
1

行政院國家科學委員會專題研究計畫成果報告
在資料倉儲中,具體化視界的有效的遞增維護

An Efficient Incremental Maintenance for Mater ialized view for
Data Warehouse Strategies in concurrent control in TBDD

計畫編號：NSC 90-2416-H-039-001
執行期限：90 年 8月 1日至 91 年 7月 31 日

主持人：吳 帆 執行機構及單位名稱：中國醫藥學院醫務管理研究所
計畫參與人員：孫漢屏 執行機構及單位名稱：中國醫藥學院醫務管理研究所

一、中文摘要
傳統的資料庫設計都是為了解決企業

線上交易所需。資料倉儲讓決策者快速從
不同角度分析資料，隨時掌握企業營運狀
況，以增強企業的競爭力。目前資料倉儲
系統大部分未特別考慮共時控制與如果線
上交易資料更新時，資料倉儲如何迅速同
步更新的問題。在這個計畫，我們提出一
個資料倉儲資料結構，它可從 snapshot 建
構資料倉儲。我們設計了無死結的可共時
修改或查詢此資料倉儲的操作。這些共時
操作的正確性(序列性)與無死結性也都被
證明操。

關鍵詞：資料倉儲、線上分析處理、共時
控制、B-tree、線上交易處理

Abstract
The goal of the conventional database is

aimed at the online transaction processing of
the enterprises. Through the help of the data
warehouse, the decision maker can survey
the transaction data from different views,
monitoring the operations of the corporation
and then strengthening the competitive
advantage. Most of the current data
warehouses are constructed without special
considerations for the concurrent control and
synchronized update. In this project, we
propose a data structure for the data
warehouse at first. We construct the data
warehouse from the data gotten from the
snapshot. Designs are made of deadlock-free
operations that concurrently update or query
the data warehouse when a transaction is
made. The correctness of these concurrent
operations and the deadlock-free property are
proved.

Keywords: Data warehouse, OLAP,
Concurrent control, B-tree, OLTP

2、Background and Goal
Since the competition among the

enterprises, the computer techniques for the
enterprises move from supporting the online
transactions toward supporting the
decision-making system [1, 2]. Utilizing the
data warehouse, the decision maker can
monitor the operations and strengthen the
competitive advantage [3].
 A sound data warehouse should
provide a multi-user environment that the
queries can be quickly response and the
synchronization with the OLTP can be
achieved easily. Recently, a lot of the data
structures are proposed to speed up the
response of the data warehouse [4-8].
However, they made little discussion about
the concurrent problems of their structures.
 In this project, we propose a data
structure for the data warehouse to solve the
problems such as how to construct the data
warehouse from the data gotten from the
snapshot, how to concurrently update the
data warehouse when a transaction is made,
how to provide other concurrent operations,
under the requirements of minimum number
of locked nodes.

三、Method and Result
We evaluate the effect of indexing,

clustering and re-computing, and decide to
construct a tree-like structure for data
warehouse. A B-tree-like structure, called
TBDD (Tree Based on Data Dimension), is
proposed. The leaf node contains the raw
data, while each non-leaf node contains the

2

statistical data. We survey the B-tree-like
access methods [9-16]; we append a
right-link pointer field into each non-leaf
node to increase the concurrent degree. The
structure of TBDD for the data warehouse of
a corporation that has three dimensions (time,

area and unit) is shown in Fig. 1. Whenever
aggregate queries arrive, the system will
search the non-leaf node to compute the
answer. The following is the algorithm for
such queries.

Jan

75

Jan
13,99
Ja-
pan
Ua5
43

Feb
3,99
Tai-
wan
Ub1

4

Apr
25,99
Ko-
rea
Ua1
32

Nov
11,99
US

Ub7
72

Dec
14,99
Egy-

pt
Ua3
56

Dec
25,99
Tai-
wan
Ub1
106

Feb
23,00
Ko-
rea
Ua5

7

Feb
28,00
Ja-
pan
Ub7
52

Jun
17,00
Brasil

Ub3
83

Jan
1,99
Taiw-

an
Ua3
32

Feb

4

Apr

32

Nov

72

Dec

162

Feb

59

Apr

83

Q1 Q2

79 32

Q4

234

Q1

59

Q2

83

00

142

99

345

time

487

area

487

unit

487

亞洲 非洲 美洲

276 56 155

ua ub

170 317

 (point to the same leaf nodes
 as time diemension)

root (dimension node)

year level continent level department level

quarter level

month level

fact record

unclustering fact record

count

non-leaf node

2 1 1 1 2 2 1

3 1 3 2 1

7 3 7 1 2 5 5

10 10 10

sum

level

date

location

unit

value

Fig. 1. An example of TBDD.

Fig. 2. Concept to prove deadlock free.

3

Fig. 3. Concept to prove serializability.

Query algorithm

S1 r-lock(root);

S2 descend from root to leaf without lock

coupling;

S2.1 move right (if needed) without

lock coupling to find correct node

（lets it be N）that k may reside in;

S3 if k is in N then return(N);

else return(NULL).

The new data may insert into the data
base. The data warehouse will be
updated accordingly. An insertion
operation in the TBDD can be divided
into two parts: inserting data and
reconstructing the tree if overflow
occurs. f a data value is added into a
data node, then the effect for this
addition should also be included in the
corresponding statistical fields in all the
ancestors of this data node. When
metadata are updated in non-leaf nodes,
two directions, either top-down or
bottom-up, can be chosen. With
performance consideration, the insertion
operation adopts top-down to update the
metadata and releases the nodes already
updated to allow other operations to
access them.

Insertion algorithm

I1 initialize stack；

I2 search for leaf node N in which k may

reside and w-lock(N);

I3 if k exists, w-unlock(N) and quit;

I4 descend from root to father of N in lock

coupling（lock unit is a tuple of a node）;

I4.1 move right （ if needed） in lock

coupling；

I4.2 add value to statistic data of all k’s

ancestors;

I4.3 push k’s ancestors to stack；

I5 convert w-lock(N) to e-lock(N) and insert

k to N；

I6 if overflowing in N, call reconstruction；

I7 clear stack.

Tree reconstruction is invoked if data
overflows. The insertion operation in
tree reconstruction ascends the tree level
by level splitting and redistributing
metadata in the nodes until it reaches a
node that is non-full of data.
Reconstruction algorithm:

R1 split N into two nodes (N and N’);

R2 e-unlock (N);

R2.1 pop N’s original father from the

stack;

R2.2 let old_N be N’, and N be the father

of N;

4

of N;

R3 e-lock (N);

R3.1 move right without lock-coupling, if

necessary;

R4 r-lock the concerned N’s children and

read their values;

R5 insert a key (the largest key in the

leftmost brother of old_N) and a pointer

(from N to old_N) to N, and redistribute

the statistical data in N;

R6 if N overflows, repeat from R1 else

e-unlock (N) and return.

In addition to the insertion, the users
may modify the data node, say k, in the
leaf node.
Modification algorithm

M1 search for leaf node N in which k

resides and w-lock(N)；

M2 if k doesn’t exist, w-unlock(N) and

quit；

M3 given differences between new data and

old one；

M4 descend from root to leaf in lock

coupling for adding differences to statistic

data of all k’s ancestors.

When a deletion in the specified data
node k in the deepest non-leaf node, a
deletion operation needs to adjust the
corresponding statistical data of all k’s
ancestors. The deletion operation is like
the modification operation. It first
searches the involved deepest non-leaf
node containing the data node k. Then
the operation marks the data instead of
deleting it, since the overhead for
merging is heavy.

Theorem 1. The interaction among
n concurrent operations ({O1 , O2 ,… ,

On} , n ≧ 1) won’t produce any
deadlock .

Coffman et al. [17] stated that four
necessary conditions must be in effect
for a deadlock to exist. They are the (1)
non-preemption condition, (2) circular
wait condition, (3) wait for condition,
and (4) mutual exclusion condition. To
prove the deadlock–freedom for the
concurrent operations, every operation
will deny at least one condition of the
above four conditions. The concept for
the proof is shown in Fig. 2.

Theorem 2. Every concurrent
operation correctly works (including
terminating) in a multiprogramming
environment as in a serial environment.

五、REFERENCES
1. G. Colliat. “OLAP, relational, and

multidimensional database
systems,” SIGMOD Record, pp.
64-69, Vol. 25, No. 3, Sept. 1996.

2. S. Chaudhuri and U. Dayal. “An
overview of data warehouse and
olap technology,” ACM SIGMOD
Record, March 1997.

3. W.H. Inmon. Building the Data
Warehouse. J. Wiley & Sons, Inc.,
second edition, 1996.

4. P. O’Neil and D. Quass. “Improved
query performance with variant
indexes,” In Proceeding of the ACM
SIGMOD international conference
on management of data, pp. 38-49,
Tucson, Arizona, May 1995.

5. Bayer, R. and McCreight, E.,
“Organization and Maintenance of

5

Large Ordered Indexes,” Acta
Informatica, Vol. 1, No. 3, 1972, pp.
173-189.

6. E. Baralis, S. Paraboschi and E.
Teniente. “Materialized view
selection in a multidimensional
database,” In Proc. of the 23th
international conference on VLDB,
pp. 156-165, Athens, Greece, Aug.
1997.

7. H. Gupta. “Selections of views to
materialize in a data warehouse,” In
Proc. of ICDT, pp. 98-112, Jan.
1997.

8. N. Roussopoulos, Y. Kotidis, and M.
Roussopoulos. “Cubetree:
organization of and bulk
incremental updates on the data
cube,” In Proceedings of the ACM
SIGMOD Conference on
Management of Data, pp. 89-99,
Tucso, Arizona, May 1997.

9. Bayer, R. and Schkolnick, M.,
“Concurrency of Operations on
B-trees,” Acta Informatica, Vol. 9,
1977, pp. 1-21.

10. Bernstein, P.A., Hadzilacos, V., and
Goodman, N., Concurrency Control
and Recovery in Database System,
Addison-Wesley, MA, 1987.

11. Guttman, A., “R-tree: a Dynamic
Index Structure for Spatial
Searching,” in Proceeding ACM
SIGMOD Conference on
Management of Data, Vol. 14, No. 2,
1984, pp. 47-57.

12. Kwong, Y.S. and Wood, D., “A
New Method for Concurrency in

B-trees,” IEEE Trans. Soft. Eng.,
Vol. 8, No. 3, 1982, pp. 211-222.

13. Lehman, P.L. and Yao, S.B.,
“Efficient Locking for Concurrent
Operations on B-trees,” ACM Trans.
Database Syst., Vol. 6, No. 4, 1981,
pp. 650-670.

14. Parr, J.R., “An Access Method for
Concurrently Sharing a B-tree
Based Indexed Sequential File,”
Technical Report, 36, Dep. Comput.
Sci., Univ. of Western Ontario,
London, Ont., Canada, April, 1977.

15. Srinivasan, V. and Carey, M.J.,
“Performance of B-tree
Concurrency Control Algorithms,”
ACM SIGMOD Conference on
Management of Data, 1991, pp.
416-425.

16. Srivastava, J., Tan, Jack S. Eddy,
and Lum, V.Y., “TBSAM: An
Access Method for Efficient
Processing of Statistical Queries,”
IEEE Trans. On Knowledge and
Data Engineering, Vol. 1, No. 4,
1989, pp. 414-423.

17. Coffman, E.G., E.G., Elphick, M.J.,
and Shoshani, A. “System
deadlocks,” Computing Surveys, Vol.
3, No. 2, 1971, p. 67-77.

	page1
	page2
	page3
	page4
	page5

