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Several lines of evidence indicate that inflammation and endothelial cell
dysfunction are important initiating events in atherosclerosis. Tumor necrosis
factor-a (TNF-a), a proinflammatory cytokine, induces the expression of cell
adhesion molecules and results in monocyte adherence and atheromatous plaques
formation. Andrographolide (AP) is a major bioactive diterpene lactone in
Andrographis paniculata, which possesses anti-inflammatory property. In the
present study, we investigated the effect of AP on TNF-a-induced ICAM-1
expression in EA.hy926 cells. AP inhibited TNF-a-induced ICAM-1 mRNA, total
protein, and cell-surface expressions. In addition, TNF-a-induced adhesion of
HL-60 to EA.hy926 cells was abolished by AP. Furthermore, AP suppressed
TNF-a-induced kB inhibitor (IkB) kinase (IKK) and IxBa activation, p65 nuclear
translocation, NF-kB and DNA binding activity, and promoter activity of I[CAM-1.
AP increased intracellular cAMP concentration and induced the phosphorylation
of cAMP response element-binding protein (CREB). Transfection with
CREB-specific small interfering RNA knocked down CREB expression, however,
did not inhibit ICAM-1 expression by AP. Taken together, these results suggest
that AP down-regulates TNF-a-induced ICAM-1 expression via attenuation of
activation of NF-kB in EA.hy926 cells. The results may implicate the

cardiovascular-protective potential of AP.

Keywords : andrographolide; tumor necrosis factor-a; intercellular adhesion

molecule-1; nuclear factor-kappa B; EA.hy926 cells
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(low-density lipoprotein » LDL) 3 4c4%38 5 # 5 & & e ' F]F o w g p
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T W e ek A (B12.2B) o Foatigat (7 PR g B (plaque)
A £ (B23) ¢ dE4es g Lime e Fie® 2 T ifsvimiz il 4 > E@
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0o 3wt & G £ % (integrins) 0 A £ F Al G H &
ligandserkit 5 (3)¥ s Zkspreading® 3§ o 47 4 & 3¢ 3o
(Immunoglobin-like molecules) £7 & & % eh2 3 (F% JEHE ¥ A p 4
P nskd PAKBEIPNART B S F R B

A H it 935 = (Lawson and Wolf, 2009) °
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B 2.4 v & 3 pcd iv* (Lawson and Wolf, 2009)
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BB R RA YA AR R RAEF A T AR LB T

7

n ke

tethering ~ JE & ~ ZL%f % %15 T & ¢ BEp 942 (Galkina and Ley,

2007) » 14§ & ek it (immunohistochemistry) # ¢ F2iGEF fde ik

B R A T B R 3 5 ARF A~ F 4 L (Kaufmann et al.,

2007) > @ i J5 Gene Ontology Consortium #_% > ‘w2 3LF &~ + 5 % AT
e d

v

R BRI A RT A G

A~
g

W hwm 2 A F P fm Pz g\ P2

:i{ﬁ,é’

kv &+ 2 L2 (4 2.1) (Blankenberg et

al., 2003) -

% 2.1 &%~ + 2 H fefd (Blankenberg et al., 2003)
Adhesion molecules  Other names Ligands Functions Tissue distribution Soluble form
Endoth Leuko Platelets

Selectinstligands

P-selectin CDG62P, GMP140 PSGL-1, Lewis X, CD24 Rolling/tethering + + +

E-selectin CD6ZE, ELAMI ESL-1, Lewss X, PSGL-1, L-set Rolling/tethermg + +

L-selectin CD62L Lewss X, CD34, PSGL-1, GlyCAM  Rolling/tethering + +

E-selectin ligand 1~ ESL-1 E-selectin Rolling/tethering +

P-selectin ligand 1 CD162, PSGL-1 P-, L-, E-selectin Rolling/tethering + +

Tmimumeglobulins

ICAM-1 (D54 al P2, aMB2, aXp2 Firm adhesion + + +

ICAM-2 (D102 alB2, aMp2 Firm adhesion + + + +

ICAM-3 CD30 alp2, aDB2, DC-SIGN Firm adhesion + + +

VCAM-1 (D106 adfl, adB7, aDB2 Firm adhesion + +

PECAM-1 (D3l PECAM-1, aVB3 Endothelial mtegnty, + + + +
leukocyte extravasation

Integrins

Integrn o2/l CD49b/CD29, VLA2 Collagen, lammm Platelet receptor +

Integrin ad/Bl (D49d/CD29, VLA4 VCAM-1, FN Firm adhesion +

Infegrin aL/B2 CDI11a/CD18, LFAl ICAMs Firm adhesion +

Infegrin oM/B2 CDIIb/CDI8, Macl ICAMsiC3b, FX, FG Firm adhesion +

Infegrin oX/B2 CD11e/CDI8 ICAM-1, FG, 1C3b, CD23 Firm adhesion +

Integrin aD/B2 (D11d/CD18 [CAM-3, VCAM-1 Firm adhesion +

Integrin a2B/a3 GPIIb/Ma vWE, FN, FG, VN, thrombospondin  Platelet receptor +

Integrin aV/B3 VNR, CD531/CD61  PECAM-1, VN, FN, FG, vyWF Proliferation, migration 4 +

Tntegrin aV/B3 VN Proliferation, migration 4
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2.1.1:E # % (selectins)
EHZAESEAFY 2 AP AR htethering iR H > @
¥ L-selectin ~ P-selectin 2 E-selectin - :£ 3 % &2 H fie§8 (ligand) 2
EAR I L I QT AL SRR £ L7 RS L SV I EE S INE S
LR L e 2 (T
L-selectin & & # I* ¢ w IR > & L-selectin 44 a2 #f = ZRA7 3
7 F L-selectin # JLjp -~ FF € "% 14 50%:k = 3 o2 7% 1+ e0fb (7
it * (Galkina et al., 2006) - P-selectin glycoprotein ligand (PSGL-1)
= L-selectin e d@2 — > R £ eis pvf @ (A3f~ H Pk & = oo
% i L-selectin &2 PSGL-1 chg & € 18 n R IR § ¥ P9 n Ik
e gL ER e LA A T (E* > EE secondary capture
e 2 o 3 A7 3 dp 41 L-selectin 34 3326 & 3% R T VoA R F
%’ﬁ d L-selectin/PSGL-1 %2 3¥ secondary capture (Eriksson et al.,
2001) o gt ¢k » PSGL-1 7= §_P-selectin £ E-selictin crfe 48 » -] &L H
Piok Ly-6C" % 23538 % & 4 I PSGL-1 & 3§ +e 7 L- ~ P-2
E-selectin e & » M Mo o IR T R o 8% FARAE A T AF
%4 4 (Hungetal., 2008) -
P-selectin i & %73t /] % eh a-granules ® > € e B fwiE
17 Weibel-Palade bodies * + 7 > — L p L dmPe 5 it {507 i
Thwie it g oy BEor § e FEfIE N A dmPe > {1 * P-selectin
o8y re %7 P-selectin 1i® * g 4| * SiRNA #r4] P-selectin 7 IR %
€ % '% Kd o ppereA o opd Pisk THP-1 3% 17 *  (Redmond et
al., 2009) -

E-selectin B ¥ § & AP L wre » A2 W F BenfinT 7

14



€ £ X P L we cE 4o IL-1 & TNF-a £ 0t € 4
2% H 4k 1T ¥ (Rae E-selectin & & > @ #4% %5 NFxB 27 0 £ 7] 4

.5 B (Lin et al, 2007; Zakeri et al., 2000) ©

21257 3k F=v &~ 3 (Immunoglobin-like molecules)

R A E IR F-v &~ 3 superfamily 5 & I3 e Wb cPpE v o
@ ipt A FEE A T g% (splicing) A 2 % 48 isoforms -

Intercellular adhesion molecules (ICAM) & *% % superfamily #
= jIE 0 35T B B 0 ICAM-4 % IR3% erythroid cells » ICAM-5
F TR Ny EERGE A CRE 4P o ICAM-1 B iLch& 3t
fIRE R e A g Lk bl T 1§ 4 B ed
ICAM-2 3.3t e o Zf ~ w2 L w2 > X3 L lwmbe fok e f
R ICAM-3 25 0 RIS s SR p L e o - AR
%?P%’ P m IR enimre iR E o o ICAM enfie A £ § A Rt Y n
e B FEEF fﬁﬁ E ’iﬁ’\ﬁ?m‘%ﬁ;@?’;ﬂ w FRERENF R o DR
e o RIS B A G 0 M9 & IRF 0 g EEEH
(Blankenberg et al., 2003) -

Vascular cell adhesion molecule 1 (VCAM-1) “,/TT ORI A
fn?z ¢b > Evillnm?z ~ myoblasts & dendritic cells 7 € & I o fiE it
p g e ¢ VCAM-1 %’gﬁ B¢ v w IR E FGSEHITR LA R
%o n ¥ (Blankenberg et al., 2003) - VCAM-1 ¢ 23535 %
o4y (* f 5 very late antigen 4 » VLA-4) 1£% > £ 4L fn %2 74P
Bt > W e Ak e LB o BT oL HFR

% 4t » anti-VCAM-1-coated bead £ anti-0, integrin-coated beads ¥
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Fralp T sy (TIEd > Ko kT et 7 F & VCAM-1 cdkr
it * (Matheny et al., 2000) °

¥ ¢t > platelet endothelial cellular adhesion molecule 1
(PECAM-1) R £ 3R> e B IR ~ d 4 2 p AL dmfe o B gl fmPe i
WA BRI EFY 2 B S PECAM-1 20 H 34 & 489 40 ik chim
o AR BN LR emed 2 F BN AT R M

(Newton et al., 1997) -

ICAM-1 (CD54)

ICAM-1 5 65 opt 3o o d 505 Bveipeies » 3 4 pisken
AFEK5 60kDas @ HpEA A2 R 47 ke anime G ot LR o ik
Hpp i fe i »+ £+ [543 80 | 114 kDa (van de Stolpe and
van der Saag, 1996) - ICAM-1 A v o ZRehficE ie* P B FEF L 2
AZRIEH > B d g IRAUREE 0 Bd D IR T AR A
Ko7 2 o 31T ML 87 ICAM-1 ehie* & jird ICAM-1
i RO R ICAM-1 endh g B H30 T 35 E p L & f
7iE424p % £ & (Lehmann et al., 2003; Reiss and Engelhardt,

1999) - ",/TT TR LG IR o 3F S i d R L e~ TR
Puimbe ~ G w2 & B ne & % ¢ 4 I ICAM-1 (Roebuck and
Finnegan, 1999) - ICAM-1 ",/TT TEE ARG R L B v R
ARG M 0 del F ey (Cuietal,2010)~ & #7844 R i el
(Cheng et al., 2008) ~ p %8 ¢ % & i (autoimmune disease)
(Yusuf-Makagiansar et al., 2002) % -

A3 ICAM-1 A F) 230 % L 4 3.4 4 4> 2 32 B exons & =
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i# introns (Voraberger et al., 1991) o f_fk_ffli?-%- A ~% v B4 ~LPS -
ox-LDL & H s fp B e3¢ &L w98 % (4v @ TNF-a ~ IL-1 ~ IL-6 ~
IFN-y &) 15T ¢ 5% ICAM-1 £ 3 - 3 &L A 5% 42 MAPK
(Ying et al., 2009)~PKC (Min et al., 2005)~JAK/STAT (Audette et al.,
2001)~ Akt (Oh and Kwon, 2009) 2 IKK/NF-kB (Lian et al., 2010) %
4 YRR T k35 ICAM-1 4 To %2023 12 ICAM-1 4 IR chi 4
F]+ & 35 AP-1 (Son et al., 2006) ~ STAT (Audette et al., 2001) ~ Spl
(Berend;ji-Grun et al., 2001) £ NF-kB (van de Stolpe and van der
Saag, 1996; Zhou et al., 2007) % -#2 3 45 11 ICAM-1 DNA 5’ = e
B 4k A ¥ (base pairs) 3t w g oz e A ¥ ICAM-1 sh 4 R
1% £ % (Houetal., 1994; van de Stolpe and van der Saag, 1996) -
g 23 ICAM-1 promoter } endg 45 %]+ (¢ 7 AP-1 ~ NF-xB ~
STAT) & & =% > ¥ 2 TNF-o f{jp 4 @ p5 > DNA & 7| } 1
NF-kB & & = % % ICAM-1 ¢h% JAp$# & (Ohetal,2010) > ¥
FAL D %’ﬁf 4 forskolin (adenylyl cyclase /= it #&l) 3 e 2z jr
cAMP 4] #* cAMP #p i 4~ it 3 #r#] TNF-a ~ IL-1p 2 IFN-y #7324
# 1 ICAM-1 3¢ F & mRNA % 3, (Balyasnikova et al., 2000;

Panettieri et al., 1995) -

2.1.3% & % (integrins)
BEEimed g B d 18/ a 8P H AT
g B F - FA (heterodimer) (Hynes, 2002) > 4 32 % ¢ 4% 'w
% g1 e s tmie g1 (AL s St A2 B Rf o KL

2B L o A e L Z RS 4 K
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2.2

- LRI gA I g Ak e g H b domain ] o A e SRR

W»

fe3. 4 4 (Blankenbergetal,,2003) - 2 fa=c H ~ ¢ 1 & 429
& TRARHE E % 8By 2 q » LFA-1 (CD11a/CDI18, aify) 3t 5 &
% 1P, =t R3& (subfamily) » 2975 o w3 Y € A UVl e
f7 Tk 3o ¢ HICAMs it % ; VLA-4 (CD49d/CD29, auBy) B/
0 FOE 0 AR AT E PR H T 3k > ¢ 8 VCAM-] 3

fibronectin i** (Galkina and Ley, 2007) °

KURES *o
ik o m El e § 5 BApE e S Bagra L duien o e
4 ;?5,%%&'%‘4\; F I REY w IRPCHTF o dek 2.2 A7 o 2F 5 e
#% (¢4 TNF-o~ IL-1 2 IFN-y %) ¢ %% w2 3% A 5 (cellular

adhesion molecule, CAM) % & (Meager, 1999) -

% 2.2 W ¥cF A e iLF A F ek I (Meager, 1999)

Cytokine CAM Expression

TNF-o, TNF-fi, IL-1a, IL-1/  E-selectin, P-selectin, L-selectin ligand, ICAM-1, VCAM-1, MAdCAM-1 strongly up-regulated.

IL-4, IL-13 Selective up-regulation of VCAM-1 (synergize with TNF-u); late expression of E-selectin
stimulated by TNF-2 or IL-1 inhibited.

IL-10 Potential inhibitor of TNF-x induced ICAM-1 expression.

IFN-y Weak inducer of [CAM-1 expression, but strong synergy with either TNF
or IL-1. Can maintain E-selectin expression levels.

TGF-p, E-selectin expression inhibited (additive inhibitory effect with 1L-4); up-regulation of PECAM-1.

" TNF-a

TNF-0 #4305 8 8P i AT 1 % 50R 3 Mo P % A 4 2
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H#EZ% B (advanced glycation end-products, AGE/receptor for
AGEs » RAGE) ~ lectin-like oxidized low-density lipoprotein receptor-1
(LOX-1) % NFkB %3t 4 @ L5 2 42 TNF-o & G £ & & ¢
(Gao et al., 2007; Li et al., 2003) - %8 *t ;25 © 3 L LPS ¢ %575 1*
NF-kB g7 = 55k it e 2 B L jfpivimiz 2 4 TNF-a 0 2 &
forskolin & cAMP #p 4 13 AT g B 4e 7z p cAMP R T e d
LPS #73% % TNF-o 2 2 (Newman et al., 1998) - TNF-a ",lT% T B e
EEF A S nA 4 (Kumaretal., 2007) 0 i3 2 p 4 e s 5 B F
o g A e e TNF-o t1™ > B85 1 #4-F]F NF-«xB 7™ € &
BEE AP A F] (40 ICAM-1~VCAM-1-MCP-1 £ [L-8 %) %
oo I8 RGE 0w FRFLFITN A w2 b (Kim et al., 2007; Min et al.,
2005) o iz A FpIREE IR L PE 5E L 2 TNF-o 7088 2 14 siRNA
Frd] INF-0 2 e 7 B ¥R 0 d ¢ pEored % o085 THP-1 4k 1%
* (Redmond et al., 2009) o * #& TNF-a”apoE”]: &£ apoE™| &
—‘F%i e 4% . BEMETRERAPT o apoE" | B eivds 5% o sk AT 1 i
AR RS BE 0 ¥ H ICAM-1 ~ VCAM-1 mRNA £ 3% & ¥ 3 »¢
TNF-a”apoE” | & (Ohta et al., 2005)° ¥ ¢} »apoE™"] & % 7 ICAM-1
2 VCAM-1 #b » B s &7 gaeds % ofs o fl 1Y 4p b ek 7] & 325 IL-1PB ~
IFN-y ~ MCP-1 ~ granulocyte macrophage colony-stimulating factor
(GM-CSF) 2 NF-kB (p65) % mRNA # 3¢ & ** TNF-o apoE™ "]
£ > @ TNF-o apoE™™| & e 7% IRIERAE S m R TP A D
(Xiao et al., 2009)° * it 4p B #7 5 Bf7n TNF-0 e904 JLE3 6 0% 55 kAl

LA R ER & F
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S FEFRFBLALBRBEEE ST

1.

IkB kinase (IKK)/NF-«kB

IKK/NF-kBE: 2 422 4 42 5 2 WIE% & J2 B F o~ imie 7~ = 224
YR o NF-kB S — 4T3 cnsiff > hof 94 e ¥ NF-kBe § 1
B 7= B > & %] % RelA (p65) ~ RelB ~ c-Rel ~ p50/p105 (NF-xB1) ¥
p52/p100 (NF-xB2) iz B 725 = B Nzfdomaint 7 3 $300 [ =ik fk e
Rel-homology domain (RHD) #+** £ ¥4 39 & (inhibitor-xB > IkB) % £
DNAFE 7|hg & 4p g5 £ % - RHD* & NF-xBeT B 7125 = F 3 402 = b
BRE R Mo - B p6SpS0R F - RME G W L o <A D
NF-«xB= F A8 p A Fleagads & (promoter) % & {8 & 5 Rae A Flig 4%
IE* 5 (el F b b 1 depS0 e p5245as B chile B = R 4 € drdlig b iE
* o

A X P PR T o NF-kBir 3t imie f @ 2IkB3% & 0 ot BFIkB
¢ i FrRHD_F 344324 # 1% (translocation) :fmuclear localization sequence
(NSL) 2j = 2555 1 fx 48 & ## (Moynagh, 2005; Perkins, 2007) o & Fvis it
NF-kB &gt j5 ¥ & & canonical 2 non-canonical® § fm?e X I % W w2
(¢ #TNF-a~IL-1) hfljgs & & & F A+ (lipopolysaccharide, LPS) ~
¢ 1L i@ % 1t canonicali /2 0 IKKAE & 4 ¢ P-i# s IkBasSer32 2 Ser36/:fk
it > HitlkBadk ;£ % (ubiquitin) ¥ 3% iE26S;3 =48 (proteosome) "% f#
(Hayden and Ghosh, 2004) - IKK4g & = ¢ 7 7 = =t H ~IKKoa ~ IKKB%
IKKy (NF-kB essential modulator » NEMO) - IKKa22 IKKB 5 %% canonical
Be S A7 3 dp 41 fecanonical i /27 IKKB 5 2 & kB kinase (Bonizzi and
Karin, 2004) ; IKKy 5 7 £ jgcfis B a0 &= H < > 330 [KKo/IKK B ewifie

itip ¢ £ & (Rothwarfet al., 1998)  i5:ECD40 ~ lymphotoxin-p 3% B &
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TNF 72% ¢ B-cell-activation factor % 11| +# ;% {* non-canonical§% /& o 7
v

non-canonicalfs /& ¢ & ¥ 2 5 p52-RelBE 7 = F 4 > v 1 & 2 3|IKKalk
B = B A< 2 (Bonizzi and Karin, 2004) o 7% 1t {8 9NF-kBi & » fn¥e %
FEIATFHF P axBi g o ¥ & H i F]5 (cofactor) A 2 2 T i ;‘g
T T SN AP N LR PERE T e P
HE SR B Rl (v (acetylation) 12 AFNF-kBen=t H 43t H ig_
A FHEEE G 4o (F*%  (Chen and Greene, 2004) o &4 @ p65=%x H ~ ¥ &9
SORFLV AREEL T > AL T poSE H W F]F A 2 1T IR - AR
fiesk it 12 T £ 5 &% g &5 12 (Chen and Greene, 2003) - 2 ¢ > cAMP
respose element binding protein (CREB) binding protein (CBP)/p300i{ £ 7
factor acetyltransferase (FAT) e/ » ¥ #4g4x %]+ ¢ fgfL it (Vo and
Goodman, 2001) * 5 < }F*J%j]a 1+ ENF-kBZ2 CBP2 ey 3 8% ¥ P &g R
> A NF-«BAp B 2. #& 45 iv % (Parkeretal., 1999) &l4e : £ 5 Fugf L i®*
tranilast § F_i5iEF © o F ] A ¥ ¢ CBPehd-d & Bm 2 FENF-xBAp

M oendg g 1T > R0 TNF-03 3 w92 & @ ICAM-1 - VCAM-1 % E-selectin %
. (Spiecker et al., 2002); ¥ ¢k > 35 & % Rp65£7 CBP¥ 4¢3 #& 72 3|COS-7
‘m?z f E-selectine®® VCAM-1£z#+ 3 crdp S5 F1 & I > 2 4o % b pF i 12S
El1Ai#E & 4 3 (12SE1A ¥ ¢ 22CBP/p3003% &) B ¢ B35 4R H A Flen

IR (Gerritsen et al., 1997)

B IKK/NF-xB ¥2 & 7% s e /4 it
NF-xB %8 A d 5 F RAPM kv ’?ﬁ‘r (IL-2 receptor-tissue factor
% platelet-activating factor receptor %) ~ 4% 4~ + (ELAM-1 ~ VCAM-1

% ICAM-1 %)~ w2 %% (TNF-o ~ IL-1p ~ IL-2 ~ IL-6 ~ IL-8 % IL-12
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2.

%)~ 4 £ F]+ (granulocyte colony-stimulating factor > G-CSF) frd§ it ‘m
A FORATI AR e ke TAFEFIF LS B ARG Mo H
Poe FEE oA Y o NF-kB 7 € X Pl L mre d enflges Bt o
B isr g F T wmie kA IR FYt { 4r g 7 NF-kB oE it v
* (Sun and Andersson, 2002) - #1 3 4p i § B8 < B P a4k G ¢ P AR
HP] A w3 B 8% Tk ein e NF-kB o8 1t 0 3d = # "% e Al 1 e
A2 (Duetal,2009) - @ %7 NEMO/IKKy A& %] 71% ¢ ApoE”] &
(NEMO"“ ®/ApoE”) 2 ApoE"/| B3 " E|fs b 8 4 F > B
NEMO ™ C/ApoE™ /| &1 po B it > $+ P i 0 AT 1L s e025 & o pboh 5 B
dominant-negative IxBo (DNIkBa) # %]# 5 1 ApoE™ /| & (# B
Rﬁ%ﬁﬁﬂ@aﬁ%@%i)?%ﬂ%m&%U%ﬁg%%Amﬁ'
| B A #9% ch VCAM-1 % 3 » & & DNIkBa £ )i 78 ih ApoE™ /| & 4F
%g%m’f$%%%ﬂﬁﬁaénmwagﬂﬁgﬁAmﬁwﬁﬂ
5 9% 55 Pk AT (b Ta B A 2 7R BE L ApoET /] BUD 0 @ ipit B BE T e
FIM R dnfe NF-kB i/ 1 82 "% M PR ol R AT 4 35 5 5 M (Gareus et al.,

2008)

cAMP/protein kinase A (PKA)/CREB
AHWFEBNT LRBE TR TR T 55 Fha e gl

PE R e A B R BRRRE O 1Y Z e L BEs 3 A

<

@R e L BRI 0§ e 4 w7 G protein-coupled receptor % | §1 %

{

B 18 g 8- 9 2 % 1 adenylyl cyclase (AC)» i$ = ATP -k 22 2 cAMP -

CAMP frimPe ¥ L &€ & vz & 4 @i A F > @ cAMP-dependent protein

kinase (PKA) /& 4L 3n 5 23 4v e p cAMPJER 7 B -PKA 5  He B
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e ey d ABRIIE A S BRI E Aot Br=x
YR H AR e EF o aAfrHE ~eh C 3 cAMP binding
&1 ¢ i+ PKARFR AR & 4 i1

S S NATES S8 E RS SR SRR AEES St gl TR

domain > — £ cAMP ¥ A - H ~ %

ﬁﬁjL #E Fﬁg im e %&P\ B fm e ’P_ P\ }U
1990) -

B 5 4 2iv* (Tayloretal,
& 45 %3 cAMP-responsive element-binding protein (CREB) &gifis i
&1 PKA 5t 3 B - CREB ¢ % — i kinase-inducible activation domain
(KID)> @ # 3-¢ & + -3Serl33 ¥ 4 PKA #ifk it - § CREB &k it 12 € &
& 1 A FlExd + F 71 cAMP responsive elements (CREs) I &2 i ]+
CBP/p300 # 4 2 5 i¥% ﬁu"@ £ 254 14 B (Michael et al., 2000; Ziff,
1990) - # 1 4p i 12 %7 CREB & CBP R 02 3 8% ¥ p &% 4 CREB 4p B

e 4% it % (Parker et al., 1999) o

B cAMP/PKA/CREB £ #: 7% 55 e 5 i

© ArEs PR RA I S B KA R 0 B e NFxB & L
P B ER A d o F AT BT S e N cCAMP 2 E - PKA ¥ $r
F1d NF-xB #73 §2 ek Tl sk (5% > fe gt e (7% ¥ 2835 6+ #f NF-«B
LA R S N {}%F’ % 1* e CREB £ p65 @t 3 4p#< CBP
(Ollivier et al., 1996; Parry and Mackman, 1997) % #-3F & AL #)i% 7 5|
HUVECs %= 7 ¥ 4 JLi & % I CBP ¥ P &g "% i< forskolin ¥+ NF-«B &
i dprd|rcdk 0 @ R % L CREB R ¥ 4¢3 forskolin #7+4] NF-xB
AT drenig 41t % (Parry and Mackman, 1997) - # Jurkat T-lymphocytes

P& E_E Eed2 PKA FE & (forskolin ~ dibutyryl cAMP 2
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8-bromo-cAMP) gt ;ﬁ d iE B £ I PKA snfit = 8 = % & #r4] NF-«xB
ek 455 14 (Takahashi et al., 2002) o #* #b > w9 jgr& A b PRl AL i 3
B gz e rAp g £& 05 #7 7 4p 0 forskolin & dibutyryl cAMP (cAMP
tpge) £ e LPS 3% A sf H Pk wre & 42 TNF-a 7%k
(Shames et al., 2001) - m HUVECs ¢ &2 forskolin ¥ &g ¥ $#r+4| TNF-a
3% % E-selectin 2 VCAM-1 s mRNA # 3 ; A #f ¥ %53k w2 (THP-1)
7p B2 dibutyryl cAMP P ¥ P &gk -5 LPS 3 %% TNF-a 59 mRNA % 3R
(Ollivier et al., 1996) - “,ﬁ% 7B A1 * dibutyryl cAMP &2 THP-1 % &
| 2 b 4430 10 TNF-o G2 0 HUVEGs 2 *h » Tk F B * 5t s | 4%
# B enZ $~ cilostazol 5 Type I phosphodiesterase (PDE3) e o
72 5 W 4cfe B cAMP i * > THP-1 fw%2 & cilostazol saJ2 ™ » ¥
| H

Frd|HHE g g e 2 AN (Mori etal., 2007)0 72 FigdtFA g

kT 1% 18 5 1 CAMP/PKA/CREB B /3 it 7+ NF-xB 4p M e g5 17 % >
E\}’é#ﬁ‘;%‘%‘t‘* TPE b R 3R 2 ke o
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AREFANELFIRNT S EP g7 L HUVECs # #r4]d TNF-o #f

# % 0 ICAM-1 J-v F 4 > @ NF«B signaling pathway f1 # é0f Sk 7
HaepFLr T i RPFEL &9 > FIP AR KR A ffn § 04 w2
(EA.hy926) & #5538 #5354 7 o P fig dr ] S 3k 7~ F15 1 ICAM-1 4 Jenis

#12_F &% 6 B 5 NF-«B signaling pathway e
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Effect of andrographolide on tumor necrosis factor-alpha-induced

intercellular adhesion molecule-1 expression in EA.hy926 cells

Introduction

Andrographis paniculata (Burm.f.) Nees (Acanthaceae), a well-known traditional
medicinal plant in India, Thailand, and China, has attracted great attention recently
because of its clinical application potential. There are diterpene lactones, flavonoids and
polyphenols in A. paniculata. Andrographolide is a major bioactive diterpene lactone in A.
paniculata, which is concentrated in leaves. Many studies have shown that
andrographolide possesses anti-inflammatory (Abu-Ghefreh et al., 2009; Bao et al., 2009),
anti-tumor (Jiang et al., 2007; Zhao et al., 2008), anti-viral (Chen et al., 2009),
anti-oxdative (Akowuabh et al., 2008), anti-hyperglycemic (Yu et al., 2003), and
hepatoprotective (Trivedi et al., 2007) properties. The anti-inflammatory property of
andrographolide has been extensively studied both in vive and in vitro. Andrographolide
attenuated ovalbumin-induced airway inflammation in BALB/c mice through reduced
expression of cytokines and chemokines (Bao et al., 2009). In human neutrophils,
andrographolide prevented reactive oxygen species (ROS) production, and decreased
macrophage adhesion molecule-1 (Mac-1) expression induced by
N-formyl-methionyl-leucyl-phenylalanine (fMLP). This leads to inhibition of neutrophil
adhesion and transmigration (Shen et al., 2002).

Atherosclerosis is a chronic inflammatory response. Increasing plasma
low-density lipoprotein (LDL) was considered an important risk factor, especially.
Expression of pro-inflammatory cytokines and adhesion molecules was increased

by the activated endothelial cells, which was stimulated by oxidized-LDL
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(ox-LDL) or injury on vessel wall. Leukocytes recruitment and ox-LDL uptake
stimulate growth of plaque, and further formation of fatty lesions. Reinforcement
of inflammation may lead to local proteolysis, plaque rupture, and thrombus
formation, which lead to ischemia and infarction (Hansson, 2005, 2009).
Cytokines and adhesion molecules both play important roles in leukocyte
recruitment. During atherosclerotic progression, adhesion molecules were
involved in adhesion and transendothelial migration of leukocytes (Galkina and
Ley, 2007). Kaufmann et al. (2007) demonstrated that adhesion molecule
expression at atherosclerotic plaques by immunohistochemistry. Cytokines
including IL-1 and TNF-a induce the expression of E-selectin, VACM-1, and
ICAM-1 through NF-kB activation in human endothelial cells (Lin et al., 2007;
Zakeri et al., 2000; Zhou et al., 2007).

ICAM-1, a transmembrane glycoprotein, is regarded as an inflammatory
indicator. In comparison with the other transcription factor (e.g., AP-1 and STAT)
binding sites of [ICAM-1 promoter, NF-«kB binding site plays a critical role in
TNF-a-induced ICAM-1 expression (Oh et al., 2010). NF-kB is involved in the
regulation of gene expression of inflammatory and immune responses. The NF-xB
family comprises five members, and they are RelA (p65), RelB, c-Rel, p50/p105
(NF-xB1), and p52/p100 (NF-kB2). NF-kB subunits are dimerized and retained in
cytoplasm with inhibitory protein, IkB. Activation of IKK complex causes the
phosphorylation of IkB family and subsequent degradation by 26S proteasome.
Free NF-kB complex then translocates to the nucleus and binds to the kB element

of target genes (Hayden and Ghosh, 2004). In nucleus, transcription activity of
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NF-xB is modulated by cofactors, such as CBP (CREB binding protein) /p300
(Chen and Greene, 2003, 2004).

Increasing intracellular cAMP leads to activation of protein kinase A and induces
the expression of many genes through regulation of transcription factors, such as
cAMP respose element binding protein (CREB). Phospho-CREB allows
recruitment of its cofactors, CREB binding protein (CBP)/p300, then binds to
cAMP respose element (CRE) of target genes and turns on gene transcription
(Michael et al., 2000; Ziff, 1990). Interference with the interaction between CBP
and transcription factors can alter relevant gene transcription. For example,
tranilast reduced CBP expression in vascular endothelial cells which led to
inhibition of TNF-a-induced ICAM-1, VCAM-1, and E-selectin expressions
(Spiecker et al., 2002). The expressions of [CAM-1, VCAM-1, and E-selectin
were NF-kB-dependent (Lin et al., 2007; Zakeri et al., 2000; Zhou et al., 2007).
NF-kB-mediated gene expression was attenuated by CREB activation and this was
due to the competitive binding of CBP between CREB and p65 (Parry and
Mackman, 1997). Treatment of HUVECs with forskolin reduced
NF-kB-dependent gene transcription. The suppression effect of forskolin was
enhanced by CREB overexpression but reversed by CBP overexpression (Parry
and Mackman, 1997). Many studies have shown that increase in intracellular
cAMP level by PKA activators, including forskolin and cAMP analogues, reduced
TNF-a production or E-selectiny, VCAM -1, and ICAM-1 mRNA levels induced by
LPS, TNF-a, or IL-1p in coronary artery tissue and coronary smooth muscle cells
of pig, human monocytes, HUVECs, or brain endothelial cells, respectively

(Balyasnikova et al., 2000; Newman et al., 1998; Ollivier et al., 1996; Shames et
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al., 2001).

In the present study, we determined the effect of andrographolide on ICAM-1
expression induced by TNF-a in endothelial cells, EA.hy926. In addition, we
investigated the involvement of NF-«xB and CREB in TNF-a-induced ICAM-1
expression by andrographolide. The results of this study will provide a mechanism

exploring the anti-inflammatory effect of andrographolide.
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Reagents

Cell culture medium Dulbecco's modified Eagles medium (DMEM),
RPMI-1640, RPMI-1640 (without phenol red), OPTI-MEM, 0.25% trypsin-EDTA,
and penicillin/streptomycin were from GIBCO-BRL (Grand Island, NY); HBSS
and fetal bovine serum (FBS) were from HyClone (Logan, UT); andrographolide
(AP) was from Calbiochem (Darmstadt, Germany); human tumor necrosis
factor-alpha (TNF-a), sodium bicarbonate, and
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) were from
Sigma (St. Louis, MO); bis-Carboxyethyl-carboxyfluorescein acetoxymethyl ester
(BCECF-AM) was from Molecular Probes (Eugene, OR); anti-actin, anti-ICAM-1,
anti-CREB, anti-phospho-CREB (Ser 133), anti-phospho-IkBa (Ser32/36) and
anti-phospho IKKa (Ser180)/ IKK (Ser181) antibodies were from Cell Signaling
Technology (Boston, MA); anti- [kBa and anti-IKKo/  antibodies were from
Santa Cruz Biotechnology (Santa Cruz, CA); anti-p65 antibody was from BD
Bioscience (San Jose, CA); fluorescein isothiocyanate-conjugated mouse
anti-human ICAM-1 antibody was from Serotec Company (Kidlington, Oxford,
UK); polyvinylidene difluoride membrane was from Millipore (Billerica, MA);
TRIzol reagent was from Invitrogen (Carlsbad, CA); ethanol, isopropyl alcohol,
and chloroform were from Merck (Darmstadt, Germany); Hybond-N" nylon
transfer membrane was from GE Healthcare (Buckinghamshire, UK); and the
transfection reagent Dharmafect 1 was from Dharmacon (Lafayette, CO). The
oligonucleotide primers for electrophoretic mobility shift assay (EMSA), the
biotin-labeled and unlabeled double-stranded NF-xB consensus oligonucleotide,

and a mutant double-stranded NF-«xB oligonucleotide were synthesized by MDBio
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Inc. (Taipei, Taiwan), predesigned small interfering RNA (siRNA) against human
CREB, and non-targeting pool were purchased from Dharmacon Research, Inc

(Lafayette, CO).

Cell cultures

The human endothelial cell line EA.hy926 was cultured in DMEM
supplemented with 3.7 g/LL NaHCO3, 10% FBS, 100 U penicillin/mL, and 100 pg
streptomycin/mL at 37°C in a 5% CO, humidified incubator. The human leukemia
promyelocytic cells (HL-60) were purchased from Bioresources Collection and
Research Center (BCRC, HsinChu, Taiwan).The HL-60 cells were cultured in
T-75 tissue culture flasks in RPMI 1640 medium supplemented with 10% fetal
bovine serum, 100000 U/L penicillin, and 100 mg/L streptomycin. Cells were

incubated at 37°C in 5% CO, humidified incubator.

Cell viability assay

Cell viability was assessed by the MTT assay. The MTT assay measures the
ability of viable cells to reduce a yellow 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide to a purple formazan by mitochondrial succinate
dehydrogenase. EA.hy926 cells were grown to 70-80% confluence and were then
treated with different concentrations of andrographolide (0-20 uM) for 16 h
followed by incubation with TNF-a (1 ng/mL) for another 6 h. Finally, the DMEM
medium was removed, and the cells were washed with PBS. The cells were then
incubated with MTT (0.5 mg/mL) in DMEM medium at 37°C for an additional 3 h.

The medium was removed, and isopropanol was added to dissolve the formazan.
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After centrifugation at 20000xg for 5 min, the supernatant of each sample was
transferred to 96-well plates, and absorbance was read at 570 nm in an ELISA
reader. The absorbance in cultures treated with 0.1% DMSO was regarded as

100% cell viability.

Nuclear extracts preparation

After each experiment, cells were washed twice with cold PBS and were then
scraped from the dishes with 1000 puL of PBS. Cell homogenates were centrifuged
at 2000xg for 5 min. The supernatant was discarded, and the cell pellet was
allowed to swell on ice for 15 min after the addition of 200 uL of hypotonic buffer
containing 10 mM HEPES, 1 mM MgCl,, 1 mM EDTA, 10 mM KCl, 0.5 mM
DTT, 0.5% Nonidet P-40, 4 ug/mL leupeptin, 20 pg/mL aprotinin, and 0.2 mM
PMSF. After centrifugation at 7000xg for 15 min, pellets containing crude nuclei
were resuspended in 50 pL of hypertonic buffer containing 10 mM HEPES, 400
mM KCI, 1 mM MgCl,, 0.25 mM EDTA, 0.5 mM DTT, 4 pg/mL leupeptin, 20
ug/mL aprotinin, 0.2 mM PMSF, and 10% glycerol at 4°C for 30 min. The
samples were then centrifuged at 20000xg for 15 min. The supernatant containing
the nuclear proteins was collected and stored at -80°C until the Western blotting

and electrophoretic mobility shift assays.

Western blotting analysis
After each experiment, cells were washed twice with cold PBS and were
harvested in 150 pL lysis buffer (10 mM Tris-HCI, pH 8, 0.1% Triton X-100, 320

mM sucrose, 5 mM EDTA, 1 mM PMSF, 1 mg/L leupeptin, 1 mg/L aprotinin, and
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2 mM dithiothreitol). Cell homogenates were centrifuged at 14000xg for 20 min at
4°C. The resulting supernatant was used as a cellular protein for Western blot
analysis. The preparation of nuclear extracts was described above. The total
protein was analyzed by use of the Coomassie Plus protein assay reagent kit
(Pierce Biotechnology Inc., Rockford, IL). Equal amounts of cellular proteins
were electrophoresed in an SDS-polyacrylamide gel, and proteins were then
transferred to polyvinylidene fluoride membranes (Millipore Corporation, Bedford,
MA). Nonspecific binding sites on the membranes were blocked with 5% nonfat
milk in 15 mM Tris/150 mM NaCl buffer (pH 7.4) at room temperature for 2 h.
Membranes were probed with rabbit anti-human anti-actin, anti-ICAM-1,
anti-CREB, anti-phospho-CREB (Ser 133), anti-phospho-IxBa (Ser32/36) and
anti-phospho IKKa (Ser180)/ IKKf (Ser181), anti- IkBa and anti-IKKo/ B, and
anti-p65 antibodies. The membranes were then probed with the secondary
antibody labeled with horseradish peroxidase. The bands were visualized by using
an enhanced chemiluminescence kit (PerkinElmer Life Science, Boston, MA) and
were scanned by a luminescent image analyzer (FUJIFILM LAS-4000, Japan).

The bands were quantitated with an ImageGauge (FUJIFLM).

RNA isolation and reverse transcription-polymerase chain reaction
(RT-PCR)

Total RNA of EA.hy926 cells was extracted by using Trizol reagent. After
treatment, cells were washed twice with cold PBS and scraped with 500 puL of
Trizol reagent. Cell samples were mixed with 100 pL. of chloroform and

centrifuged at 11000xg for 15 min. The supernatant was collected and mixed with
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250 pL of isopropyl alcohol. After centrifugation at 12000xg for 20 min, the
supernatant was discarded and the cell pellet was stored in 70% ethanol or
dissolved in deionized water for quantification. We used 0.2 pg total RNA for the
synthesis of first-strand cDNA by using Moloney murine leukemia virus reverse
transcriptase (Promega Company, Madison, WI) in a 20-uL final volume
containing 250 ng oligo-dT and 40 U RNase inhibitor. PCR was carried out in a
thermocycler in a 50-pL reaction volume containing 20 pL. of cDNA, BioTaq PCR
buffer, 50 pmol of each deoxyribonucleotide triphosphate, 1.25 mmol/L MgCl,,
and 1 U of BioTaq DNA polymerase (BioLine). Oligonucleotide primers of
ICAM-1 (forward: 5 -TGAAGGCCACCCCAGAGGACAAC-3’; reverse:
5-CCCATTATGACTGCGGCTGCTGCTACC-3) and glyceraldehyde
3-phosphate dehydrogenase (forward: 5-CCATCACCATCTTCCAGGAG-3;
reverse: 5 -CCTGCTTCACCACCTTCTTG-3 ) were designed on the basis of
published sequences (Meagher et al., 1994). Amplification of ICAM-1 and
GAPDH was performed by heating samples to 95°C for 5 min and then
immediately cycling 32 times through a 1-min denaturing step at 94°C, a 1-min
annealing step at 56°C, and a 1-min elongation step at 72°C. The glyceraldehyde
3-phosphate dehydrogenase cDNA level was used as the internal standard. PCR
products were resolved in a 1%-agarose gel and were scanned by using a Digital

Image Analyzer (Alpha Innotech) and quantitated with an ImageGauge.
ICAM-1 expression on cell surfaces

The expression of [CAM-1 on plasma membranes was measured by

fluorescence flow cytometry. After experiment, cells were suspended in 0.25%
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trypsin and centrifuged at 2000xg for 5 min. The supernatant was discarded and
cells were reacted with fluorescein isothiocyanate—conjugated mouse anti-human
ICAM-1 antibody at 4°C for 45 min in the dark. Cells were washed 3 times with
cold PBS and fluorescence was read by use of a Becton Dickinson FACSCalibur

(BD Biosciences, San Jose, CA).

Monocyte adhesion assay

EA.hy926 cells in 12-well plates were allowed to grow to 80% confluence and
were then pretreated with andrographolide for 16 h followed by incubation with 1
ng/mL TNF-a for another 6 h. The human monocytic HL-60 cells cultured in
RPMI 1640 medium with 10% FBS were labeled with 1 uM
2,7-bis(2-carboxyethyl)-5(6)-carboxyfluorescein acetoxymethylester
(BCECF-AM). At the end of andrographolide and TNF-a treatment, a total of
1x10° BCECF-AM-labeled HL-60 cells were added to each well, and the cells
were co-incubated with EA.hy926 at 37°C for 30 min. The wells were washed and
filled with cell culture medium, and the plates were sealed, inverted, and
centrifuged at 100xg for 5 min to remove nonadherent HL-60 cells. Bound HL-60
cells were lysed in a 1% SDS solution, and the fluorescence intensity was
determined in a fluoroscan ELISA plate reader (FLX800, Bio-Tek, Winooski, VT)
with an excitation wavelength of 480 nm and an emission wavelength of 520 nm.
A control study showed that fluorescence is a linear function of HL-60 cells in the
range of 3000-80000 cells/well. The results are reported on the basis of the

standard curve obtained.
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Plasmid, transfection and luciferase assays

The ICAM-1 promoter-luciferase construct (pIC339, -339 to 0) was a gift from
Dr. P. T. van der Saag (Hubrecht Laboratory, Utrecht, The Netherlands). pIC339
contains NF-«kB (-187/-178), AP-1 (-284/-279), AP-2 (-48/-41), and Sp1 (-59/-53,
-206/-201) biding sites (van de Stolpe et al., 1994). EA.hy926 cells were
transiently transfected for 4 h with 0.1 pg of pIC339 plasmid and 0.1 pg of
B-galactosidase plasmid by using 1 puL of nanofectin (PAA, Pasching, Austria) in
OPTI-MEM medium. After transfection, cells were changed to DMEM medium
and treated with AP for 16 h before being challenged with TNF-a for additional 5
h. Cells were then washed twice with cold PBS, scraped with lysis buffer
(Promega, Madison, WI), and centrifuged at 14000xg for 3 min. The supernatant
was collected for the measurement of luciferase and -galactosidase activities by
using Luciferase Assay Kit (Promega, Madison, WI) according to the
manufacturer’s instructions. The luciferase activity of each sample was corrected
on the basis of B-galactosidase activity, which was measured at 420 nm with
O-nitrophenyl-b-D-galactopyranoside as a substrate. The value for cells treated

with 0.1% DMSO (control) was set at 1.

Electrophoretic mobility shift assay (EMSA)

EMSA was performed according to our previous study (Cheng et al., 2004). The
LightShift Chemiluminescent EMSA Kit (Pierce Chemical Company, Rockford,
IL) and synthetic biotin-labeled double-stranded kB consensus oligonucleotides
(forward: 5'-AGTTGAGGGGACTTTCCCAGGC-3'; reverse:

5'-GCCTGGGAAAGTCCCCTCAACT-3") were used to measure NF-xB nuclear
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protein-DNA binding activity. Ten micrograms of nuclear extract, poly (dI-dC),
and biotin-labeled double-stranded NF-kB oligonucleotides were mixed with the
binding buffer (Chemiluminescent Nucleic Acid Detection Module, Thermo,
Rockford, IL) to a final volume of 20 pL, and the mixture was incubated at 27°C
for 30 min. Unlabeled double-stranded NF-«xB oligonucleotides and a mutant
double-stranded oligonucleotides (5'-AGTTGAGGCGACTTTCCCAGGC-3')
were used to confirm the protein-binding specificity. The nuclear protein-DNA
complex was separated by electrophoresis on a 6% TBE-polyacrylamide gel and
was then transferred to a Hybond-N+ nylon membrane. The membranes were
cross-linked by UV light for 10 min and were then treated with 20 puL of
streptavidin-horseradish peroxidase for 20 min, and the nuclear protein-DNA
bands were developed with a Chemiluminescent Substrate (Thermo, Rockford, IL).
The bands were scanned by a luminescent image analyzer (FUJIFILM LAS-4000,

Japan).

Measurement of intracellular cAMP concentrations

After treatment, cells were washed twice with cold PBS and lysed and scraped
into 200 puL of 0.1 N HCI. Cell homogenates were centrifuged at 1000xg for 10
min. The resulting supernatant was collected for the measurements of cAMP and
protein. Intracellular cAMP concentrations were measured by using the cAMP
EIA kit (Cayman Chemical Company, Ann Arbor, MI). For cAMP measurements,
cell extracts, cAMP AChE tracer, and cAMP antiserum were coincubated in the
96-well plate at 4°C for 18 h. After then, wells were washed five times with

washing buffer, addition of 200 puL of Ellman’s Reagent and incubated for 120
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min. Read the plate at a wavelength of 415 nm. The protein content was
determined by using the Coomassie Plus protein assay reagent kit. cAMP
concentrations in the control are expressed as 100%, and the concentrations in the

other groups were calculated in comparison with the control.

RNA interference by small interfering RNA of CREB

Predesigned small interfering RNA (siRNA) against human CREB and
non-targeting control-pool siRNA were purchased from Dharmacon Inc.
(Lafayette, Colorado). EA.hy926 cells were cultured and allowed to grow to 80%
confluence. EA.hy926 cells were transfected with CREB siRNA SMARTpool by
using DharmaFECT]1 transfection reagent (Thermo) according to the
manufacturer s instructions. The 4 siRNAs against the human CREB gene are (1)
GAGAGAGGUCCGUCUAALUG, (2) UAGUACAGCUGCCCAAUGG, (3)
CAACUCCAAUUUACCAAAC, and (4) GCCCAGCCAUCAGUUAUUC. A
non-targeting control-pool siRNA was also tested. Non-targeting control-pool was
as negative control (NTC). After 8 h of transfection, cells were treated with AP for
16 h before incubation with TNF-a for another 6 h. Cell samples were collected

for Western blotting analysis.

Statistical analysis
Data were analyzed by using analysis of variance (SAS Institute, Cary, NC).

The significance of the difference among mean values was determined by one-way
analysis of variance followed by the Tukey’s test. P values < 0.05 were taken to

be statistically significant.
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Results

Cell viability

The MTT assay was used to evaluate whether the concentrations of
andrographolide or andrographolide and TNF-a used caused cell damage in
EA.hy926 cells. As shown in panels A and B of Figure 1, the cell viability of
EA .hy926 cells was more than 85% up to an andrographolide concentration of 10
UM in the presence or absence of 1 ng/mL TNF-a, which was used to induce the
expression of [ICAM-1. The highest concentration of andrographolide used in this
study was 10 uM, and thus, the effects of andrographolide observed below were

not due to its cytotoxicity.

Andrographolide inhibits TNF-o-induced ICAM-1 expression in EA.hy926
cells

TNF-a (1 ng/mL) significantly induced ICAM-1 expression in EA.hy926 cells
(p <0.05) and the induction pattern was time-dependent (Figure 2). EA.hy926
cells were pretreated with 10 pM andrographolide for the indicated times before
being exposed to 1 ng/mL TNF-a for 6 h. The protein expression of [CAM-1 was
significantly suppressed after pretreatment for 4 h compared with that treated with
TNF-a alone, and the inhibition was sustained with pretreatment for up to 24 h
(Figure 3). To determine whether the TNF-a-induced protein and mRNA
expression of [CAM-1 were dose-dependently affected by andrographolide,
concentrations of andrographolide ranging from 0 to 10 uM were studied. As
shown in panels A and B of Figure 4, the inhibition of TNF-a-induced protein and

mRNA expression of [ICAM-1 by andrographolide was in a dose-dependent
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manner. A significantly inhibitory effect of andrographolide on ICAM-1 protein
expression was observed at concentrations greater than 5 uM, and a significantly
inhibitory effect on ICAM-1 mRNA expression was observed at concentrations
greater than 10 uM. The expression of ICAM-1 on cell surfaces was determined
by flow cytometry. Cells pretreated with 5 and 10 uM andrographolide had
significantly lower ICAM-1 expression on cell surfaces compared with those

treated with TNF-a alone (Figure 5).

Andrographolide inhibits TNF-a-induced HL-60 cell adhesion

We next determined whether andrographolide pretreatment could inhibit HL-60
cell adhesion. As shown in Figure 6, TNF-a significantly increased HL-60 cell
adhesion. However, andrographolide pretreatment inhibited HL-60 cell adhesion

in a dose-dependent manner, and a significant inhibitory effect was found at 10

uM.

Andrographolide inhibits TNF-a-induced ICAM-1 luciferase reporter activity

To investigate the role of andrographolide in TNF-a-induced ICAM-1 gene
transcription, promoter activity assays were performed using a human ICAM-1
promoter-luciferase construct, pIC339 (-339 to 0). TNF-a-induced ICAM-1
promoter activation was inhibited by 5 and 10 uM andrographolide (Figure 7).
This result suggests that andrographolide has an inhibitory effect on

TNF-a-mediated ICAM-1 promoter activation.

Andrographolide inhibits TNF-a-induced activation of NF-xB
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Several putative recognition sequences for a variety of transcriptional activators,
including AP-1, retinoic acid-response element (RARE), C/EBP, NF-«xB, Ets-1,
interferon-stimulated response element (IRE), Sp1, and AP-2 were present in the
human proximal ICAM-1 promoter-enhancer region (-346 to -24) (Huang and
Chen, 2005). We determined the role of NF-kB in the inhibition of ICAM-1 gene
activation by andrographolide. It was reported that NF-kB was activated by
IKKo/p (Sakurai et al., 2003). As shown in Figure 8, TNF-a induced both IKKa
and IKKf phosphorylation. The activation of IKKa and IKK [ were significantly
attenuated by andrographolide pretreatment. Treatment with TNF-a caused
phosphorylation and degradation of IxBa (at 5 min and 15 min, respectively) in
EA hy926 cells. However, the phosphorylation effect was abolished and the
degradation effect was attenuated by pretreatment with andrographolide for 16 h
(Figure 9). Under basal conditions, NF-kB is sequestered in the cytosol by its
inhibitor protein IxkBa and remains inactive. After exposure to stimuli, IkBa was
phosphorylated and degraded. After then, NF-kB was released and translocated to
the nucleus where it binds the response elements of the target genes (Hayden and
Ghosh, 2004). To investigate the effect of andrographolide on NF-«B activation,
p65 content of nucleus was determiend by Western blotting. Nuclear translocation
of p65 was induced by TNF-a, and this effect was attenuated by andrographolide
pretreatment (Figure 10). The NF-kB nuclear protein-DNA binding activity was
analyzed by EMSA. TNF-a increased NF-kB nuclear protein-DNA complex
formation, and pretreatment with andrographolide resulted in the inhibition of
NF-kB nuclear protein-DNA complex formation (Figure 11). These results

indicate that andrographolide inhibits TNF-a-induced NF-kB activation.
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Andrographolide increases intracellular cAMP concentration and induces
phosphorylation of CREB in EA.hy926 cells

Many studies have reported that NF-kB-mediated transcription could be
attenuated by activation of cAMP/PKA/CREB signaling pathway. This effect was
due to the competition for CBP between NF-kB and CREB (Ollivier et al., 1996;
Parry and Mackman, 1997; Shames et al., 2001). Our previous study has shown
that andrographolide elevated intracellular cAMP and activated CREB in primary
hepatocytes (Yang et al., 2010). In order to investigate whether cAMP and CREB
were involved in the inhibition of ICAM-1 expression by andrographolide,
intracellular cAMP concentration and CREB phosphorylation were analyzed.
Intracellular cAMP concentration was significantly increased by treatment with 10
uM andrographolide for 30 min (Figure 12), and the phosphorylation of CREB
was significantly increased by treatment with 10 uM andrograpohlide for 0.5 and 2

h (Figure 13).

CREB siRNA shows no effect on andrographolide inhibition of ICAM-1
expression in the presence of TNF-a

To demonstrate whether the competition of CBP by CREB was involved in the
inhibition of andrographolide, CREB siRNA was used. After transient transfection
with CREB siRNA knocked down CREB expression in EA.hy926 cells. However,
CREB siRNA did not affect the inhibition of [CAM-1 expression by
andrographolide (Figure 14). These results suggest that CREB is not involved in

the suppression of ICAM-1 by andrographolide.
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Figure 1. Effect of andrographolide (AP) on the cell viability of EA.hy926
cells in the presence or absence of TNF-a. (A) Cells were treated with 0-20 uM
andrographolide for 16 h. (B) Cells were pretreated with 0-20 pM andrographolide
for 16 h followed by incubation with 1 ng/mL TNF-a for an additional 6 h. Cell
viability was measured by using the MTT assay. Values are means = SD of three
independent experiments. Values not sharing an alphabetic letter are significantly
different (p < 0.05).
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Figure 2. TNF-a induces the expression of ICAM-1 in EA.hy926 cells. Cells
were treated with 1 ng/ mL TNF-a for various time periods. Aliquots of total
protein (20 pg) were used for Western blot analysis. The levels in control cells
were set at 1. Values are means = SD of three independent experiments. Values
not sharing an alphabetic letter are significantly different (p < 0.05).
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Figure 3. Effect of andrographolide (AP) on TNF-a-induced ICAM-1 protein
expression in EA.hy926 cells. Cells were pretreated with 10 uM AP for various
time periods followed by incubation with 1 ng/mL TNF-a for an additional 6 h.
Aliquots of total protein (20 pg) were used for Western blot analysis. The levels in
control cells were set at 1. Values are means =+ SD of three independent
experiments. Values not sharing an alphabetic letter are significantly different (p <
0.05).
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Figure 4. Andrographolide (AP) inhibits ICAM-1 protein and mRNA
expression induced by TNF-a in EA.hy926 cells. Cells were pretreated with
andrographolide for 16 h followed by incubation with 1 ng/mL TNF-a for an
additional 6 h. (A) Aliquots of total protein (20 ug) were used for Western blot
analysis. (B) Total RNA was isolated from cells and was subjected to RT-PCR
with specific ICAM-1 and GAPDH primers as described in Materials and Methods.
The levels in control cells were set at 1. Values are means + SD of three

independent experiments. Values not sharing an alphabetic letter are significantly
different (p < 0.05).

48



P
2
o 4 Z
£
g b
c 3 b
E p—
o 2
=
qE c
O 1t
] j
O | | |
AP (UM, 16 hr) - - 5 10
TNF-a (1 ng/mL, 6 hr) - + + +

Figure 5. Andrographolide (AP) inhibits TNF-a-induced ICAM-1 protein
expression on cell surfaces of EA.hy926 cells. Cells were pretreated with
andrographolide for 16 h followed by incubation with 1 ng/mL TNF-a for an
additional 6 h. Control cells were maintained in the vehicle before being
challenged with TNF-a. The levels in control cells were set at 1. Values are means
+ SD of three independent experiments. Values not sharing an alphabetic letter are
significantly different (p < 0.05).
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Figure 6. Andrographolide decreases TNF-a-induced HL-60 cell adhesion.
Cells were pretreated with andrographolide for 16 h before being challenged with
1 ng/mL TNF-a for an additional 6 h. The levels in control cells were set at 1.
Values are means + SD of three independent experiments. Values not sharing an
alphabetic letter are significantly different (p < 0.05).
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Figure 7. Andrographolide inhibits TNF-a-induced ICAM-1 promoter
activity in EA.hy926 cells. Cells transfected with the pIC339 luciferase
expression vector were pretreated with andrographolide for 16 h followed by
incubation with TNF-a for an additional 5 h. The cells were then lysed and
analyzed for luciferase activity. Luciferase activity was assayed as described in
Materials and Methods. Induction is shown as an increase in the normalized
luciferase activity in the treated cells relative to the control. Values are means +
SD of three independent experiments. Values not sharing an alphabetic letter are
significantly different (p < 0.05).
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Figure 8. Andrographolide attenuates TNF-a-induced IKKao/f3
phosphorylation in EA.hy926 cells. Cells were pretreated with 10 pM
andrographolide for 16 h followed by incubation with 1 ng/mL TNF-a for the
various time periods. Aliquots of total protein (20 ug) were used for Western blot
analysis. Fold is shown as an increase in the normalized phorphorylation in the
treated cells relative to the control. Values are means + SD of three independent
experiments. Values not sharing an alphabetic letter are significantly different (p <
0.05). * p <0.05 indicates significant effect of andrographolide on TNF-a-induced
IKKa/p phosphorylation.
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Figure 9. AP diminishes TNF-a-induced IkBa phosphorylation and
degradation in EA.hy926 cells. Cells were pretreated with 10 uM
andrographolide for 16 h followed by incubation with 1 ng/mL TNF-a for various
time periods. Aliquots of total protein (20 pg) were used for Western blot analysis.
The levels in control cells were set at 1. Values are means + SD of three
independent experiments. Values not sharing an alphabetic letter are significantly
different (p < 0.05).
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Figure 10. Andrographolide decreases TNF-a-induced p65 nuclear
translocation in EA.hy926 cells. Cells were pretreated with 10 uM
andrographolide for various time periods followed by incubation with 1 ng/mL
TNF-a for an additional 1 h. Nuclear extracts (10 pg) were used for Western blot
analysis. The levels in control cells were set at 1. Values are means = SD of three
independent experiments. Values not sharing an alphabetic letter are significantly
different (p < 0.05).
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Figure 11. Effect of andrographolide on TNF-a-induced NF-kB-DNA binding
activity in EA.hy926 cells. Cells were pretreated with 10 pM andrographolide for
various time periods followed by incubation with 1 ng/mL TNF-a for an additional
1 h. Aliquots of nuclear extracts (10 pg) were used for EMSA. One representative
experiment out of three independent experiments is shown.
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Figure 12. Effect of andrographolide on intracellular cAMP concentration in
EA.hy926 cells. Cells were treated with 10 uM andrographolide for 30 min.
Values are means + SD of three independent experiments. Values not sharing an
alphabetic letter are significantly different (p < 0.05).
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Figure 13. Andrographolide induces CREB phosphorylation in EA.hy926
cells. Cells were treated with 10 uM andrographolide for various time periods.
Nuclear extracts (15 pg) were used for Western blot analysis. The levels in control

cells were set at 1. Values are means = SD of three independent experiments.
Values not sharing an alphabetic letter are significantly different (p < 0.05).
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Figure 14. Effect of CREB siRNA on andrographolide inhibition of
TNF-a-induced ICAM-1 expression in EA.hy926 cells. A CREB siRNA system
was used to silence CREB mRNA in cells and to create an siRNA knockdown
EA.hy926 cell model. Eight h after transfection, cells were pretreated with 10 uM
andrographolide for 16 h followed by incubation with 1 ng/mL TNF-a for an
additional 6 h. Aliquots of total protein (20 pg) were used for Western blot
analysis. The levels in control cells were set at 1. Values are means = SD of three
independent experiments. Values not sharing an alphabetic letter are significantly
different (p < 0.05). One representative immunoblot from three independent

experiments is shown.
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Discussion

In previous studies, andrographolide has been reported to have diverse
properties including anti-inflammatory, anti-cancer, anti-viral, anti-oxidative,
anti-hyperglycemic, and hepato-protective (Akowuabh et al., 2008; Chandrasekaran
et al., 2010; Chen et al., 2009; Qi et al., 2007; Singha et al., 2007; Yu et al., 2003).
Atherosclerosis is an inflammatory response, and adhesion molecules were
involved in atherosclerotic progression (Reiss and Engelhardt, 1999). We
examined whether andrographolide inhibits TNF-a-induced ICAM-1 expression
and the possible mechanisms involved. In the present study, TNF-a-induced both
protein and mRNA levels of [CAM-1 was significantly inhibited by 10 uM
andrographolide (Figure 3 and 4), and the results were consistent with that
reported by Habtemariam (1998). These results suggest that andrographolide
negatively regulates ICAM-1 expression at transcriptional level. The expression of
adhesion molecule including ICAM-1 on the surface of endothelial cells is
required for the firm adhesion of rolling monocytes (Kadono et al., 2002;
Lehmann et al., 2003). It was shown that andrographolide reduced TNF-a-induced
ICAM-1 expression on cell surfaces and monocyte adhesion (Figure 5 and 6).
Based on the results, attenuation of ICAM-1 expression on cell surfaces plays an
important role in the anti-monocyte adhesion.

There are a number of signaling pathways involved in TNF-a-mediated
responses. They are IKK/NF-«kB (Spiecker et al., 2002), MAPK (Clark et al., 2008;
Hung et al., 2008), PI3K/Akt (Oh and Kwon, 2009), PKC (Min et al., 2005), and
JAK/STAT (Kim et al., 2007). In addition to transcription factor NF-«xB, AP-1 and

STAT were considered to be involved in TNF-a-induced inflammatory gene
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expression (Do et al., 2009; Wang et al., 2010). NF-«B is one kind of transcription
factor which can be activated by TNF-a, ox-LDL, LPS, and other stimuli. The
activation of NF-kB was modulated by IKK and IkBa (Sakurai et al., 2003).

Many phytochemicals have been shown to reduce inflammation through
blocking NF-«B activation. For example, curcumin decreased the expression of
ICAM-1, MCP-1, and IL-6 induced by TNF-a (Kim et al., 2007); incensole acetate
reduced inflammation in the mouse paw model (Moussaieff et al., 2007); phloretin
suppressed expression of endothelial adhesion molecules and reduced activation of
human platelets (Stangl et al., 2005); and both lycopene and carnosol inhibited
TNF-a-induced endothelial ICAM-1 expression and monocyte adhesion (Hung et
al., 2008; Lian et al., 2010). These effects were attributed to the inhibition of
NF-«B activation. In our study, we observed that TNF-a induced ICAM-1
promoter activity and this effect was abolished by 5 and 10 pM andrographolide
(Figure 7). It was considered that the effect of andrographolide acts through the
inhibition of NF-«xB activation. To investigate whether IKK/NF-kB pathway was
involved in the inhibition by andrographolide, IKK o/ phosphorylation, IkBa
phosphorylation and degradation, p65 content in nucleus, and DNA binding
activity of NF-kB were analyzed. Our data disclose that andrographolide inhibits
TNF-a-induced IKKa/B phosphorylation (Figure 8), and reduces the
phosphorylation and degradation of IxBa (Figure 9), p65 nuclear translocation
(Figure 10), and DNA binding activity of NF-kB (Figure 11). Thereby, our results
demonstrate that IKK is an andrograpjolide target in the NF-kB pathway. The
inhibition of IKK/NF-«xB signaling pathway by andrographolide was also found in

human bronchial epithelial cells (Bao et al., 2009).
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Additionally, several lines of evidence suggest that cAMP/PKA/CREB
signaling pathway negatively regulates NF-kB-mediated transcription. Cilostazol,
which increased intracellular cAMP level, inhibited THP-1cells adhesion to
HUVECs (Mori et al., 2007). In human airway smooth muscle cells, pretreatment
with forskolin, dibutryl cAMP, or isoproterenol inhibited TNF-a-induced ICAM-1
and VCAM-1 expression (Panettieri et al., 1995). The suppression was considered
to occur due to the competition for the limited amount of CBP between p65 and
CREB. Parry and Mackman (1997) indicated that the inhibition by forskolin was
promoted by overexpression of CREB and was attenuated by overexpression of
CBP in HUVEC:s. In our previous study, treatment with 40 uM andrographolide
for 30 min dramatically elevated intracellular cAMP concentration by 22-fold and
induced phosphorylation of CREB in rat primary hepatocytes (Yang et al., 2010).
In EA.hy926 cells, we also observed the cAMP enhancing effect of
andrographolide (Figure 12 and 13), although the magnitude was not as large as
that seen in rat primary hepatocytes (Yang et al., 2010). The different results in the
two cell culture systems can be attributed to the dose of andrographolide used and
the different cell models examined. The increased cAMP level and CREB
phosphorylation in response to andrographolide may play a role in suppression of
ICAM-1 expression. In order to demonstrate the role of CREB phosphorylation in
ICAM-1 expression, knockdown of CREB by using CREB siRNA was performed.
Results showed that the inhibitory effect of andrographolide on TNF-a-induced

ICAM-1 expression was not affected by CREB silencing (Figure 14).
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In summary, andrographolide inhibits TNF-a-inducedlCAM-1 expression and
monocyte adhesion in EA.hy926 cells and this effect may involve the suppression

of IKK/NF-kB signaling pathway rather than CREB phosphorylation.
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Conclusion

In the present study, we demonstrate that andrographolide inhibited TNF-a
induced ICAM-1 expression and monocyte adhesion. This inhibition is at least
partially through suppression of IKK/NF-kB signaling pathway exerted by

andrographolide. The findings of this study are schematically presented in Figure
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Figure 15. Model showing pathways that mediate the inhibition of expression
of ICAM-1 and adhesion of HL-60 cells to EA.hy926 cells by andrographolide
under inflammatory conditions. Andrographolide inhibits TNF-a-induced IKK
activation, IkBa phosphorylation and degradation, p65 nuclear translocation, and
DNA binding activity of NF-kB; eventually, suppresses ICAM-1 expression and
monocyte adhesion. # (Mackay et al., 1993)
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