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A Partial Score Test for Di®erence among
Heteroscedastic Populations

Summary

Comparison between distributions are made by logrank test in the literature of event time data

analysis. When the data appear to have hazards cross phenomenon, nonparametric weighted lo-

grank statistics have usually been suggested to accommodate di®erent stage of cross to increase

power. In this paper, however, we propose a score-type statistic based on a semiparametric-,

heteroscedastic-hazards regression model. Under this model, hazards cross is modeled explicitly

via a power element of the baseline cumulative hazard, in view of the ordinary Cox's model.

Our score test is obtained from the partial likelihood based on the model considered. Simula-

tion results show the superiority of the proposed score test over a class of weighted log-rank

tests. Application of this test is demonstrated by analyses of actual data in clinical trials.

Key Words: heteroscedasticity; crossing hazards; proportional hazards; weighted logrank

test.
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1 Introduction

When one is dealing with event time data in comparative trials, the proportional hazards (PH)

model (Cox, 1972) is usually used to estimate the relative e®ect of a new treatment, adjusted

for prognostic factors. It often happens, however, that nonproportionality is present and using

PH model leads to a biased e®ect-measure estimate. In this situation, the log-rank test for

equality between distributions may have very poor power against the crossing hazards alterna-

tives (Andersen et al., 1993, page 390). For the latter point, weighted log-rank test can be used

to implement the power (Prentice and Marek ,1979; Gill ,1980; Moreau et al., 1992). In partic-

ular, a class of weighted log-rank statistics, termed as the G½;° -class, was presented in Fleming

and Harrington (1991, Chapter 7), where early, middle, or late di®erence among groups can be

stressed by imposing di®erent ½-° con¯gurations. Under the nonproportional hazards situation,

nevertheless, the nonparametric weighted log-rank test sometimes still fails to detect di®erence

between treatments. Therefore, seeking a model to explicitly account for the nonproportional

hazards (or crossing hazards) phenomenon is the forthcoming e®ort. Heuristically if a model,

parametric or semiparametric, do explain the data well enough, statistical tests constructed

from a likelihood derived on the basis of that model will generally outperform the nonpara-

metric ones. Well known competing choice other than the PH analysis includes the accelerated

failure time model (Wei and Gail,...), the additive hazards model (Aalen, 1977; Lin and Ying,

1994), and the accelerated hazards model (Chen and Wang, 2000), among others. In this pa-

per, a heteroscedastic hazards model considered by Quantin et al. (1996) and Hsieh (2000)

is adopted to model the nonproportionality. If this model does ¯t well to the data observed,

statistical power will be improved substantially based on the model setting.

In the next section, we give some description about the HH model. Parametric and semi-

parametric set-up satisfying the model formulation, including considerations on covariates, is
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discussed. In addition, estimation procedure borrowed from 'partial likelihood' is also intro-

duced. Section 3 gives our score test. Simulation studies of the performance of the proposed

test are reported in section 4. Finally, actual data collected in some clinical trials will also be

analyzed, demonstrating the applicability of the HH model, its ¯tness, and the realization of

the partial score test.

2 Estimation of The Model

2.1 Model formulation

In view of the fact that the PH model can be derived as a special case of transformation

model with homoscedastic error distributions (Dabrowska, 1988; Cheng, 1995), a contrasting,

heteroscedastic version was considered in Hsieh (1995, 1996) for a two-sample case:

¤ 1(t) = f¤ 0(t)g¾¹; (1)

where ¤ (¢) stands for a cumulative hazard. Extending (1) to regression set-up can be found in

Quantin et al. (1996), which constructed a score-type statistic for checking the proportional

hazards assumption; and in Hsieh (2000), which o®ered concrete estimation procedures. This

generalisation,

¤ (t;Z;X) = f¤ 0(t)gexp (Á 0X) exp f¯ 0Zg; (2)

referred to as a heteroscedastic hazards (HH) regression model in the sequal, considers natural

extension of model (1) with ¹ = exp (¯ 0Z) and ¾ = exp (Á 0X), where covariates Z and X

are two set of time-dependent vectors and they can share common component. Heuristics of

applying the HH model to give a more powerful test for comparing treatments rely on model

adequacy. In this stage, we only suggest the data analyzer to put trust in visual ¯tness, which

will be illustrated by an example of actual data in Section 5.
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Parametric set-up

Since the Weibull class with the ¯xed shape parameter, Weibull(t; ® j; ´), satis¯es the propor-

tional hazards formulation, a question arises when the shape is di®erent individually. That

is, one can consider the class Weibull(t; ® j; ´j). In two-sample case, j = 0; 1, Hsieh (1996)

demonstrated that formula (1) is satis¯ed with

¾ = ´1=´0; ¹ = f® 1=® 0g´1:

To extend to regression set-up, one can model the parameters as ® j = exp(¯ 0zj) and ´j =

exp(Á 0xj). Semiparametric set-up

Recently, the linear transformation model have attracted much attention, since it attempts to

give a very general framework on survival data analysis (Cheng et al. (1995); Wei and Cheng

(1999?)). Consider the following model:

h(T ) = ¡ ¯ 0z + ²: (3)

Di®erent speci¯cation of function h(¢) and the distribution of ², F², makes (3) to be the pro-

portional hazards model or the proportional odds model (Cheng et al. (1995); Wei and Cheng

(1999?)). Contrastingly, if the error is subject to heteroscedasticity, (3) can be written as

h(T ) = ¡ ¯ 0z + ¾²: (4)

Speci¯cally, (4) can further be expressed as

gfSz(T )g = ¡ ¯ 0z + ¾g¤fS0(T )g;

according to di®erent choice of link functions g and g¤. If g¤ is totally unspeci¯ed, it reduces

to (3). If g¤ and g are both speci¯ed as logit or complementary log-log link when ¾ = 1, it

corresponds to the proportional hazards model or proportional odds model, respectively. On

the other hand, when ¾ is not speci¯ed as 1, the above speci¯cation on the link functions g
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and g¤ gives the heteroscedastic hazards model (Quantin et al., 1996; Hsieh, 2000) and the

generalized odds model (Hsieh, 1995).

2.2 On the covariates and heteroscedasticity

In model (2), there are two components expressed as linear combinations of two set of risk

factors and/or covariates. The ¯rst part, Z, appears at the same place as the ordinary Cox's

model, expf¯ 0zg; the second part, expfÁ 0xg, appears as the power of the baseline cumulative

hazard. Generally, vector X determines the 'shapes' of cumulative hazards, referred to as the

heteroscedasticity component in this paper. In the experience of analyses of actual data, it is

recognized that if the heteroscedasticity is not accounted for, the estimates of e®ect measures

associated with z are biased. This is similar to the arguments given in Gail et al. (1984) which

dealt with the case of omitting an important explanatory variable in nonlinear regression. Ana-

lytical computation mimicing those of Gail et al. can be easily accomplished via Tsiatis's (1981)

work. The vector X, however, may share common components with Z, and those common part

is the mechanism which results in location shift as well as shape di®erence among groups. A

simple and extreme example is that when Z=X=1; 0, corrresponding to two heteroscedastic

populations such that the two groups have crossing hazards, the heteroscedasticity resulted

from the treatment (coded as Z = X = 1) itself.

2.3 The partial score equations and computational algorithm

With the usual counting process notations and terminology, let Ni(t) be the counting process

of individual i associated with intensity ¸ i = ¸0(t)expf¯Zig¾if¤ 0(t)g¾ i¡ 1. Further denotes

SK(t) = (1=n)
X

Yi(t)Ji(t)expf¯Zig¾if¤ 0(t)g¾ i¡ 1;
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for any predictable process J(t), and ¾i = expfÁXig. According to (2), the full likelihood, LF

is

LF (µ; ¤ 0) = ¦
Z ¿

0
¸i(u)dNi(u) expf¡

Z ¿

0
¸ i(u)dug:

With Johansen's (1983) decomposition of the full likelihood, we have the following
p
n-scaled

partial log-likelihood:

lp = (1=
p
n)
X

logf
Z ¿

0

¸ i(u)dNi(u)

S1(u)
g:

Taking partial derivatives of lp with respect to ¯ and Á gives the following estimating functions:

E¯ = (1=
p
n)
XZ t

0
fZi ¡

SZ(u; ¤ 0; µ)

S1(u; ¤ 0; µ)
gdNi(u); (5)

EÁ = (1=
p
n)
XZ t

0
fVi ¡

SV (u; ¤ 0; µ)

S1(u; ¤ 0; µ)
gdNi(u); (6)

where Vi(t) = Xi(t)[1 + exp(Á 0Xi)logf¤ 0(t)g]. In addition, there is the baseline ¤ 0 needs to be

estimated. The Breslow-type estimator of ¤ 0 solving the following equation can be considered:

¤ 0(t) =
XZ t

0
[
X

Yi(u) expf¯Zig¾if¤ 0(u)g¾ i¡ 1]¡ 1dNi(u): (7)

Instead of solving (7) directly, however, we consider a ¯nite-dimensional approximation of ¤ 0(t):

¤ 0m(t) =
Z t

0

mX

1

® i1f¿i¡ 1 < u · ¿igdu; (8)

where ¿j's are appropriate points and m, a smoothing factor, is the dimension of ¤ 0m chosen

to approximate the function ¤ 0. An algorithm used to compute the parameters ¯ , Á and f® ig

is as follows:

¤
(j)
0m(t) =

XZ t

0
[
X

Yi(u) expf¯ (j¡ 1)Zig¾ (j¡ 1)
i f¤ (j¡ 1)

0m (u)g¾ (j¡ 1)
i ¡ 1]¡ 1dNi(u); (9)

where ¤
(j)
0m(t), ¯ (j), and ¾(j) = expfÁ(j)Xg, are the estimated values solved from the j-th

iteration, j = 0; 1; 2; 3; : : :. Initial guess of ¯ and ¤ 0 (i.e. ¯ (0) and ¤ (0)
0m) can be obtained from

the estimates of ordinary Cox's model. Furthermore, °(0) = 0.
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3 Proposed Test

Model (2) is a nonproportional hazards model, under which the hazards according to het-

eroscedastic populations cross at some point(s). In this paper, good ¯tness of this model in

suggested to be checked only via visual diagnostics. If the visual ¯tness is thought to be good

enough, we expect that for detection of di®erence among heteroscedastic populations, a test

constructed on the basis of this model can be a more powerful one compared with those without

model assumption. The remaining issue is the ¯tness of the model used.

Here, we treat E¯ and EÁ as the true score functions. With regards to the present het-

eroscedastic model (2), a score-type test statistic can be written as

! = fE¯ ; EÁgI¡ 1fE¯ ; EÁg0;

evaluated at (¯; Á) = (0; 0). The information matrix, I, is de¯ned as:

I =

Ã
I¯¯ I¯ Á
IÁ¯ IÁÁ

!
;

where

I¯¯ = (1=n)
XZ t

0
fZi ¡

SZ(u; ¤ 0; µ)

S1(u; ¤ 0; µ)
g 2dNi(u);

IÁÁ = (1=n)
XZ t

0
fVi ¡

SV (u; ¤ 0; µ)

S1(u; ¤ 0; µ)
g 2dNi(u);

and

I¯ Á = IÁ¯ = (1=n)
XZ t

0
fZi ¡

SZ(u; ¤ 0; µ)

S1(u; ¤ 0; µ)
gfVi ¡

SV (u; ¤ 0; µ)

S1(u; ¤ 0; µ)
gdNi(u):

The symbol A 2 means the product of column vectorA and its transpose AT . Asymptotically, !

is distributed as Â 2
p+q, where p and q are the dimensions of Z and X , respectively. In the special

case of two-sample problem, Z = X = 0 or 1, ! is distributed as Â 2
2 under null hypothesis.

We are interested in comparing the performance of ! to the class of weighted log-rank test

(Fleming and Harrington, 1991, Chapter 7):

Z
K(s)

Y1(s)Y2(s)

Y1(s) + Y2(s)

d(
P
Ni(u))

P
Y1i(s) +

P
Y2i(s)

;
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equipped with an appropriate predictable weight process K(t). Especially, we consider the

weight function to be a member of the Fleming-Harrington's G½;° -class, which put variant em-

phases on the di®erence of early-, middle-, and late-stage between the two groups according

to (½; °) = (1; 0); (1; 1), and (0; 1). The corresponding statistic is termed as the G½;° -statistic.

When (½; °) = (0; 0), the G0;0-statistic corresponds to the ordinary log-rank statistic. Note

also that, under null, the G½;° -statistics are distributed as Â2
1. Power comparisons are made via

simulation studies reported in the next section.

4 Simulations

Let Tz be the failure time random variable distributed as F=Weibull(a; b) with a = exp(¯ 0z)

and b = exp(Á 0z). To make comparison between the !-statistic and the weighted log-rank

G½;° -statistic in two-sample setting, we choose there to be half of the sample according to

z = 0; 1, respectively. In any condition, the baseline group (z = 0) is chosen to be distributed as

Weibull(1,1) (or exponential(1)), and the other group is distributed as Weibull(exp(¯); exp(Á)).

Consider the situations when the cumulative hazards, and thus the survival functions, of these

two groups cross at some point tc such that Prob(T0 ¸ tc)=Prob(T1 ¸ tc) = r; 0 < r < 1.

When r takes value close to 1 or 0, this means the cumulative hazards cross at early- or late-

stage of observations, respectively. In our simulations, the parameter con¯gurations of ¯ and

Á are: ¯ = 0, log2,¡ log2 versus Á = 0, log2,¡ log2. Sample size is 100 for each study with

1000 replications. Censoring mechanism Cz is chosen to make 25% failures (right) censored in

the following way: Let Cz be distributed as G=Weibull(a¤; b); that is, the shape parameter b is

chosen to be the same for both Tz and Cz to simpli¯ed the situation. It is easily computed from

R
G(u)dF (u) = 0:25 that a¤ = a=3. Nonetheless, the results may depend on the distribution of

Cz.
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To check the behaviour of ! and the weighted log-rank statistics under H0, Table 1 gives

the empirical rejection probabilities (p̂) according to the true p = 0:01; 0:05; 0:1; 0:9; 0:95; 0:99.

Table 1 shows that, under H0, the empirical distributions of ! and the G½;° weighted log-rank

statistics have satisfactory tail behaviour in both the 0%- and 25%- censored cases. Under Ha,

rejection proportions in 1000 replications are tabulated in Table 2.

[Put Table 1 and Table 2 about here.]

From Table 2, it is as expected that the ordinary log-rank test has the best performance in

power when Á = 0. However, even in this case, the partial score test ! still is comparable with

others. For early crossing, the preformance of G1;0-test, which put much weight on early stage

observations, has lower power than other tests; similarly, for late crossing, the performance of

G0;1-test is very poor. The performance of G1;1 cannot be summarized in a few words, depends

on the data and the stochastic distributions of T and C. Generally, the power of ! is superior

to most of the weighted log-rank class considered, revealing bene¯t of considering the present

semiparametric modeling.

5 Actual Data Analysis

In this section, the data quoted in Piantadosi (1997, Chapter 12) concerning the survival times

of lung cancer patients and those analyzed in Stablin (1981) and Hsieh (2000) concerning a

set of gastric carcinoma patients, are used to illustrate the application of model (2) and the

corresponding !-statistic, compared with the performance of the weighted log-rank G½;° -class.

For both data sets, the event time is de¯ned to be the 'survival' time of cancer patients. Refers

to Piantadosi (1997), chapter 12, and Stablin (1981) and Hsieh (2000) for more information.

It is crucial that model (2) is appropriate in order that !-statistic can be applied to test for

di®erence. In the case of proportional hazards, checking model adequacy can be accomplished
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by omnibus tests, includes those of Schoenfeld (1980), Wei(1984), Gill and Schumacher (1987),

and Lin (1991). Regarding the HH model (2), a chi-square goodness-of-¯t test is suggested

in Hsieh (2000) for a similar purpose, based on an over-identi¯ed estimating equation (OEE)

approach. As mentioned in the previous context, however, we suggest the data practitioners

to diagnose the ¯tness of model (2) by simply plotting the ¯tted survivor curves of di®erent

groups (ŜHH) according to distinct covariate values, and to compare them with the associated

Kaplan-Meier estimates (ŜKM ). (See Fig. 1 for the lung cancer data and refer to Hsieh

(2000) for the gastric cancer data.) The rationale lies in that when the model is adequate and

consistent estimators ^̄,Á̂, and ¤̂ 0 had been solved from Sec. 2, the plotted survivals based on

the semiparametric model,

ŜHH(t; x; z) = expf¡ [¤̂ 0(t)]exp(Á̂ 0x) exp( ^̄0z)g; (10)

must be close to the nonparametric Kaplan-Meier (KM) estimates for all x ¡ z con¯gurations.

On the other hand, estimated survivals based on the ordinary Cox's PH model are also plotted

and compared with the KM estimates (Fig. 2). We observe that ŜHH ¯ts better than ŜPH

does. Furthermore, in most of the place, the ¯tness of ŜHH is ¯ne, except for the early stage

(before 8 months) of group A. In this situation, !-statistic is applicable.

Table 3 gives the results of analyzing lung cancer data (Piantadosi, 1997) and gastric carci-

noma data (????) for illustration of !- and G½;° - statistics. For lung cancer data, we see from

the analysis that the Kaplan-Meier estimate of survivor functions according to the two di®erent

treatments cross around 33 months, near the terminal of this study. So it is expected that G0;1

is unable to detect the di®erence (p-value=0.994). In addition, G1;1 still is poor for the goal (p-

value=0.555). For the gastric carcinoma data, the situation is a little di®erent. Kaplan-Meier

estimates cross between the second and third month (????; Hsieh, 2000), which is around the

late-middle stage. The p-values of G0;1 and G0;1 are 0.150 and 0.902, respectively. For both

data, G1;0 performs well for detecting the di®erence (p-value=0.074, 0.047), whereas they are
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still a little more poor than the !-statistic does (p-value=0.050, 0.019). These results show the

superiority of modeling the nonproportionality to choosing di®erent weights in a nonparametric

class.
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Table 1:

G0;0 G1;0 G1;1 G0;1 !
0% censored p

0.005 0.003 0.002 0.007 0.001 0.006
0.025 0.020 0.021 0.026 0.016 0.022
0.050 0.042 0.047 0.058 0.041 0.052
0.950 0.937 0.942 0.934 0.923 0.939
0.975 0.963 0.975 0.966 0.956 0.969
0.995 0.995 0.997 0.993 0.991 0.993

25% censored p
0.005 0.009 0.006 0.004 0.004 0.004
0.025 0.024 0.027 0.018 0.022 0.022
0.050 0.044 0.044 0.037 0.045 0.042
0.950 0.941 0.950 0.943 0.945 0.946
0.975 0.970 0.970 0.973 0.969 0.974
0.995 0.995 0.993 0.996 0.992 0.996
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Table 2:

¯ 0 log(2) ¡ log(2)
° 0 log(2) ¡ log(2) 0 log(2) ¡ log(2) 0 log(2) ¡ log(2)
s £ 0.368 0.368 £ 0.607 0.018 £ 0.135 0.779

0% censored
G½;°

(0,0) 0.063 0.139 0.122 0.935 0.803 0.915 0.918 0.207 0.994
(1,0) 0.058 0.134 0.142 0.845 0.215 0.998 0.848 0.776 0.799
(1,1) 0.066 0.334 0.308 0.878 0.931 0.783 0.855 0.117 0.998
(0,1) 0.077 0.781 0.787 0.854 0.998 0.276 0.837 0.175 1.000
! 0.061 0.975 0.969 0.873 0.999 1.000 0.870 0.969 1.000

25% censored
(0,0) 0.043 0.051 0.034 0.829 0.416 0.964 0.824 0.393 0.895
(1,0) 0.043 0.212 0.190 0.750 0.096 0.998 0.764 0.823 0.548
(1,1) 0.059 0.175 0.173 0.769 0.759 0.802 0.759 0.147 0.982
(0,1) 0.064 0.422 0.456 0.716 0.905 0.424 0.704 0.066 0.992
! 0.047 0.886 0.887 0.756 0.947 0.999 0.736 0.950 0.992

17



Table 3:

Statistic: G0;0 G1;0 G1;1 G0;1 !
Lung Cancer Data

Estimate 1.2745 3.1774 0.3489 0.0001 5.9977
(P-value) (0.2589) (0.0747) (0.5547) (0.9940) (0.0498)

Gastric Carcinoma Data
Estimate 0.2218 3.9630 0.0153 2.0711 7.9408
(P-value) (0.6376) (0.0465) (0.9017) (0.1501) (0.0189)
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