A Heteroscedastic Hazards Regression Model with Cure Fraction

Hong-Dar Isaac Wu, School of Public Health, China Medical College, 91 Hsueh-Shih Rd., Taichung 40443, Taiwan. e-mail: honda@mail.cmc.edu.tw and Chen-Hsin Chen, Institute of Statistical Science, Academia Sinica, Taipei 11529, Taiwan. e-mail: chchen@stat.sinica.edu.tw

Oct. 30, 2001

A Heteroscedastic Hazards Regression Model with Cure Fraction

Report

Under the framework of heteroscedastic hazards regression (HHR) model (Hsieh, 2001; Wu, Hsieh, and Wu, 2001), we consider the possibility of existence of "cure fraction", or "nonsusceptibility", with which a complete data full likelihood is derived as well as the associated estimating equations for three components of parameters: the expotent component, the heteroscedasticity component, and the nonsusceptibility component.

Firstly, the complete data full likelihood can be derived as Sy and Taylor (2000);

$$L_{C}(\mathfrak{b};\bar{};\circ;\mathtt{m}_{0};y) = + {}^{n}_{1}p_{i}^{y_{i}}(1;p_{i})^{1;y_{i}} + {}^{n}_{1}f_{,i}(t_{i}jY = 1;\bar{};\circ;\mathtt{m}_{0})g^{\pm_{i}Y_{i}}e^{iy_{i}\mathtt{m}_{i}(t_{i}jY = 1;\bar{};\circ;\mathtt{m}_{0})};$$

where \pm_i is an indicator of censor-noncensored status, Y_i an indicator of susceptible-nonsusceptible status, and \downarrow_i (or \equiv_i) be the hazard (or cumulative hazard) function de⁻ned by the HHR model:

$$(t_i j Z_{1i}; Z_{2i}; X) = \alpha_0(t) \exp((Z_2)) \exp((Z_1);$$

and, moreover, $p_i = Pr(Y = 1jX)$ can be further modelled by a set of variable X as

$$p_{i} = \frac{\exp(b^{0}X)}{1 + \exp(b^{0}X)}:$$

Under rather mild conditions, we derived a set of **estimating equations** for the parameters ⁻, °, and b, along with the baseline estimate approximated by a **sieve** method.. However, to make our derivation applicable in practice, an **EM-algorithm** is needed to implement the analysis of actual data. We have some satisfactory simulation results (see Table 1 below), which will be presented in more detail in our second-year project (**NSC 90-2118-M-039-001**-) report. Moreover, some actual data anlysis is also pursuited.

References

- F. Hsieh, "On heteroscedastic hazards Regression models: theory and application," Journal of the Royal Statistical Society, Series B vol. 63 pp.63-79, 2001.
- J. P. Sy and J. M. G. Taylor, "Estimation in a Cox Proportional Hazards Cure Model," Journal of the Royal Statistical Society, Series B vol. 63 pp.63-79, 2001.
- H.-D I. Wu, F. Hsieh, and C.-H. Chen, "Validation of A Heteroscedastic Hazards Regression Model," Lifetime Data Analysis, to appear.

Table 1: The expotent and heteroscedasticity components are both taken to be univariate. The logistic regression of the nonsusceptibility component is also univariate, but with intercept. Sample size=100, censoring proportion=25%, with 500 independent replications.

	- = 1	° = 0	$b_0 = \ln(3) = 1.0986$	$b_1 = \ln(3) = 1.0986$
mean	1.0909	-0.0297	1.2572	1.1690
bias	0.0909	-0.0297	0.1586	0.0704
std.err	0.3458	0.3035	0.3154	0.4250
	- = 1	° =ln(2)=0.693	$b_0 = \ln(3) = 1.0986$	$b_1 = \ln(3) = 1.0986$
mean	- = 1 1.1230	° =ln(2)=0.693 0.7380	$b_0 = \ln(3) = 1.0986$ 1.2045	$b_1 = \ln(3) = 1.0986$ 1.2349
mean bias	- = 1 1.1230 0.1230	° =ln(2)=0.693 0.7380 0.0450	b ₀ =ln(3)=1.0986 1.2045 0.1059	$b_1 = \ln(3) = 1.0986$ 1.2349 0.1363