
1

行政院國家科學委員會補助專題研究計畫成果報告
※ ※※※※※※※※※※※※※※※※※※※※※※※

※
※                                              
※
※以隨機過程來研究網狀多處理器的處理器配置策略  
※            ※                       
※
※ ※※※※※※※※※※※※※※※※※※※※※※※

※

計畫類別：■個別型計畫  □整合型計畫

計畫編號：NSC 89-2218-E-039-001

執行期間：89 年 8 月 1 日至 90 年 7 月 31 日

計畫主持人：吳  帆 助理教授

共同主持人：

本成果報告包括以下應繳交之附件：
□赴國外出差或研習心得報告一份
□赴大陸地區出差或研習心得報告一份
□出席國際學術會議心得報告及發表之論文各一份
□國際合作研究計畫國外研究報告書一份



2

執行單位：中國醫藥學院醫務管理研究所資訊組

中 華 民 國 91 年 元 月七 日



3

行政院國家科學委員會專題研究計畫成果報告
國科會專題研究計畫成果報告撰寫格式說明

Preparation of NSC Project Repor ts
計畫編號：NSC 89-2218-E-039-001

執行期限：89 年 8月 1日至 90 年 7月 31 日
主持人：吳  帆   中國醫藥學院醫務管理研究所資訊組

計畫參與人員：林俊榮,孫漢屏中國醫藥學院醫務管理研究所資訊組

一、中文摘要

在這研究中，我們提出一個新的資料結
構— R-array 來表示網狀多處理機。透過R-array
的統計資料，配置程序可以很快知道是否目前
所檢查的處理機可以成為空閑子網的基底。在
R-array的基礎下，我們可以隨機過程來研究處
理器配置。這研究可以精確找出過去從未算出
的，在不同負載下，找出空閑處理器空間的機
率；這方法也是第一個能精確算出其執行成本
的處理器配置策略。

關鍵詞：網狀結構、馬可夫鏈結、隨機程序、
處理器配置

Abstract

In this study, we propose a new data 
structurethe R-array to represent the mesh at 
first.  With the statistical information of R-array, 
the allocation process can quickly know whether 
the scanned processor can serve as a base of a 
free submesh. Based on the R-array, the 
stochastic process to analyze the processor 
allocation scheme is developed. The probabilities, 
which are never computed out before, to find the 
free submesh under different workloads can then 
be accurately calculated. In addition, the 
proposed scheme becomes the first one whose 
execution costs of allocation processes can be 
precisely computed. This article provides 
guidance for report writing under the Grant 
of National Science Council beginning from 
fiscal year 1998.

Keywords: mesh, Markov chain, stochastic 
process, processor allocation.

二、緣由與目的

Gaining speed in solving problems by a 
number of processors has drawn considerable 
attention in recent years. Due to its regular 
and simple structure, the mesh-connected 
multiprocessor is one of the most suitable 
architectures for the multiprocessor system of 
small and medium size. The mesh has 
exhibited a high potential as a supercomputer 
but at a lower price to efficiently implement 
algorithms for image processing, matrix 
operations, partial differential equations, and 
so on [7]. Based on the mesh topology, many 
prototype and commercial systems, such as 
ILLIVAC IV [2], Tera Computer System [1], 
Dash [14], Intel Touchstone Delta [10] and 
Paragon [11], J-Machine [16] and T3D [12] 
have been marketed or built.

     Recently, a lot of schemes have 
been proposed for processor allocations in 
the mesh. Li and Cheng [9] proposed the 
two-dimensional buddy scheme, which is a 
generalization of the one-dimensional buddy 
system used in the memory management. 
Chuang and Tzeng [4] proposed the 
Frame-Sliding (FS) scheme capable of 
applying to a non-square mesh. Ding and 
Bhuyan [5] modified the FS scheme into the 
Adaptive-Scan (AS) scheme. The AS scheme 
can fully recognize the free spaces; however, 
its search time is slow. Zhu proposed two 
full-recognition schemes: The first scheme 
[19] includes the first-fit and best-fit 
processes. Zhu recently proposed another 
full-recognition scheme [20]. The scheme 
represents the mesh by the area tree, a 
variant of quadtree [18] that is used to 
represent binary images in computers.

三、研究報告應含的內容
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The execution cost of the allocation process 
generally counts on the number of accessed 
units. Without loss of generality, the analyses 
of the leapfrog scheme are considered in 
terms of the number of elements in the 
R-array that are accessed. 
     Assume that a task T(w, h) comes up a 
mesh M(W, H) whose current workload is , 
where 0 ≤ ≤ 1, 0 ≤ w ≤ W and 0 ≤ h ≤ H. 
For simplicity, the occupied condition among 
processors is assumed to be statistically 
independent. Let A be the event that 
processor pa  is occupied, and let B be the 
event that another processor pb  is occupied. 
Then P(AB) = × , and P(A/B) = 
     Consider the first-fit process in the 
leapfrog scheme. Concentrating the 
movement of the process, Fig. 1 is the 
transition diagram to describe the movement 
of the first-fit process in row r, where 0 ≤ r ≤
H−h, the circles denote the possible states 
that the process will move to, and the 
directed links represent the permitted 
transition among these states. The states in 
this figure can be classified into three types, 
according to the meaning the state denotes:
Type I: This type of states contains only one 

state (i.e., state F) in it. State F (or Found
state) denotes the situation that the 
first-fit process finds the currently 
scanned processor is a free base;

Type II: This type of states also contains only 
one state (i.e., state N) in it. State N (or 
Next-row state) denotes the situation that 
the first-fit process fails to find the free 
base in row r and will move to the next 
higher row;

Type III: This type of states contains (W−w+1) 
states (i.e., from state 0 to state (W−w)) in 
it. State t where 0 ≤ t ≤ W−w, denotes the 
situation that the allocation process 
reaches processor [t, r] and will check 
whether this processor is a free base or 
not. All the states in type III are called 
transient or searching states. When the 
first-fit process reaches these states, the 
process stays in these states temporarily 
and will continue moving rightward until 
it reaches either state F or state N. 

     Clearly, the state in which the 
allocation process will stay at some time in 
the future is a random variable. Furthermore, 
since the occupied conditions of processors 
are assumed to be independent, the next state 
that the allocation process will move to is 
only dependent on the current state. 
Therefore, the state-transition diagram in Fig. 
6 is reduced to a Markov chain and can be 
properly described through the use of the 
theory of stochastic (or random) process [13]. 
A variety of natural questions present 
themselves for the Markov chain to be 
answered is: What is the probability and how 
much is the cost that the first-fit process 
moves from state 0 to state F or to state N?
     The first-fit process at the searching 
state t will move to one of the three types of 
states in the next move. That is, the next state 
is (1) state F, (2) state N, (3) or another 
searching state (t+s), where 1 ≤ s ≤ W−w−t. 
Let δ t k,  and Ct k, (where k = F or N, or t < k
≤ W−w) respectively denote the one-step 
transition probability and the one-step 
transition cost that the first-fit process moves 
from state t to state k. Note that for 
simplifying the expressions, we use the 
variable  such that + = 1. 
    Lemma 1: Assume the first-fit process is 
currently at searching state t, where 0 ≤ t ≤
W−w. Then δ t F,  = ( )τ w h , and Ct F,  = h.
    Lemma 2: Assume the first-fit process is 
currently at searching state t. Then δt t s, + = 

( σ τs + f s w( , ) × τ σs ) × ( )τ w k
k
 h −∑ 1
=1 , and 

Ct t s, + = ( )1
= k w k

k
 h × −∑ ( )τ1 / ( )τ w k

k
 h −∑ 1
=1 , 

where 0 ≤ t < W−w, 1 ≤ s ≤ W−w−t, and f is 
an indication function such that f(x, y) = 0, if 
x ≥ y; otherwise (i.e., x < y), f(x, y) = 1.
    Lemma 3: Assume the process is 
currently at state t. Then δ t N,  = 

1− δt kk t
W w

,= +1
−∑ − δ t F, , and Ct N, = 

k w k
k
 h × −∑ ( )τ 1
=1 / ( )τ w k

k
 h −∑ 1
=1 , where 0 ≤ t

≤ W−w.
     Theorem 1: When a task T(w, h) 
attends the mesh M(W, H), the probability 
that the first-fit process finds that there is no 
free base for the task is (η0, N ) +1H h− . 
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     Theorem 2: When a task T(w, h) 
attends the mesh M(W, H), the probability 
that the first-fit process does not find a free 
base from row 0 to row (r 1) but finds a 
free base in row r is (η0, N ) r ×η0, F , where 1 

≤ r ≤ H−h. 
     Corollary 1: Assume there is no free 
base for task T(w, h) in mesh M(W, H). The 
expected cost that the first-fit process finds 
there is no a free base for the task is 
(H−h+1) × θ0 , N .
     Let θt F, 0 ≤ t ≤ W−w) be the 
average cost when the first-fit process 
multiple-step moves from state t to state F, 
given that there exist free base(s) in this row. 
     Corollary 2: Assume there exists free 
base(s) for task T(w, h) in mesh M(W, H). 
The expected cost that the first-fit process 
does not find a free base from row 0 to row (r

1) but finds a free base in row r is (r 
×θ0, N +θ0, F ), where 0 ≤ r ≤ H−h.
     Lemma 4: Assume the best-fit process 
is currently at state t. Then δ t F t, =δ t F, , and 

Ct F t, = Ct F, , where 0 ≤ t ≤ W w.

Theorem 3: When a task T(w, h) attends 
the mesh M(W, H), the expected cost of the 
first-fit process is: {=0

1
r
H h− −∑ ( η0, N ) r ×

η0, F ×(r×θ0, N +θ0, F ))+( η0, N ) +1H h− ×(H−h+
1) × θ0, N . 
Theorem 4: The expected cost of the best-fit 
process in the leapfrog scheme is 
(H−h+1) × φ0, N .

     Theorem 5: When a submesh of 
size w×h is allocated or released, the 
expected cost that the leapfrog scheme takes 
to update the R-array is w ×h + 1/(W
w+1)×  {k

W w
=
−∑ 0 k×( σ k + τ k )+ (i

k
=
−∑ 1

1 i×( τ ×

σ i +σ ×τ i ))} × h.

四、結論與建議

The R-array is a simple and statistical array to 
represent the occupied configuration of the 
mesh system. The statistical data plays as a 
guide to direct the allocation process to the 

next candidate processor. 
     This study is the first one to propose 
the precise analyses for the dynamic behavior 
of the processor allocation in the 
interconnection networks. The regular and 
simple structure of the mesh provides the 
platform to let the theory of the random walk 
can be applied. The analytical results show 
that the first-fit process takes very small cost 
to find the free base when the workload is 
smaller than 40% and that the best-fit process 
takes decreasing costs to find all the free 
bases when the workload is increasing. These 
results match the observation about the 
behaviors of the first-fit and best-fit processes. 
In addition, we also compute the probability 
whether the allocation process can find the 
free base. This result is the same for each 
full-recognition scheme, and can explain the 
myth why the upper bound of the system 
utilization of all the proposed schemes that 
allocate continuous spaces to tasks is hardly 
above 60%.
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Fig. 1. The Markov chain depicting the behavior of the first-fit process in a row.
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