Chemical Constituents of *Tupistra chinensis* **Rhizomes**

Wen-Bin PAN,^{*a*} Li-Mei WEI,^{*a*} Li-Lan WEI,^{*a*} and Yang-Chang WU^{*,*b*}

^a Department of Applied Chemistry, Fooyin University; Kaohsiung County 831, Taiwan: and ^b Graduate Institute of Natural Products, Kaohsiung Medical University; Kaohsiung 807, Taiwan. Received December 7, 2005; accepted April 4, 2006

A new pregnane glycoside, a dibenzylbutyrolactone lignan, 5-hydroxymatairesinol dimethyl ether, and three new flavonoids, including one 8-methylflavan-3-ol, and two 8-methylflavones, together with five known flavonoids and two known alkaloids were isolated from the rhizomes of *Tupistra chinensis***. The structures of all compounds were elucidated by spectral studies.**

Key words *Tupistra chinensis*; Liliaceae; pregnane glycoside; lignan; flavonoid; alkaloid

Tupistra chinensis BAKER (Liliaceae) is endemic to southwestern regions of the People's Republic of China.¹⁾ As a Chinese folk medicine, this species has usually been used for treatment of rheumatic diseases and snake-bite.¹⁾ In previous investigations, $2^{(-4)}$ we have reported the isolation and structural elucidation of several steroidal sapogenins, flavans, and a pregnane genin from this species. Our current phytochemical study for new efficient agents has led to the isolation of a new pregnane glycoside, namely tupichinin A (**1**) and a first naturally-occurring lignan possessing a hydroxyl group at the benzyl position, 5-hydroxymatairesinol dimethyl ether, namely tupichilignan A (**2**), three new flavonoids, tupichinol D (**3**), tupichinol E (**4**), and tupichinol F (**5**), together with five known flavonoids, 3-hydroxy-2-(4-hydroxyphenyl)-7 methoxychromen-4-one (6) ,⁵⁾ rhamnocitrin (7) ,⁶⁾ 3,7-dihydroxy-2-(4-hydroxyphenyl)-chromen-4-one (**8**),7) 2-(4-hydroxyphenyl)-4*H*-chromen-7-ol (9) ,⁸⁾ and 3,5,7,8-tetramethoxy-2-(4-methoxyphenyl)-chromen-4-one (10) ,^{9,10)} and two known alkaloids, oxoglaucine (**11**) 11) and oxopurpureine (12) .¹¹⁾ The characterization and structure elucidation of 1— **5** are reported herein.

Tupichinin A (1) was obtained as colorless oil, $[\alpha]_D^{24}$ -12.6° ($c=2.30$, MeOH), showed in the HR-FAB-MS (positive mode) a pseudomolecular $[M+Na]^+$ peak at m/z 515.2832 (Calcd 515.2829), consistent with the molecular formula $C_{27}H_{40}O_8$, suggesting a pregnane glycoside skeleton with eight degrees of unsaturation.

Unambiguous full assignments for the ¹H- and ¹³C-NMR signals were listed in Table 1 based on an analysis of the combination of distortionless enhancement by polarization transfer (DEPT), ${}^{1}H-{}^{1}H$ correlated spectroscopy (${}^{1}H-{}^{1}H$ COSY), heteronuclear chemical shift correlation (HET-COR), long range-heteronuclear chemical shift correlation (LR-HETCOR), and nuclear Overhauser and exchange spectroscopy (NOESY) spectra data. In the ¹H-NMR spectrum in CD₃OD of **1**, signals that are characteristic of the pregnane glycoside skeleton were observed. The ¹H-NMR spectrum showed the presence of two methyl groups at δ 0.93 (3H, s, Me-18) and 1.06 (3H, s, Me-19) and an anomeric proton at δ 4.33 (1H, d , $J=8.0$ Hz). Evidence for the presence of a methyl ketone and two double bonds at C-5 and C-16 came from a three-proton singlet at δ 2.26 and two vinylic proton signals at δ 5.49 (1H, d, $J = 5.6$ Hz) and 6.90 (1H, dd, $J = 3.2$, 1.6 Hz), respectively. Two oxymethine proton resonances at δ 3.78 (1H, dd, *J*-12.0, 4.4 Hz) and 4.05 (1H, br s) were assigned to H-1 and H-3, respectively. The fully decoupled 13 Cand DEPT NMR spectra of **1** exhibited 27 carbon signals, which consisted of three methyls, seven methylenes, 12 methines, and five quaternary carbons. One carbonyl carbon at δ 199.5 (C-20); two vinylic carbons at d 140.2 (C-5) and 125.3 (C-6); an anomeric carbon at δ 102.9 (C-1' of glucose); and two methyl groups at d 16.2 (C-18) and 13.2 (C-19) were also confirmed in 13C-NMR spectra. In the ring D of **1**, two vinylic carbon signals at δ 147.2 (CH) and 156.7 (C) were assigned to the C-16 and C-17, respectively. The two signals at δ 27.1 (Me) and 199.5 (C) arose from the methyl ketone, which was attached to ring D. In the NOESY spectrum (Fig. 1), the three-proton signal at δ 2.26 (Me-21) showed correlations with the proton signals at δ 6.90 (H-16) and 0.93 (Me-18). Moreover, in the LR-HETCOR spectrum (Fig. 2), one carbonyl carbon at δ 199.5 (C-20) exhibited correlation with the proton signal at δ 6.90 (H-16), and the ¹³C signal at δ 156.7 (C-17) showed correlation with the proton signal at δ 0.93 (Me-18). These findings further support the methyl ketone was attached to the C-17 position. The methylene protons at δ 2.00 (1H, m, H-2 α) and δ 2.71 (1H, m, H-2 β) were

∗ To whom correspondence should be addressed. e-mail: yachwu@kmu.edu.tw © 2006 Pharmaceutical Society of Japan

a) Spectra were measured in CD₃OD. *b*) Spectra were measured in $C_5D_5N^{4}$.

Fig. 1. NOESY Correlations of **1**

Fig. 2. LR-HETCOR Correlations (C to H) of **1**

determined, and were coupled to both of the two oxygenated methine protons at δ 3.78 (H-1) and δ 4.05 (H-3) in the ¹H⁻¹H COSY spectrum. The methylene protons at δ 2.28 (H- 4α) and δ 2.51 (H-4 β) were in turn coupled with the oxygenated methine proton at δ 4.05 (H-3). These findings supported the placement of two hydroxyl groups on C-1 and C-3 positions. Furthermore, two signals at δ 76.0 (CH), and 75.4 (CH) were assigned to the C-1 and C-3 positions, respectively, from the HETCOR spectrum. The coupling patterns of H-1 at δ 3.78 (1H, dd, $J_{1\alpha,2\beta}$ =12.0, $J_{1\alpha,2\alpha}$ =4.4 Hz) and H-3 at δ 4.05 (1H, br s) indicated that H-1 and H-3 are α -axial and β -equatorial, respectively. The structure of the saccharide moiety of **1** and its linkage position to the aglycone moiety were determined by the following data. On comparison of the 13C signals of **1** with those of pregnane **1a**, 4) a set of additional six signals, corresponding to a β -D-glucopyranosyl unit appeared. The signal due to the C-3 carbon, which was observed at δ 66.5 in **1a**, downfield shift to δ 75.4, accompanied by upfield shifts of the signal due to C-2 and C-4 by 4.1 and 2.0 ppm, respectively, indicating the sugar moiety was linked at C-3 position. The assignments of the 1 H and 13 C signals due to the saccharide moiety were as shown in Table 1. In the LR-HETCOR spectrum, the anomeric proton signal at δ 4.33 exhibited correlations with the ¹³C signals at δ 75.4 $(C-3)$ of aglycone) and 102.9 $(C-1)'$ of glucose). In the NOESY spectrum, the anomeric proton signal at δ 4.33 exhibited correlations with the proton signals at δ 4.05 (H-3 of aglycone) and 2.00 (H-2 α of aglycone). The α -configuration of the anomeric carbon of glucopyranosyl unit was determined by $J_{\text{H1-H2}}$ value (>7.0 Hz).

To confirm the nature of the sugar unit and to determine its absolute configuration, compound **1** was subjected to acid hydrolysis (4 N HCl), followed by HPLC analysis on a chiral column in comparison with $D-(+)$ -glucose. By this procedure the sugar was identified to belong to the common D-series.

The relative stereochemistry of **1** was also established from the NOESY spectrum. NOESY correlations between H-1 α and H-9 α , and between H-6 and H-4 α indicated α axial and β -equatorial configurations of H-1 and H-3, respectively. Based on the above spectroscopic evidence, the structure of 1 was established as 1β -hydroxypregna-5,16-dien-3- β -ol-20-one 3-*O*- β -D-glucopyranoside, namely tupichinin A.

Tupichilignan A (2) was isolated as colorless oil, $[\alpha]_D^{24}$ -2.8° (*c*=1.45, acetone). Its molecular formula C₂₂H₂₆O₇ was established by EI-MS ([M]⁺, m/z 402) and HR-EI-MS $(m/z$ 402.1683). The ¹H-NMR spectrum of 2 displayed signals for two methine protons at δ 2.97 (1H, m, H-2) and 2.62 (1H, quint., $J=7.2$ Hz, H-3), an oxygenated methylene at δ 3.92 (1H, m, H-4 β) and 3.83 (1H, m, H-4 α), two set of ABX systems of the phenyl protons at δ 6.63—6.81 (6H), an oxymethine proton at δ 4.64 (1H, d, J=7.2 Hz, H-5), and two benzylic protons at δ 2.92 (1H, dd, $J=14.2$, 5.2 Hz, H-6) and 3.07 (1H, dd, $J=14.2$, 5.2 Hz, H-6). Furthermore, the ¹H-NMR spectrum showed strong singlets at δ 3.82, 3.85, 3.87, and 3.88 associated with aromatic methoxy groups. Lopes *et al.*12) reported that *trans*-dibenzylbutyrolactone tented to show the distinct nonequivalence of the protons of the C-4 methylene group (δ 3.9, 4.2) in the ¹H-NMR spectrum. In contrast, the *cis*-derivative, the hydrogens of the C-methylene group were almost equivalent in the δ 4.0—4.1 range. The ¹H-NMR spectrum of 2 showed the characteristic signals (H-4; δ 3.83, 3.92) of a *trans*-2,3-dibenzylbutyrolactone lignan. The presence of a γ -lactone was suggested by a ¹³C-NMR shift at δ 179.1. The chemical shift of the signal due to the H-5 indicates that the configuration at C-5 is *R*, according to Nishibe *et al.*¹³) The ¹H- and ¹³C-NMR spectra of 2 were quite similar to those of 5-hydroxymatairesinol dimethyl

Table 2. ¹H- and ¹³C-NMR Data for Compounds **3**, **4**, and **5** in Acetone- d_6

ether.¹³⁾ The signals assigned to C -2 and C -3 were proposed at δ 45.2 and 43.9 by Nishibe *et al.*¹³⁾ However, careful examination of the spectroscopic data revealed the significant reassignment of ¹³C-NMR signals at C-2 and C-3 as δ 43.8 and 45.1, respectively. In the COSY spectrum, the proton signal at δ 2.97 (H-2) exhibited correlations with the proton signals at δ 2.62 (H-3), 2.92 (H-6), and 3.07 (H-6). The proton signal at δ 2.62 (H-3) exhibited correlations with the proton signals at δ 3.83 (H-4 α), 3.92 (H-4 β), and 4.64 (H-5). In the NOESY spectrum, the proton signal at δ 2.97 (H-2) exhibited correlations with the proton signals at δ 4.64 (H-5), 2.92 (H-6), and 3.07 (H-6). The proton signal at δ 2.62 (H-3) exhibited correlations with the proton signals at δ 3.92 (H- 4β), and 4.64 (H-5). These observations support the above assignment. Thus the previously reported assignment is unconvincing. Unambiguous assignments for the ${}^{1}H$ - and ${}^{13}C$ -NMR signals in **2** were made by combination of the DEPT, NOESY, ¹H-¹H COSY, and HETCOR spectra. Thus the structure of **2** was determined as 5-hydroxymatairesinol dimethyl ether, which we named tupichilignan A.

Compound **3** was obtained as colorless prisms, $[\alpha]_D^{24}$ -8.3° ($c=1.20$, MeOH). The HR-EI-MS showed a [M]⁺ ion at *m*/*z* 272.1053 (Calcd 272.1048), consistent with the molecular formula, $C_{16}H_{16}O_4$. The ¹H-NMR spectrum (Table 2) of **3** is similar to that of (2*R*,3*R*)-3,4-dihydroxy-7-methoxy-8-methylflavan (tupichinol A), 4) except for the presence of one additional hydroxyl group signal at δ 8.00 (br s) and the absence of a methoxyl signal at δ 3.78 (1H, s). This suggests that a singlet at δ 8.00 for one hydroxyl group should be located at C-7, with the oxygenation at C-7 only in ring A. In the ¹ H-NMR spectrum (Table 2) of **3**, signals that are characteristic of the 8-methylflavan-3-ol skeleton were observed.¹⁴⁾ A signal at δ 2.01 (3H, s) was assigned to the methyl group on C-8 in ring A. The oxymethine protons at δ 5.02 (1H, s) and 4.22 (1H, br s) were assigned to H-2, and H-3, respectively. The methylene protons at δ 2.73 (1H, dd, *J*=16.2, 4.4 Hz) and δ 3.14 (1H, dd, $J=16.2$, 4.4 Hz) were assignable

to H-4 α and H-4 β , respectively.⁴⁾ The signals at δ 3.65 (br s), 8.00 (br s), and 8.35 (br s) which disappeared on addition of D₂O, was assignable to three protons of the hydroxyl groups attached to $C-3$, $C-7$, and $C-4'$, respectively.^{4,15)} The protons at δ 6.71 (1H, d, *J*=8.2 Hz) and δ 6.32 (1H, d, *J*=8.2 Hz) were assigned to H-5 and H-6, respectively.^{4,15)} Furthermore, the aromatic protons at δ 7.38 (2H, d, J=8.8 Hz) and δ 6.83 (2H, d, $J=8.8$ Hz) were assigned to H-2'/6' and H-3'/5', respectively.¹⁴⁾ The heterocyclic coupling constant $(J_{2,3} < 2 \text{ Hz})$ confirmed the relative 2,3-*cis* configuration, while the optical rotation $[\alpha]_D^{24}$ -8.3° ($c=1.20$, MeOH) verified the 2*R*, 3*R* absolute configuration in **3**. 4) Thus the structure of **3** was determined as (2*R*,3*R*)-3,7,4-trihydroxy-8-methylflavan, which we have named tupichinol D.

Compound **4** was obtained as yellow oil. The HR-EI-MS showed the $[M]^{+}$ ion at m/z 314.0795 (Calcd 314.0790), consistent with the molecular formula, $C_{17}H_{14}O_6$. In the ¹H-NMR spectrum (Table 2) of **4**, signals that are characteristic of the 8-methylflavone skeleton were observed.^{14,15)} Two signals at δ 2.28 (3H, s) and 3.97 (3H, s) were assigned to the methyl group on C-8 and the methoxyl group attached to C-7 in ring A, respectively. The signals at δ 8.11 (brs), 9.24 (br s), and 12.19 (br s) which disappeared on addition of D_2O , were assignable to the protons of three hydroxyl groups attached to C-4', C-3, and C-5, respectively.¹⁵⁾ The proton at δ 6.49 (1H, s) was assigned to $H-6.14$ ^e Furthermore, the aromatic protons at δ 8.21 (2H, d, J=9.2 Hz) and δ 7.04 (2H, d, $J=9.2$ Hz) were assigned to H-2'/6' and H-3'/5', respectively.¹⁴⁾ The ¹³C-NMR spectrum (Table 2) showed the characteristic 8-methylflavone signals at δ 177.8, 160.9, and 104.2, corresponding to C-4 (CO), C-5, and C-8, respectively.15,16) Moreover, this spectrum also indicated one methoxyl carbon at δ 57.4, and one methyl carbon at δ 8.4. In the NOESY spectrum (Fig. 3), the cross-peaks between H- 6 /OMe-7 and Me-8/H-2'/ $6'$ were observed, indicating that the methyl group must be at the C-8 position and the methoxyl group must be at the C-7 position. These results indicate unambiguously that compound 4 is 3,5,4'-trihydroxy-7-methoxy-8-methylflavone, which we have named tupichinol E.

Compound **5** was obtained as yellow oil. The HR-EI-MS showed the $[M]^{+}$ ion at m/z 314.0798 (Calcd 314.0795), consistent with the molecular formula, $C_{17}H_{14}O_6$. In the ¹H-NMR spectrum (Table 2) of **5**, signals that are characteristic of the 8-methylflavone skeleton were observed.14) Two signals at δ 2.27 (3H, s) and 3.88 (3H, s) were assigned to the methyl group on C-8 in ring A and the methoxy group attached to C-3 in ring C, respectively. The signals at δ 8.01 (br s), 12.69 (s), and 9.21 (br s), which disappeared on addition of D_2O , were assignable to the protons of two hydroxyl groups attached to $C-4'$, $C-5$, and $C-7$, respectively.¹⁴⁾ The proton at δ 6.34 (1H, s) was assigned to H-6. Moreover, the aromatic protons at δ 8.09 (2H, d, J=8.8 Hz) and δ 7.05 (2H, d, $J=8.8$ Hz) were assigned to $H=2'/6'$ and $H=3'/5'$, respectively.14) The ¹ H-NMR spectrum of **5** is similar to that of **4**, the only difference being due to the existence of a methoxy group on C-3 in **5** instead of a hydroxy group on C-3 in **4**, and the existence of a hydroxy group attached to C-7 in **5** instead of a methoxy group attached to C-7 in **4**, which caused some minor shifts of the ¹H data for some protons. The methoxy signal upfield shift from δ 3.97 (s) to δ 3.88 (s), the

Fig. 3. NOESY Correlations of **4**

Fig. 4. NOESY Correlations of **5**

Fig. 5. HMBC Correlations of **5**

hydroxyl proton signal (OH-5) downfield shift from δ 12.19 (s) to δ 12.69 (s), the aromatic proton signal (H-6) upfield shift from δ 6.49 (s) to δ 6.34 (s), and the H-2' and H-6' aromatic proton signal upfield shift from δ 8.21 to δ 8.09 were observed. The 13 C-NMR spectrum (Table 2) showed the characteristic 8-methylflavone signals at δ 179.9, 102.0, and 7.9, corresponding to C-4 (CO), C-8 (C) and Me-8, respectively.15,16) Moreover, this spectrum also indicated the required twelve aromatic carbons (δ 99.0–161.1), and one methoxy carbon at δ 60.3.

Unambiguous assignments for the $\mathrm{^{1}H}$ - and $\mathrm{^{13}C}\text{-NMR}$ signals in **5** were made by combination of the DEPT, NOESY, ¹H-¹H COSY, HMQC, and HMBC spectra. The structure of **5** reconciles these data. In the ${}^{1}H-{}^{1}H$ COSY spectrum, the aromatic protons at δ 8.09 (H-2', H-6') were coupled to the protons at δ 7.05 (H-3', H-5') observed only. The methoxy protons at δ 3.88 (OMe-3) showed correlations with C-3 signal in the HMBC spectrum (Fig. 5) and showed correlations with aromatic protons at δ 8.09 (H-2', H-6') in the NOESY spectrum (Fig. 4). These findings also supported the methoxy group attachment to the C-3 position. Furthermore, in the HMBC spectrum, there were correlations between H-6 and C-5, C-7 and C-10, and between OH-5 and C-5, C-6, and C-10. From the above evidence, the aromatic proton at δ 6.34 was assigned to be at the C-6 position. Moreover, the methyl protons at δ 2.27 showed correlations with carbon signals C-7, C-8, and C-9 in the HMBC spectrum, and the cross-peaks between the signals of the methyl protons at δ 2.27 and H- $2'/H-6'$ in the NOESY spectrum, indicating that the methyl group must be at the C-8 position. These results indicate unambiguously that compound **5** is 5,7,4-trihydroxy-3 methoxy-8-methylflavone, which we have named tupichinol F.

Seven of the known compounds were identified by comparison their physical and spectral data with the literature values, namely, 3-hydroxy-2-(4-hydroxyphenyl)-7-methoxychromen-4-one (**6**) 5) and 3,5-dihydroxy-2-(4-hydroxy958 Vol. 54, No. 7

phenyl)-7-methoxy-chromen-4-one (7) , 6 3,7-dihydroxy-2- $(4$ hydroxyphenyl)-chromen-4-one (8) ,⁷⁾ 2-(4-hydroxyphenyl)-4*H*-chromen-7-ol (**9**),8) 3,5,7,8-tetramethoxy-2-(4 methoxyphenyl)-chromen-4-one (10) ,^{9,10)} oxoglaucine (11) ,¹¹⁾ and oxopurpureine (12) .¹¹⁾

Experimental

Optical rotations were measured with a JASCO DIP-370 digital polarimeter. Melting points were determined using a Yanagimoto micro-melting point apparatus and are uncorrected. ¹H- and ¹³C-NMR spectra were acquired on a Varian Germini 200 MHz FT-NMR running at 400 Mz (¹H) or 100 MHz (13) C), respectively. Chemical shifts (δ) were reported in ppm relative to residual solvent signals. The multiplicities of ¹H signals are designated by the following abbreviations: $s = singlet$; $d = doublet$; $t = triplet$; $q = quartet$; br=broad; m=multiplet. All coupling constants, *J*, are reported in Hertz. ¹³C-NMR spectra were acquired on a broad band decoupled mode and the multiplicities were obtained using DEPT sequences. LR-EI-MS spectra were obtained with a JEOL JMS-SX/SX 102A mass spectrometer or a Quattro GC/MS spectrometer with a direct inlet system. High-resolution EI-MS was measured on a JEOL JMS-HX 110 mass spectrometer. Silica gel 60 (Macherey-Nagel, 230—400 mesh) was used for column chromatography, precoated silica gel plates (Macherey-Nagel, SIL G-25 UV $_{254}$, 0.25 mm) were used for analytical TLC, and precoated silica gel plates (Macherey-Nagel, SIL G/UV_{254} , 0.25 mm) were used for preparative TLC. The spots were detected by spraying with 50% H₂SO₄ followed by heating on a hot plate.

Plant Material *Tupistra chinensis* was purchased in Kaohsiung, Taiwan, in August 1997. A voucher specimen (No. 970808) is deposited in the Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan.

Extraction and Isolation The air-dried underground parts of *T. chinensis* (17 kg) were extracted repeatedly with MeOH at room temperature. The combined MeOH extracts were evaporated and partitioned to yield hexane (140 g) , CHCl₃ (60 g), EtOAc (100 g), *n*-BuOH (130 g), and aqueous (280 g) extracts. The CHCl₃ extract was concentrated and chromatographed over silica gel and eluted with hexane–EtOAc mixtures of increasing polarity to yield 11 fractions. Fraction 2, eluted from *n*-hexane–EtOAc (1 : 3), was chromatographed on silica gel elution with $CHCl₃–MeOH (10:1)$ to afford compound **6** (11 mg), and **4** (8 mg), and **10** (9 mg). Fraction 3, eluted from *n*-hexane–EtOAc (1:4), was subjected on silica gel elution with CHCl3–MeOH (100 : 11) to afford compound **11** (15 mg), and **12** (13 mg). Fraction 4, eluted from *n*-hexane–EtOAc (1:5), was chromatographed on silica gel elution with $CHCl₃–MeOH (100:12)$ to afford compound 2 (15 mg). The EtOAc extract was concentrated and chromatographed over silica gel and eluted with CHCl₃-MeOH mixtures of increasing polarity to yield 10 fractions. Fraction 2 was rechromatographed on silica gel elution with $CHCl₃–MeOH (100:3)$ to afford compound **8** (10 mg). Fraction 2 was rechromatographed on silica gel elution with $CHCl₃–MeOH (100:5)$ to afford compound **5** (10 mg), and **9** (8 mg). Fraction 3 was rechromatographed on silica gel elution with $CHCl₃–MeOH (100:5)$ to afford compound 3 (13 mg). Fraction 10 was rechromatographed on silica gel elution with CHCl₃–MeOH $(6:1)$ to afford compound 1 (25 mg) .

Tupichinin A (1): Colorless oil, $[\alpha]_D^{24} - 12.6^{\circ}$ (*c*=2.30, MeOH). FAB-MS (positive mode) m/z : 515 $[M+Na]^+$. HR-FAB-MS m/z : Found 515.2832 $[M+Na]^+$ (Calcd 515.2829). ¹H-NMR (400 MHz, CD₃OD) and ¹³C-NMR $(100 \text{ MHz}, \text{CD}_2 \text{OD})$ spectral data see Table 1.

Determination of the Absolute Configuration of Sugar Compound **1** (15 mg) was refluxed for 2 h with 4 N HCl in MeOH (35 ml). The acid hydrolysate was concentrated, extracted with EtOAc. The acidic mother liquor was neutralized with $Na₂CO₃$, filtered, and evaporated to dryness for examination of the sugar moiety, which proved to $D-(+)$ -glucose by detection on HPLC (HITACHI L7100) eluted with MeOH, refractive index detector (BISCHOFF), using LiChrospher 60 (5 mm) column with a flow rate of 1.0 ml/min. Peak of the hydrolysate of **1** was detected at 2.53 min. Retention time for authentic sample $D-(+)$ -glucose was 2.53 min.

Tupichilignan A (2): Colorless oil, $[\alpha]_D^{24} - 2.8^\circ$ (*c*=1.45, acetone). EI-MS *m*/*z*: 402 [M]⁺ (21), 167 (100), 151 (79), 139 (57). HR-EI-MS *m*/*z*: Found 402.1683 [M]⁺ (Calcd for C₂₂H₂₆O₇ 402.1678). IR (neat) v_{max} cm⁻¹: 3350 (OH), 1750 (CO), 1600, 1580, 1500. UV (EtOH) λ_{max} (log ε) 233 (4.24), 280 (3.80) nm. ¹H-NMR (400 MHz, CDCl₃) δ : 6.81 – 6.63 (6H, aromatic protons), 4.64 (1H, d, J=6.8 Hz, H-5), 3.92 (1H, m, H-4 β), 3.88 (3H, s, $-OCH_3$), 3.87 (3H, s, $-OCH_3$), 3.85 (3H, s, $-OCH_3$), 3.83 (1H, m, H-4 α), 3.82 (3H, s, -OCH₃), 3.07, 2.92 (each 1H, dd, J=14.2, 5.2 Hz, H₂-6), 2.97 (1H, m, H-2), 2.62 (1H, quintet, $J=7.2$ Hz, H-3). ¹³C-NMR (100 MHz, CDCl3) d: 179.1 (C-1, s), 43.8 (C-2, d), 45.1 (C-3, d), 68.3 (C-4, t), 75.3 (C-5, d), 34.9 (C-6, t), 149.3 (d), 149.1 (d), 148.9 (d), 147.8 (d), 134.0 (d), 130.1 (d), 121.7 (d), 118.2 (d), 112.8 (d), 111.1 (d), 111.0 (d), 109.0 (d), 55.9 (q), 55.9 (q), 55.9 (q), 55.8 (q).

Tupichinol D (3): Colorless needles, $[\alpha]_D^{24} - 8.3^{\circ}$ (*c*=1.20, MeOH). EI-MS *m*/*z*: 257 [M-CH₃]⁺ (100), 222 (65), 207 (92), 179 (34). HR-EI-MS *m/z*: Found 272.1053 $[M]^+$ (Calcd for C₁₆H₁₆O₄ 272.1048). ¹H-NMR (400 MHz, acetone- d_6) and ¹³C-NMR (100 MHz, acetone- d_6) spectral data see Table 2.

Tupichinol E (**4**): Yellow oil. EI-MS *m*/*z*: 314 [M] (69), 271 (19), 121 (44), 105 (100). HR-EI-MS m/z : Found 314.0795 [M]⁺ (Calcd for C₁₇H₁₄O₆ 314.0790). ¹H-NMR (400 MHz, acetone- d_6) and ¹³C-NMR (100 MHz, acetone- d_6) spectral data see Table 2.

Tupichinol F (5): Yellow oil. EI-MS m/z : 314 [M]⁺ (45), 313 (47), 285 (18), 271 (28), 121 (59), 57 (100). HR-EI-MS *m*/*z*: Found 314.0798 [M] (Calcd for C₁₇H₁₄O₆ 314.0795). ¹H-NMR (400 MHz, acetone- d_6) and ¹³C-NMR (100 MHz, acetone- d_6) spectral data see Table 2.

Acknowledgments This work was supported by a grant from the National Science Council of the Republic of China.

References

- 1) Jiang Su New Medical College (ed.), "Dictionary of Traditional Chinese Crude Drugs," Shanghai Scientific Technologic, Shanghai, 1979, p. 907.
- 2) Pan W. B., Chang F. R., Wu Y. C., *J. Nat. Prod.*, **63**, 861—863 (2000).
- 3) Pan W. B., Chang F. R., Wu Y. C., *Chem. Pharm. Bull.*, **48**, 1350— 1353 (2000).
- 4) Pan W. B., Chang F. R., Wei L. M., Wu Y. C., *J. Nat. Prod.*, **66**, 161— 168 (2003).
- 5) Camarda L., Merlini L., Nasini G., *Heterocycles*, **20**, 39—43 (1983).
- 6) Gonnet J., *Phytochemistry*, **11**, 2313—2314 (1972).
- 7) Jurd L., *Tetrahedron*, **23**, 1057—1064 (1967).
- 8) Iinuma M., Kakuto Y., Camarda L., Merlini L., Nasini G., *Heterocycles*, **20**, 39—43 (1983).
- 9) Iinuma M., Kakuto Y., Tanida N., Tanaka T., Lang F. A., *Phytochemistry*, **44**, 705—710 (1997).
- 10) Rashid M. A., Armstrong J. A., Gray A. I., Waterman P. G., *Phytochemistry*, **31**, 1265—1270 (1992).
- 11) Chang F. R., Chen C. Y., Wu P. H., Kuo R. Y., Chang Y. C., Wu Y. C., *J. Nat. Prod.*, **63**, 746—748 (2000).
- 12) Lopes L. M. X., Yoshida M., Gottlieb O. R., *Phytochemistry*, **22**, 1516—1518 (1983).
- 13) Nishibe S., Chiba M., Sakushima A., Hisada S., Yamanouchi S., Takido M., Sankawa U., Sakakibara A., *Chem. Pharm. Bull.*, **28**, 850—860 (1980).
- 14) Coxon D. T., O'Neill T. M., Mansfield J. W., Porter A. E. A., *Phytochemistry*, **19**, 889—891 (1980).
- 15) Takasugi M., Niino N., Nagao S., Anetai M., Masamune T., Shirata A., Takahashi K., *Chem. Lett.*, **1984**, 689—692 (1984).
- 16) Morimoto S., Nonaka G. I., Nishioka I., Ezaki N., Takizawa N., *Chem. Pharm. Bull.*, **33**, 2281—2286 (1985).