the help manual of Discovery Studio 
version 2.5.

to establish bonding to Tyr612 and Ala767. Using the labeling system in Figure 
5, cGMP formed hydrogen bonding with H2O

38 and sildenafil with H2O
75. Addi-

tionally, compound 5 and compound 6 from training set all had water-bridge 
effect similar to sildenafil binding mode (Figures 5(a), 5(b) and 6). Based on the 
number of water bridges, we speculate that ligand having bonding with H2O

38 
could be more stable than having interaction with H2O

75.

As for compounds from TCM database (http://tcm.cmu.edu.tw/index.php), the 
PDE-5 inhibitory activity was predicted by the QSAR model. The top com-
pounds (shown in Table V) were then further filtered out via the before men-
tioned three binding mode characteristics. Engeletin and coixol, which satisfied 
these three key binding modes (shown in Figures 7 and 8) were considered as 
potential candidates out of the entire compound library. Coixol had the highest 
predicted activity but lacked of essential water bridges (Figures 5(c) and 5(d)). 
In this regard, engeletin could be a better a candidate than coixol. Furthermore, 
the water bridges formed between engeletin and PDE-5 were similar to that of 
cGMP. 

Our results support the idea that docking study is useful in determining molecule 
binding mode in protein. Docking scores and scoring functions are often debated 
for reproducibility and reliability; however, docking simulations provide insights 
into binding modes that are not obtainable from normal 3D-QSAR analyses. Cer-
tain receptor-ligand interactions, such as water bridges and pi-stacking could be 
readily detected in docking analyses but not in 3D-QSAR. Therefore, we suggest 
that docking studies should be conducted for qualitative purposes rather than for 
quantitative purposes. According to some studies about molecular dynamics and 

Figure 5:  Ligand interaction diagrams of (a) cGMP 
and (b) sildenafil.
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Figure 6:  The docking results of (a) No. 5 from training 
set, (b) No. 6 from training set, (c) engeletin and (d) 
coixol.

Figure 7:  Ligand inter
action diagram of No. 5 
from training set.

molecular simulations (50-58), we will perform the molecular dynamics study to 
investigate this issue. 

Conclusion

We have constructed predictive CoMFA and CoMSIA models, using experimen-
tally tested PDE-5 inhibitors. Additional docking analyses of the binding mode 
of cGMP, sildenafil citrate and compounds from the training set have provided 
useful insight to the binding model of PDE-5 ligands. Overall, we have identi-
fied three PDE-5 inhibitor binding features: (i) ligand pi-stacking interaction to 
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Figure 8:  Ligand inter
action diagram of engeletin.

Figure 9:  Ligand inter
action diagram of coixol.

Phe820, (ii) presence of water bridges that aid ligand interactions to Tyr612 and 
Ala767, and (iii) hydrogen bonding between ligand and Gln817. 

Biological activities of compounds from our TCM database (http://tcm.cmu.edu.
tw/index.php) were predicted using the predictive models and analyzed in dock-
ing simulation. Engeletin had high predicted inhibitory activity and similar water 
bridges as cGMP. Thus, engeletin was deemed to be the most potent PDE-5 inhibi-
tor candidate. 
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