TR R TP ELR ¢

PP*iﬁkq

R L R

B R AR g sk ik

An Efficient I ncremental Malntenancefor M aterialized view for
Data Warehouse Strategiesin concurrent control in TBDD

P F

FHEFHRT 90 & 8

ERES
PRREAR IR

- [I‘«P%E[
@ A LS
AP EE o THAREAR
PR ARAER EREESLE
. il

/m’l,(igﬁgl}_}%‘_ ﬁ{%oﬂ’@?;’:f

T

=
FE]

2

|~

—?—&’ﬁf\

T T e b

NI T
=

¥ &

%%?ﬁ] TR A B A A AT AT
B-tree ~ & F 2 5 2

Abstract

The goal of the conventional database is
aimed at the online transaction processing of
the enterprises. Through the help of the data
warehouse, the decision maker can survey
the transaction data from different views,
monitoring the operations of the corporation
and then strengthening the competitive
advantage. Most of the current data
warehouses are constructed without special
considerations for the concurrent control and
synchronized update. In this project, we
propose a data structure for the data
warehouse at first. We construct the data
warehouse from the data gotten from the
snapshot. Designs are made of deadlock-free
operations that concurrently update or query
the data warehouse when a transaction is
made. The correctness of these concurrent
operations and the deadl ock-free property are
proved.

NSC 90-2416-H-039-001

1p291&T7" 31p

PE R A e L Y AP EF R F A AT
REPErE oo v

SRR SR EE Y

Data warehouse, OLAP
Concurrent control, B-tree, OLTP

Keywords:

2 ~ Background and Goal

Since the competition among the
enterprises, the computer techniques for the
enterprises move from supporting the online
transactions toward supporting the
decision-making system [1, 2]. Utilizing the
data warehouse, the decison maker can
monitor the operations and strengthen the
competitive advantage [3].

A sound data warehouse should
provide a multi-user environment that the
gueries can be quickly response and the
synchronization with the OLTP can be
achieved easily. Recently, a lot of the data
structures are proposed to speed up the
response of the data warehouse [4-8].
However, they made little discussion about
the concurrent problems of their structures.

In this project, we propose a data
structure for the data warehouse to solve the
problems such as how to construct the data
warehouse from the data gotten from the
snapshot, how to concurrently update the
data warehouse when a transaction is made,
how to provide other concurrent operations,
under the requirements of minimum number
of locked nodes.

=~ ~ Method and Result

We evauate the effect of indexing,
clustering and re-computing, and decide to
construct a tree-like structure for data
warehouse. A B-tree-like structure, called
TBDD (Tree Based on Data Dimension), is
proposed. The leaf node contains the raw
data, while each non-leaf node contains the

statistical data. We survey the B-tree-like
access methods [9-16]; we append a
right-link pointer field into each non-leaf
node to increase the concurrent degree. The
structure of TBDD for the data warehouse of
acorporation that has three dimensions (time,

area and unit) is shown in Fig. 1. Whenever
aggregate queries arrive, the system will
search the non-leaf node to compute the
answer. The following is the agorithm for
such queries.

root (dimension node)

time | area | unit
non-leaf node 10 | 10 | 10
487 | 487 | 487 [—
level
count year level continent | level gpartment level
sum 99 | 00 EEEEERE ua | ub
7] 3 7 1] 2 5 | 5
345 [142 |—| 276 | 56 | 155 |— 170 | 317 [
quarter leve / (point to the same feaf nodes
QL] Q2| Q4 Q1| Q2 as time diemension)
3 1|3 2 |1
79 | 32 | 234 59 | 83
month level / \\
Jan | Feb Apr Nov | Dec Feb Apr
2 |1 1 1| 2 2 1
75 4 5 323 72]162 59 | 83 |,
Jan Jan Feb Apr Nov Dec Dec Feb Feb Jun /| location
1,99 | 1399 399 | 2599 |11.99] [14,99 | 2599 | 23.00] | 28,00 | | 17.00],
Taiw- Ja- Tai- Ko- us Egy- Tai- Ko- Ja- Brasi] unit
an pan wan rea pt wan rea pan
Ua3 Uab Ubl Ual Ub7 Ua3 Ub1 Ua5 Ub7 Ub3 7, vaue
32 B 43 B3 4 32 B 72 3 56 3106 3 7 B 52 3 83—
unclustering fact record
Fig. 1. An example of TBDD.
Deadlock -«4— deny inconsistent process in T.R.
free retrieval (one node locked at most)

-4— deny circular

wait

search process

{ r-lock driven off by e-lock)
process dedescending tree

(in tree hierarchy order)
process lock (update)leaves

(in order (left to right)) |

4—— deny wait for #4—— lock conversion

(w-lock incompatible with itself)

Fig. 2. Concept to prove deadlock free.

Correct#— Serializable-—deny inconsistent -«

retrieval

search process

{ read only one data)
-«—sequential (range) reading
process (order in locking

leaves,sr-lock used)

4— range reading process
(reading in tree hierarchy

order,sr-lock used)

«—— deny inconsistent -4—— range update process (order
update

in locking leaves,descending

in tree hierarchy order)

Fig. 3. Concept to prove seriaizability.

Query agorithm
S1 r-lock(root);
S2 descend from root to leaf without lock
coupling;
S2.1 move right (if needed) without
lock coupling to find correct node
(letsit be N) that k may residein;
S3if kisin N then return(N);
elsereturn(NULL).

The new data may insert into the data
base. The data warehouse will be
updated accordingly. An insertion
operation in the TBDD can be divided
into two parts. inserting data and
reconstructing the tree if overflow
occurs. f a data value is added into a
data node, then the effect for this
addition should aso be included in the
corresponding statistical fields in al the
ancestors of this data node. When
metadata are updated in non-leaf nodes,
two directions, either top-down or
bottom-up, can be chosen. With
performance consideration, the insertion
operation adopts top-down to update the
metadata and releases the nodes already
updated to allow other operations to
access them.

Insertion algorithm

[1linitialize stack ;

12 search for leaf node N in which k may

reside and w-lock(N);

I3if k exists, w-unlock(N) and quit;

14 descend from root to father of N in lock
coupling (lock unitisatupleof anode) ;
4.1 move right (if needed) in lock

coupling ;

14.2 add value to statistic data of al k's
ancestors;
14.3 push k’s ancestors to stack ;

I5 convert w-lock(N) to e-lock(N) and insert
ktoN ;

16 if overflowing in N, call reconstruction ;

|7 clear stack.

Tree reconstruction is invoked if data
The insertion operation in
tree reconstruction ascends the tree level
by level splitting and redistributing
metadata in the nodes until it reaches a
node that is non-full of data.

overflows.

Reconstruction algorithm:
R1 split N into two nodes (N and N');
R2 e-unlock (N);
R2.1 pop N’s original father from the
stack;
R2.2 let old_N be N’, and N be the father

of N;

R3 e-lock (N);

R3.1 move right without lock-coupling, if
necessary;

R4 r-lock the concerned N's children and
read their values;

R5 insert a key (the largest key in the
leftmost brother of old N) and a pointer
(from N to old_N) to N, and redistribute
the statistical datain N;

R6 if N overflows, repeat from R1 else

e-unlock (N) and return.

In addition to the insertion, the users
may modify the data node, say k, in the
|eaf node.

Modification algorithm
M1 search for leaf node N in which k
resides and w-lock(N) ;
M2 if k doesn't exist, w-unlock(N) and
quit ;
M3 given differences between new data and
old one ;
M4 descend from root to leaf in lock
coupling for adding differences to statistic
data of all k’s ancestors.

When a deletion in the specified data
node k in the deepest non-leaf node, a
deletion operation needs to adjust the
corresponding statistical data of all k's
ancestors. The deletion operation is like
the modification operation. It first
searches the involved deepest non-leaf
node containing the data node k. Then
the operation marks the data instead of
deleting it, since the overhead for
merging is heavy.

Theorem 1. The interaction among
n concurrent operations ({O, , Oy ,... ,

Oy , n=1) wont produce any
deadlock .

Coffman et al. [17] stated that four
necessary conditions must be in effect
for a deadlock to exist. They are the (1)
non-preemption condition, (2) circular
wait condition, (3) wait for condition,
and (4) mutual exclusion condition. To
prove the deadlock—freedom for the
concurrent operations, every operation
will deny at least one condition of the
above four conditions. The concept for
the proof isshownin Fig. 2.

Theorem 2. Every concurrent
operation correctly works (including
terminating) in a multiprogramming
environment asin a seria environment.

-+ ~ REFERENCES

1. G. Codlliat. “OLAR réational, and
multidimensional database
systems” SIGMOD Record, pp.
64-69, Vol. 25, No. 3, Sept. 1996.

2. S, Chaudhuri and U. Dayal. “An
overview of data warehouse and
olap technology,” ACM SIGMOD
Record, March 1997.

3. W.H. Inmon. Building the Data
Warehouse. J. Wiley & Sons, Inc.,
second edition, 1996.

4. P. O'Neil and D. Quass. “/mproved
query performance with variant
indexes,” In Proceeding of the ACM
SIGMOD international conference
on management of data, pp. 38-49,
Tucson, Arizona, May 1995.

5. Bayer, R. and McCreight, E.,
“Organization and Maintenance of

10.

11.

12.

Large Ordered Indexes” Acta
Informatica, Vol. 1, No. 3, 1972, pp.
173-189.

E. Bardis, S. Paraboschi and E.

Teniente. “Materialized view
sdection in a multidimensional
database” In Proc. of the 23th

international conference on VLDB,
pp. 156-165, Athens, Greece, Aug.
1997.

H. Gupta. “Sdlections of views to
materialize in a data warehouse” In
Proc. of ICDT, pp. 98-112, Jan.
1997.

N. Roussopoulos, Y. Kotidis, and M.
Roussopoul os. “ Cubetree:
organization of and bulk
incremental updates on the data
cubg” In Proceedings of the ACM
SIGMOD Conference on
Management of Data, pp. 89-99,
Tucso, Arizona, May 1997.

Bayer, R. and Schkolnick, M.,
“Concurrency of Operations on
B-trees,” Acta Informatica, Vol. 9,
1977, pp. 1-21.

Bernstein, PA., Hadzilacos, V., and
Goodman, N., Concurrency Control
and Recovery in Database System,
Addison-Wesley, MA, 1987.
Guttman, A., “R-tree: a Dynamic

Index Structure for Spatial
Searching,” in Proceeding ACM
SGMOD Conference on

Management of Data, VVol. 14, No. 2,
1984, pp. 47-57.

Kwong, Y.S. and Wood, D., “A
New Method for Concurrency in

13.

14.

15.

16.

17.

B-trees,” |EEE Trans. Soft. Eng.,
Vol. 8, No. 3, 1982, pp. 211-222.
Lehman, PL. and Yao, SB,,
“Efficient Locking for Concurrent
Operations on B-trees,” ACM Trans.
Database Syst., Vol. 6, No. 4, 1981,
pp. 650-670.

Parr, JR., “An Access Method for
Concurrently Sharing a B-tree
Based Indexed Sequentia File”
Technical Report, 36, Dep. Compuit.
Sci., Univ. of Western Ontario,
London, Ont., Canada, April, 1977.
Srinivasan, V. and Carey, M.J,
“Performance of B-tree
Concurrency Control Algorithms,”
ACM SGMOD Conference on
Management of Data, 1991, pp.
416-425.

Srivastava, J., Tan, Jack S. Eddy,
and Lum, V.Y, “TBSAM: An
Access Method for Efficient
Processing of Statistical Queries,”
IEEE Trans. On Knowledge and
Data Engineering, Vol. 1, No. 4,
1989, pp. 414-423.

Coffman, E.G., E.G., Elphick, M.J.,
and Shoshani, A. “System
deadlocks,” Computing Surveys, Vol.
3, No. 2, 1971, p. 67-77.

	page1
	page2
	page3
	page4
	page5

