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Abstract

We consider a piecewise-constant varying-coefficient model to account for survival data with

multiple crossings. Estimating procedures are provided, and a class of tests is constructed for

the need of imposing varying coefficients for some specific covariates, or for some other purposes.

Analysis of the survival of Taiwan’s stroke patients is reported to illustrate the applications.

Key Words: time-varying effect, heteroscedasticity, multiple crossings, proportional hazards,

non-proportional hazards.
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1 Introduction

In event-history data analysis where the effect of a specific variable is of the main interest, the

problem of dealing with time-varying effect gets more important in the recent years. In contrast

with the proportional hazards (PH) model (Cox, 1972), many authors have devoted to the study

of varying-coefficient PH (PHvc) model. For example, see Murphy and Sen (1991), Murphy

(1993), Martinussen and Scheike (2006), and Tien, Zucker, and Wei (2005) among others.

Without regard to the space of ’time’, the PHvc model basically still estimate homogeneity

effect over the space of covariate(s). By this, homogeneity means there is a common ’effect’

between two covariate-specific subpopulations represented by different values of the covariate,

say Z, or of the ’configurations’ of several covariates. On the contrary, heterogeneity states

that the effect is different and diverse over the covariate space of Z. The variable Z can

either be observed or unobserved. Examples of modeling observed and unobserved heterogenity

include the heteroscedastic hazards regression (HHR) model (Hsieh, 2001) and the frailty model

(Vaupel, 1979; Hougaard, 1986), respectively. This study focuses on the former case. In

addition to capturing heterogeneity effect, the HHR model also has the merit of modeling

time-varying effect by the hazard function:

λ(t; z,x) = λ0(t)e
γT x(t){Λ0(t)}eγT

x(t)−1eβT z(t), (1)

where z(t) and x(t) are two sets of predictable time-dependent covariates, and Λ0(t) =
∫ t
0 λ0(u)du

is the baseline cumulative hazard. In view of the intrinsic time-varying property of the hazard

ratio implied by (1), it is possible to extend the HHR model to incorporate varying-coefficient

settings. Hereafter we denote the varying-coefficient HHR model as an HHRvc model with

its functional form stated in Section 2. Contrasting with the PH model, the most significant

parts are certainly to make feasible the incorporation of parameter γ, and to convince the use

of time-varying β(t) and γ(t) (see (2) below). Motivation of this extension can be interpreted
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as follows. First, the inter-relation among groups in terms of survivor or cumulative hazard

functions may be ’diverse’ in time. An apparent phenomenon is the multiple cross-effect (MCE)

studied by Bagdonavičius and Nikulin (2006). Second, cure-fraction (CF) appeared in many

clinical and oncological studies in which the survival of cancer patients receiving surgery fol-

lowed by (or prior to) chemo- and/or radio-therapies are of concern. Though, the definition of

’cure’ still needs to be clarified. The probability of cure needs to be handled. Finally, if the

data cannot be suitably described by a simpler model (such as the PH or PHvc model) and can

be well described by the extended model (such as the HHRvc), it is also sensible to consider

the extended class from the viewpoint of model fitting.

The HHRvc model can deal with survival data with time-diversity (e.g., MCE) and cure-

fraction simultaneously, within a reasonable range of observational period. The purpose of this

paper is to study relevant applications of the HHRvc model in the aspects of data practition and

model validity. For the latter, we assume HHRvc as the alternative hypothesis and test whether

the varying-coefficient setting can be further simplified. Section 2 of this article introduces the

piecewise-constant setting of the HHRvc model. Estimation and model validity procedures

are provided in Sections 3 and 4. We report in Section 5 actual data analysis concerning the

mortality of stroke patients with comorbidities. Finally, implications of the varying-coefficient

model and some practical issues of data analysis are discussed.

2 Illustration of The Piecewise Constant Model

Piecewise-constant setting

Model (1) can be extended to allow for varying coefficients:

λz,x(t) = λ0(t){Λ0(t)}eγ(t)z−1eβ(t)z+γ(t)x. (2)

where eβ(t)z is referred to as the risk function, and eγ(t)x as the heteroscedasticity component.

For an easy exposition, we adopt notations only with ’univariate’ case and, in the sequel, z = x.

3



Because the partial likelihood does not eliminate out the baseline hazard, there are three time-

dependent parameters, (Λ0(t) (or λ0(t)), β(t) and γ(t)) to be estimated simulataneously. We use

the piecewise-constant approximation method (Murphy and Sen, 1991; Murphy, 1993; Marzec

and Marzec, 1997) to make it compatible with the approach of Hsieh (2001). Let [0, τ ] be the

observational period, and 0 = τ0 < τ1 < . . . < τm = τ be a set of cutoff points. The following

piecewise-constant approximations are adopted:

Λ0(t) =
∫ t

0

m∑

1

αj1(τj−1<u≤τj)du,

β(t) =
m∑

1

βj1(τj−1<t≤τj),

γ(t) =
m∑

1

γj1(τj−1<t≤τj). (3)

So the HHRvc model considered in this paper has the following ’pieces’ of hazard and cumulative

hazard:

λ(t; z) = αj{Λ0(t)}σj−1σjµj, τj−1 < t ≤ τj,

Λ(t; z) = Λ(τj−1; z) + [{Λ0(t)}σj − {Λ0(τj−1)}σj ]µj, τj−1 < t ≤ τj, (4)

where λ(·) denotes the approximation of λ(·), σj = eγT
j
z, µj = eβT

j
z, and Λ(τ0; z) = Λ0(τ0) = 0.

Formula (4) is very useful to understand the HHRvc model and the accompanying random

number generation in simulation studies. (Because we can simply use the relation S(·) =

exp{−Λ(·)}, and equate it to a Uniform(0,1)-random number.)

The reasons why we consider (2) (or (4)) for modeling multiple-crossings are: (i) The HHR

model without varying coefficient gives only a one-time crossing. (ii) Although the PH model

with varying-coefficient risk function produces multiple crossings, the inter-subpopulation effect

is still homogeneous at any fixed time point. An example of data analysis in Section 5 illustrates

the feasibitity; where the probability of ’cure’ is actually a heterogeneity effect. By model (2),

suitably modulating the baseline hazard also contributes to model ’multiple cross-effects plus
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cure-fraction’, albeit a monotonic γ(t) is inevitably demanded.

3 Estimation under the Piecewise-constant Setting

Suppose there are n randomly right-censored observations T1 < T2 < . . . < Tn, which can

be survival or censoring times. Let λi(t; z(t),x(t)),Ni(t) and Yi(t)) be the intensity process,

counting process and the associated at-risk indicator for the ith individual at time t, and

denotes

SJ(t) = (1/n)
n∑

i=1

Yi(t)J(t)eβ(t)zi+γ(t)xi{Λ0(t)}e
γ(t)xi−1, (5)

with possibly time-dependent covariates J(t) = 1, zi(t),xi(t), or vi(t) ≡ xi(t){1+eγ(t)xi log Λ0(t)}.

It is straightforward to use the following Breslow-type equation (6) for the baseline cumulative

hazard and estimating equations (7) and (8) for βjs and γjs:

Λ0(t) =
n∑

i=1

∫ t

0

dNi(u)

nS1(u)
, (6)

M2j ≡
1

√
nj

n∑

i=1

∫ τj

τj−1

{zi −
Sz

S1
}dNi(u) = 0, j = 1, 2, . . . , m, and (7)

M3j ≡
1

√
nj

n∑

i=1

∫ τj

τj−1

{vi −
Sv

S1

}dNi(u) = 0, j = 1, 2, . . . , m, (8)

In addition, Mj = (M2j , M3j)
T , and Aj with elements

Aj,ll′ = (1/n)
∑ ∫

E{dMlj(u)dMl′j(u)}du, (l, l′ = 2, 3)

is the ’covariation’ matrix between M2j and M3j . By imposing several technical conditions,

large-sample properties of {(β̂j, γ̂j)}m
j=1 and Λ̂0(t) can be established.
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4 The Tests

In this section we study the HHRvc model, starting from the consideration of the following

statistic (Hsieh, 2001; Wu et al., 2002):

Tdegen =
m∑

j=1

{MT
j A−1

j Mj}(β̂j ,̂γj ,Λ̂0)

with the parameters of interest being evaluated piecewisely at (βj, γj) = (β̂j, γ̂j), ∀j, where

β̂j and γ̂j are the piecewise estimates solved from (7) and (8). The statistic Tdegen has a

degenerate value of 0; named as being degenerate because all degrees of freedom were consumed

out at each segment. However it offers an important clue to constructing tests for model validity.

For example, the test studied in Wu et al. (2002) can be viewed as a special case when the

HHR model is treated as a submodel of HHRvc. By this perspective, Tdegen can be amended

to augment the degrees of freedom to 2m−2 for the purpose of testing the validity of the HHR

model, simply by repalceing all βjs and γjs with the ’overall’ estimates β̂ and γ̂ respectively,

and by using A◦
j defined below instead of Aj.

4.1 Some specific tests

The test considered in this section is constructed by assuming that the HHRvc model is true,

and then test for a subset of the parameters at a given value. Now we define some notations

used in the following context. For example, if θ = (θ1, . . . , θp) and θk = (θ1, θ2) be a subset of

θ, then θ(k) ≡ θ\θk = (θ3, θ4, . . . , θp), and θ = θk ∪ θ(k) = θ(k) ∪ θk. In this case, ωk = {1, 2},

and ω(k) = {3, 4, . . . , p}. Moreover M̃ = (M21, . . . , M2m, M31, . . . , M3m), and, if θk∗ = (θ1, θ3),

then θk\θk∗ = θ2 and θk ∩ θk∗ = θ1. We say in this example that θk is the k-component

of θ. Hereafter let us define θ = (β1, . . . , βm, γ1, . . . , γm). In order to test the hypothesis

H0 : θk = θk0, versus Ha : θk 6= θk0 at some θk0, the proposed statistic is:

Tk =
m∑

j=1

{M̃T
j Ã◦−1

j M̃j}θ̂(k)∪θk0
,
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for which M̃T
j = (M2j , M3j) ∩ {Ml ∈ M̃ : l ∈ ωk} and Ã◦−1

j = {Ãj,kk − Ãj,k(k)Ã
−1
j,(k)(k)Ãj,(k)k}−1

with Ãj being the covariation submatrix of M̃ associated with the k-component. Here a

submatrix Bk(k∗) of B is defined as only keeping the k-component of B in row and with ’deleting

the k∗-component of B’ in column, and so on. Note that Tk is basically a score-type test.

Another useful test to be compared with the above Tk-test is the (full-) likelihood ratio test,

which is not discussed in the present study.

Test for varying effect of a specific covariate

If the HHRvc is the underlying model and piecewise-constant approximation is utilized, then

the T{·}-statistic can be amended to test for ’varying effect’ with respect to a specific covariate.

For example, if we want to test for constant heteroscedasticity (that is, γ(t) = γ0, ∀t, for some

constant γ0), the test statistic can be constructed as

T =
m∑

j=1

{M̃T
j Ã◦−1

j M̃j}(β̂j ,γ0,Λ̂0)
.

In practice γ0 is substituted by an overall estimate γ̂. That is, assuming the HHRvc model,

our hypotheses are H0 : γ1 = . . . = γm = γ0 versus Ha : γj’s are not all equal. If we set γ0 = γ̂,

the statistic T{·} will be a χ2
m−1-variate approximately.

Test for the varying-coefficient PH model

There are tests and diagnostic plots proposed to check for varying effects under the PHvc-

based framework (Murphy, 1993; Valsecchi et al., 1996; Marzec and Marzec, 1997; Martinussen

and Scheike, 2006.) Here we propose a test Tphvc for the PHvc model by assuming HHRvc as

the alternative hypothesis. This Tphvc-test can be compared with the performance of several

tests proposed in Marzec and Marzec (1997) (which are ’omnibus’). To this purpose, Tphvc has

the same form with Tk, except for being evaluated at (β̂j, 0, Λ̂0) at the j-th segment. Under

the hypotheses H0: γj = 0, ∀j versus Ha: at least one of the γjs is not equal to 0, Tphvc is

distributed as χ2
m for large n.

Test for equality
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A commonly used test for equality is the logrank test in K-sample problem. The current

T{·} can now be modified to test for equality among groups represented by different covariate

values. Consider the hypotheses: H0: βj = γj = 0, ∀j; and Ha: at least one of βjs and γjs

is not equal to 0. The statistic (Tequal) evaluated at H0 is distributed as χ2
2m asymptotically.

Note that the proposed test for equality can be applied under a cure model. When the cure

probabilities are large for distinct groups, a genuine difference among groups could be masked

(or ignored) by these large probabilities of cure. However, the proposed test may have a good

power in testing the difference. In this case, it is also appealing to compare the performance

of the present T with the ’modified’ score test studied by Bagdonavicius and Nikulin (2006)

under their multiple cross-effect (MCE) model.

5 Data analysis

The methods discussed above are implemented on stroke patients’ survival data collected retro-

spectively from six regional teaching hospitals (bed number larger than 200) of central Taiwan

during January 2002 to December 2003. This data comprises 616 individuals who experienced

acute stroke with subtypes of cerebral hemorrhage, cerebral infarct or transcient ischemic at-

tack. The zero-time point is defined as the time of an inpatient’s hospitalization; and potential

variables for explaining mortality rate include age, sex, disease subtype, length of hospital

stay (LOS), comorbidity status of diabetes mellitus (DM) and/or hypertension, etc. Part of

the patients also have Glasgow coma scale (GCS) and Barthel index data ascertained from

hospital records. For a simple exposition, we only investigate the impact of ’comorbidity’ on

the hazards. The Kaplan-Meier (KM) survival estimates exhibit multiple crossings and a high

’cure’ (or ’non-susceptible to death’) probability. For the other variables, sex and LOS are not

significant, age has a nonhomogeneous effect, and the hazards among different stroke subtypes

satisfy proportionality. Furthermore, GCS and Barthel functional index are not recorded in a
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unified manner and are missing by a large proportion. So the subsequent analysis based on

HHRvc is basically univariate. The only variable used for interpreting the mortality is ’comor-

bid disease status’; it is dichotomized into two groups: those with and without the coexistence

of either DM or hypertension. The impact of comorbidity on the death rate of acute strokes is

still inconclusive. Our analysis in this section attempts to disclose the time-varying property of

relative hazards between the two groups of patients. However, the influential part of this kind

of data is: There is a very high proportion of patients who still survive at the endtime of the

study period.

The KM estimates are displayed in Figure 1, accompanied by a pair of survival curves

obtained from the HHRvc estimates. In order to give a clear comparison, the KM and HHRvc

survival estimates are plotted only within the range of ’t ≤ 697’ with 0.85 ≤ S(t) ≤ 1, because

a large proportion of patients survive beyond 697 days. The estimate proposed in the current

study fits well to the nonparametric KM survivals. If we denote the failure or censoring time as

T , the sample are divided into four segments: those with T < 10, 10 ≤ T < 35, 35 ≤ T < 244

and 244 ≤ T ≤ 697. The selected four segments contain 25,13,16, and 22 non-censored failure

times in 25,13,16, and 562 observations. That means the first three have no right-censoring

cases, and the last one has 540 censored observations. As a whole, the data has 76 failures,

and censoring proportion is 540/616 = 87.7%. Here we don’t put an artificial adjustment to

get a better fit. These four segments are selected to control a balanced sample sizes between

segments as well as between the two groups, so that each segment contains no less than 4 non-

censored failures for both groups. For group 1 (’without’ comorbidity) [versus group 2 (’with’

comorbidity)], there are 4[21],4[9],8[8],and 5[17] failures. Table 1 reports the point estimates of

parameters (αj, βj, γj) for j = 1, 2, 3, 4 under the HHRvc model. According to this result, the

rate ratio (R̂R(t), for τJ−1 < t ≤ τJ) can be calculated from (3) and (4) as

eβJ+γJ{αJ(t− τJ−1) +
J−1∑

j=1

αj(τj − τj−1)}eγJ−1.
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[Put Figure 1 about here.]

The Thetvc-test for varying heteroscedasticity has a realized value of χ2
3 = 44.83 (p-value<

0.001); and the Tequal-statistic is χ2
8 = 11.72 (p-value= 0.164), indicating that the acute stroke

patients’ survival within 2 years is irrespective of the comorbid diseases discussed in this study

and that, using HHRvc, time-varying heteroscedasticity should be included.

Table 1: Analysis of first-ever stroke patients’ two-year survivals.

Segment(j =) 1 2 3 4 Test

αj 3.673 0.592 0.062 0.104 Thetvc = 44.83(p = 0.000)

βj 2.143 0.150 3.202 4.065 Tequal = 11.72(p = 0.164)

γj 0.628 0.010 -4.751 -6.654

6 Discussion

The results of Table 1 have some important implications. First, the baseline parameter esti-

mates α̂s are decreasing, revealing overall declination in the risk of death of stroke patients. This

phenomenon confound with the time-varying property of β and γ. In particular, the decreasing

baseline hazard and the decreasing heteroscedasticity (to a large negative value) together result

in the large proportions of ’cured’ patients for each group. Second, the baseline-hazard param-

eters modulate the overall trend of incidence of events, β(t) reflects the relative ’location’ or

’strength’, and γ(t) captures the shape or heterogeneity that interacted with time. The global

validity of HHRvc is only diagnosed by visualized fitness in Figure 1. How to construct an

omnibus (or global) test for the goodness-of-fit of the HHRvc-model remains to be an issue.

For a regression set-up with multiple regressors, not all variables have varying effect, and

not all the varying coefficients have the same ’crossing point(s)’. This involves the strategy

of data analysis. Here we propose plotting Kaplan-Meier estimates for each specific covariate
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after an adequate grouping. The covariates without crossings in K-M estimates are suggested

not to be put in the heteroscedasticity component. For those with cross-effect, practitioners

need to decide the cut-off points {τj}. In practice, the selected cut-off intervals (τj−1, τj] should

not contain more than one crossing point. Finally, as a conclusion, we propose the application

of Weibull-type regression model equipped with time-varying parameters to deal with multiple

cross-effect problems, which may be combined with a cure probability.
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