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A Partial Score Test for Differences among

Heterogeneous Populations

Summary

In event time data analysis, comparisons between distributions are made by the logrank test.

When the data appear to contain crossing hazards phenomena, nonparametric weighted logrank

statistics are usually suggested to accommodate different-weighted functions to increase the

power. However, the gain in power by imposing different weights has its limits since differences

before and after the crossing point may balance each other out. In contrast to the weighted

logrank tests, we propose a score-type statistic based on the semiparametric-, heteroscedastic-

hazards regression model of Hsieh (2001, Journal of the Royal Statistical Society, Series B

63,63-79), by which the nonproportionality is explicitly modeled. Our score test is based on

estimating functions derived from partial likelihood under the heteroscedastic model considered

herein. Simulation results show the benefit of modeling the heteroscedasticity and power of the

proposed test to two classes of weighted logrank tests (including Fleming-Harrington’s test and

Moreau’s locally most powerful test), a Renyi-type test, and the Breslow’s test for accelera-

tion. We also demonstrate the application of this test by analyzing actual data in clinical trials.

Key Words: heteroscedasticity; crossing hazards; proportional hazards; weighted logrank

test.

2



1 Introduction

When one is dealing with event time data in comparative trials, the proportional hazards (PH)

model (Cox, 1972) is usually used to estimate the relative effect of a treatment adjusted for

prognostic factors. However, when ’nonproportionality’ (or more specifically, ’crossing hazards’)

is present, the PH model and the companying estimation based on the partial likelihood leads to

a biased estimate of the ’effect-measure’, e.g., hazards ratio. In this situation, the logrank test

for equality between distributions may have poor power against the crossing hazards alternatives

(Andersen et al., 1993, page 390). To detect a substantial difference, weighted logrank tests

are often used to improve the power (Gill, 1980; Harrington and Fleming, 1982; Moreau et

al., 1992; Kosorok and Lin, 1999). In particular, Fleming and Harrington (1991, Chapter 7)

presented a class of weighted logrank statistics, hereafter referred to as the Gρ,γ-statistic, by

which different weights can be used to stress early, middle, or late differences among groups by

imposing different ρ-γ configurations. Nevertheless, the weighted logrank test has a drawback

in that if a specific weight is chosen, it is not globally valid for other cases or datasets. If there

is a possible hazards crossing and it is a result of a general ’acceleration’ (not necessarily a

multiplicative effect on ’time’), a complementary statistic to the ordinary logrank statistic can

be considered to accommodate for the cross-effect (Breslow, Edler, and Berger, 1984). In this

article, however, we study a quite-general model as an alternative which explicitly accounts for

the crossing hazards as a result of heterogeneity. We assume the null hypthesis (H0) that the

hazards (or distributions) of different groups are equal; the alternative hypothesis (Ha) is the

class of heteroscedastic hazards regression (HHR) model (Hsieh, 2001). In terms of cumulative

hazards, the HHR model is expressed as

Λ(t; Z, X) = {Λ0(t)}exp(φ′X)exp(β ′Z), (1)
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where X and Z are two vectors of predictable time-dependent covariates, β and φ are the

associated parameters of interests, and Λ0(t) is an unknown baseline cumulative hazard function

with Λ0(t) =
∫ t
0 λ0(u)du. If X and Z are not time dependent, model (1) can also be expressed

in terms of the hazard function:

λ(t; Z, X) = λ0(t)exp(φ′X){Λ0(t)}exp(φ′X)−1exp(β ′Z). (2)

In view of model (2), it can also accommodate time dependent X and Z. To avoid complexity

of exposition, we assume that X = Z throughout the following context. It is the same model

used as an ’alternative’ by Quantin et al. (1996) and Devarajan and Ibrahimi (2002) to test

the validity of the proportional hazards model. In this paper, however, we investigate the

performance of a score-type test for differences among heterogeneous populations, based on a

set of estimating functions. The estimating functions are derived from the ’partial likelihood’

appearing in the first factor of a decomposition of the full likelihood (Johansen, 1983) with

either model (1) or (2).

In contrast to the HHR model, a simpler semiparametric alternative was studied by Moreau

et al. (1992) to produce a locally most powerful (LMP) test for H0:

Λ(t; X) = {Λ0(t)}exp(φ′X), (3)

which includes the Weibull class, Λ(t; η, φ′X) = (ηt)exp(φ′X), as a special case. The difference

between (1) and (3) is that from the viewpoint of the linear transformation model (see §2), model

(3) considers only the change in ’scale’, whereas model (1) accommodates both of ’location-

shift’ and ’scale-change’. It is thus appealing to compare the performance of tests for equal

distributions constructed on models with this nested structure: H0 ⊂model (3)⊂ model (1)

(or Ha). Heuristically, if a more-extended model, parametric or semiparametric, fits the data

well, the statistical test constructed from a likelihood based on these models will generally

outperform the nonparametric tests as well as the tests constructed on the basis of a narrower

4



class.

In §2, Hsieh’s estimating functions together with the Breslow-type estimate of the baseline

cumulative hazard are presented. With the regression setting of (1), a score-type test is pro-

posed in §3 based on the estimating functions which are treated as real scores. As one may be

concerned with the performance of the proposed test, the corresponding two-sample expression

is also derived. For the two-sample study, simulations and data analyses are reported in §4

to compare the proposed test with two classes of weighted logrank tests (including Fleming-

Harrington’s Gρ,γ-statistics and Moreau’s LMP test), a Renyi-type test which only captures the

supremum discrepancy between observed and expected realizations of a process, and Breslow’s

acceleration test designed for a possible crossing-hazards phenomenon between groups. Imple-

mentation of the HHR model and the proposed test are illustrtated through analyses of actual

data published in the literature. Finally, we provide some discussion on model formulation, the

concern of bias when heterogeneity is neglected, and the goodness-of-fit problem.

2 The Heteroscedastic Model and Estimating Functions

2.1 Model genesis

Recently, the linear transformation model has attracted much attention, because it attempts

to provide a very general framework for survival data analysis (Dabrowska and Doksum, 1988;

Cheng, Wei, and Ying, 1995, 1997). Consider the following model:

h(T ) = −β ′z + ε, (4)

where h(·) is an unknown function of the random variable T , and the distribution of ε, F (t),

is specified. When F (t) = 1 − exp{− exp(t)}, which is an extreme value distribution, (4)

corresponds to the proportional hazards model. In contrast, Hsieh (2001) considers the error
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terms subject to heteroscedasticity:

h(T ) = −β ′z + σε, (5)

where σ = exp(φ′X). If Z = X, it means that the heteroscedasticity is also a result of the

covariate Z itself. In terms of cumulative hazards, the corresponding model of (5) is the HHR

model (1). As a parametric example, Hsieh (1996) demonstrated that two-parameter Weibull

distributions with different scales and different shapes satisfy the formulation of model (1).

2.2 Partial score equations and the computational algorithm

Assume that there are n observed failures or right-censored times T1, T2, . . . , Tn. Without loss

of generality, let T1 < T2 < . . . < Tn. In this subsection, notations and estimating functions

are introduced. Let Ni(t) be the counting process of individual i associated with the intensity

hi(t) = Yi(t)λ0(t)exp{(β + φ)′Zi}{Λ0(t)}exp(φ′Zi)−1,

where Yi(t) is the at-risk indicator at time t. Further, denote

SJ(t) = (1/n)
∑

Yi(t)Ji(t)exp{(β + φ)′Zi}{Λ0(t)}exp(φ′Zi)−1,

for a predictable process J(t). According to either (1) or (2), the full likelihood, LF , with

Johansen’s decomposition (Johansen, 1983) is

LF (θ, Λ0) = Π
∫ τ

0

hi(u)dNi(u)

S1(u)
· Π

∫ τ

0
S1(u)λ0(u)dNi(u) · exp{−

∫ τ

0
nS1(u)du}

for a maximal observation time τ , θ = (β ′, φ′)′. We have the
√

n-scaled partial log-likelihood

lp = (1/
√

n)
∑

log{
∫ τ

0

hi(u)dNi(u)

S1(u)
}.

The estimating functions can be derived from taking partial derivatives of lp with respect to β

and φ:

Eβ = (1/
√

n)
∑

∫ t

0
{Zi −

SZ(u; Λ0, θ)

S1(u; Λ0, θ)
}dNi(u) and (6)
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Eφ = (1/
√

n)
∑

∫ t

0
{Vi −

SV (u; Λ0, θ)

S1(u; Λ0, θ)
}dNi(u), (7)

where Vi(t) = Zi(t)exp(φ′Zi)log{Λ0(t)}. The baseline cumulative hazard Λ0(t) in (7) makes it

identifiable from (6). To estimate Λ0(t), the Breslow-type estimator can be considered:

Λ0(t) =
∑

∫ t

0
[
∑

Yi(u) exp{(β + φ)′Zi}{Λ0(u)}exp(φ′Zi)−1]−1dNi(u). (8)

Instead of solving (8) directly, however, a finite-dimensional sieve approximation of Λ0(t) is

used:

Λ0m(t) =
∫ t

0

m
∑

1

αi1{τi−1 < u ≤ τi}du, (9)

where τj’s are appropriate cutoff points, and m, a ’smoothing’ factor, is the dimension of Λ0m

chosen to approximate the function Λ0. Note that the estimating functions (6) and (7) can also

be obtained from some algebraic transformation of the primary estmating functions, derived by

Hsieh (2001), based on the nonparametric maximum likelihood estimation introduced by Gill

(1989) and Gill and van der Vaart (1993), along with a martingale structure defined.

An algorithm, other than that suggested by Hsieh (2001, §5.1, steps 1∼3), can be used to

compute the ’first-step’ estimates of parameters β, φ, and {αi}m
1 for the iteration procedure in

the over-identified estimating equation (OEE) approach. In the j-th step iteration,

Λ
(j)
0m(t) =

∑

∫ t

0
[
∑

Yi(u) exp[{β(j−1) + φ(j−1)}Zi]{Λ(j−1)
0m (u)}σ

(j−1)
i

−1]−1dNi(u), (10)

where Λ
(j)
0m(t), β(j), φ(j), and σ

(j)
i = exp{φ(j)Z} denote the j-th step iterated values, j =

0, 1, 2, 3, . . .. We can choose the initial guess of β and Λ0 (i.e., β(0) and Λ
(0)
0m) as the estimates

of the conventional Cox’s model where γ(0) = 0. The first-step estimates thus obtained are

consistent and asymptotically normal if some regularity conditions are assumed. However, they

are less efficient than the estimates obtained from the OEE method. In addition, computational

problems also will be encountered since the ’surface’ of the likelihood function with a sieve

approximation is complex.
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3 Proposed Test

3.1 Regression

The HHR model is a nonproportional hazards model under which the hazards according to

heterogeneous populations can cross at some point(s). By assuming the HHR model in our

problem, the null hypothesis is H0 : β = φ = 0; and the alternative is Ha : β and φ are

both arbitrary and finite. Although model adequacy is crucial for making a score-type test

plausible, we can only suggest in this paper that a good fit of the HHR model is judged by

visual diagnostics. A formal goodness-of-fit test for model validity based on a large sample

consideration has been studied by Wu, Hsieh, and Chen (2002). When visual discrepancy

between estimated survivals based on the Kaplan-Meier method and the HHR model is ’small’,

we expect that a local test constructed on the basis of the HHR model can be a more powerful

one for detecting the difference. We now treat Eβ and Eφ as if they were the true score functions.

Under model (1) or (2), a score-type test statistic can be written as

W = {Eβ, Eφ}I−1{Eβ, Eφ}′, (11)

which is evaluated at (β, φ, Λ0(τ)) = (0, 0, Λ̂0(τ)). It is important to note that Λ̂0(·) is obtained

as an estimate in the parameter space of Ha (not under the null hypothesis H0) using the

method of §2.2 with sieve approximation, and thus is consistent in the entire parameter space

of H0
⋃Ha. The information matrix, I, defined as

I =

(

Iββ Iβφ

Iφβ Iφφ

)

,

has the components

Iββ = (1/n)
∑

∫ τ

0
{Zi −

SZ(u; Λ0, θ)

S1(u; Λ0, θ)
}⊗2dNi(u),

Iφφ = (1/n)
∑

∫ τ

0
{Vi −

SV (u; Λ0, θ)

S1(u; Λ0, θ)
}⊗2dNi(u),
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and

Iβφ = Iφβ = (1/n)
∑

∫ τ

0
{Zi −

SZ(u; Λ0, θ)

S1(u; Λ0, θ)
}{Vi −

SV (u; Λ0, θ)

S1(u; Λ0, θ)
}dNi(u).

The symbol A⊗2 denotes the product of column vector A and its transpose A′. Asymptotically,

W is distributed as χ2
2k, where k is the dimension of Z.

3.2 Two-sample study

We assume that, in the two-sample case, an individual does not switch between the groups over

time. Let Dji be the number of failures in group j (j = 0, 1) at time ti. Assuming no ties,

D1i = 1 if the individual who failed is a member of group 1 and D1i = 0 otherwise. Further,

Y ji is the risk set size of group j at time ti. The estimating functions corresponding to (6) and

(7) are reduced to

Eβ = (1/
√

n)
∑

(D1i − E1i) and

Eφ = (1/
√

n)
∑

∆i(D1i − E1i), (12)

where ∆i =logΛ0(ti); and E1i = Y 1i/Y i, Y i = Y 1i + Y 0i, is the empirical probability calculated

at ti when the person who failed is a member of group 1 under the ’equility assumption’ λ1 = λ0.

Entries of the corresponding information matrix are

Iββ = (1/n)
∑

(D1i − E1i)
2,

Iβφ = (1/n)
∑

∆i(D1i − E1i)
2, and

Iφφ = (1/n)
∑

∆2
i (D1i − E1i)

2. (13)

In practice, ∆i is substituted by ∆̂i = log Λ̂0(ti). However, the estimate Λ̂0(ti) cannot be

derived from (8) under H0 as Λ̂0(ti) =
∑

k≤i{Y k}−1. Instead, bacause the HHR-class is the

alternative (Ha), Λ̂0(ti) must be solved from (8), with β and γ being solved simultaneously

from (6) and (7) (in their two-sample setting of (12)); it is dependent on the values of β̂ and

γ̂, and thus can be expressed as Λ̂0(ti) = Λ̂0(ti; β̂, γ̂).
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The two-sample counterparts of theW-statistic in (11) is distributed as χ2
2 underH0 because

dim(Z) = 1. A similar two-sample result from the empirical process approach with strong

approximations to the receiver operating characteristic (ROC) curves, followed by a least square

method, can be found in Hsieh (1996). We are interested in comparing the performance of W

to the class of weighted logrank tests (Klein and Moeschberger, 1997, pages 191-198; Fleming

and Harrington, 1991, Chapter 7) with a predictable weight process K(t):

TK =
{∑n

1 K(ti)(D1i − E1i)}2

∑n
1 K2(ti)Ei(1− Ei)

. (14)

In particular, we consider two choices of K(t). (I) The function K(ti) = {Ŝ(ti−)}ρ{1−Ŝ(ti−)}γ ,

weighs differences in early, middle, and late stages between the two groups according to (ρ, γ) =

(1, 0), (1, 1), and (0, 1), respectively. The quantity Ŝ(t−) is the Kaplan-Meier (K-M) estimate

of survivor function of the pooled sample just before time t, under H0. When (ρ, γ) = (0, 0),

the G0,0-statistic corresponds to the ordinary logrank statistic. (II) If the weight function

K(ti) = 1+log[−log{Πi
k=1Y k/(1 + Y k)}], this results in Moreau’s LMP statistic, M, when the

parameter space of Ha is further restricted to model (3) by ignoring the location parameter β

(Moreau et al., 1992). In addition, we also compare the performance of W-, M-, and Gρ,γ-

statistics with a Renyi-type test R (Klein and Moeschberger, 1997, Chapter 7) and a test (B)

proposed in Breslow et al. (1984) designed for general ’acceleration’. The Renyi-type test

captures the supremum of the process

(1/
√

n)
∑

K(ti)(D1i − E1i)

and is robust to the crossing-hazards alternative. The Breslow-type test employed a comple-

mentary statistic for detecting crossing-hazards. In this paper, we adopt B = T1 + TQ, where

Q(ti) = Λ̂0(ti), for comparison. Under H0, the Gρ,γ- and M-statistics are both distributed

as χ2
1; the B-statistic is distributed as χ2

2; and the distribution of R can be approximated by

the distribution of the supremum of standard Brownian motion. In the next section, power
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comparisons between Gρ,γ-, M-, R-, B-, and W-statistics are made through simulation studies.

Finally, it is worth noting again that these comparisons were made between various statistics

constructed on nested spaces of models (also refers to §1).

4 Numerical Study

4.1 Simulations

Let T ∗
z be the failure time random variable distributed as Fz=Weibull(a, b) with a = exp(β ′z)

and b = exp(φ′z); the cumulative hazard function is Λ(t) = atb. To make comparisons, we

choose half of the sample according to z = 0 and half to z = 1. In any condition, the

baseline group (z = 0) is chosen to be distributed as Weibull(1,1) (or exponential(1)), and the

other group to be distributed as Weibull(exp(β), exp(φ)). Consider the situations when the

cumulative hazards, and thus the survival functions, of these two groups cross at some point

tc such that Prob(T ∗
0 ≥ tc)=Prob(T ∗

1 ≥ tc) = 1− s, 0 < s < 1. When s takes a value close to

0 or 1, this means that the cumulative hazards cross at an early or late stage of observations,

respectively. In our simulations, the parameter configurations of β and φ are: β = 0, log 2, and

− log 2, φ = 0, log 2, and − log 2. Because the HHR model only permits monotonic hazards

ratios in time between two groups (this can be verified from (2) by taking X = Z and Z = z1

versus Z = z0 as stated in Wu et al. (2002)), the case of hazards-crossing associated with

hump-shaped or bathtub-shaped hazards ratios is not considered in this paper. The sample

size is 100 for each study. The censoring mechanism, Cg, is chosen to produce 25% failures

censored in the following way. Let Cg be distributed as G=Weibull(a∗, b); that is, the shape

parameter b is chosen to be the same for both Tz and Cg to simplify the situation. It is then

easy to compute from
∫

G(u)dF (u) = 0.25 that a∗ = a/3. Nonetheless, the results may depend

on the distribution of Cg.

To check the behavior of W, compared with other tests under H0, Table 1 gives empirical
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upper-tailed probabilities (p̂) according to 1000 simulations with the true p = 0.01, 0.05, and

0.1. The upper-tailed probability is defined as follows. If a statistic (say, T ) has the sampling

distribution χ2
ν , when Prob(χ2

ν > q)=p, the tailed probability of T in these 1000 simulations is

p̂ = (1/1000)
1000
∑

i=1

1(Ti > q),

where Ti is the ith realization of T . In our study, the Renyi-type statistic also has a weight

process K(·) which needed to be chosen. We use the same weight as G1,1 because it has the best

performance in almost all situations. Table 1 shows that, under H0, the empirical distributions

of the proposed statistic W and the weighted logrank statistics Gρ,γ andM all have satisfactory

tail behavior in both of the 0%- and 25%-censored cases. However, the R- and B-tests have

larger type I errors than the nominal level. Under Ha, rejection proportions are reported in

Table 2.

[Tables 1 and 2 about here.]

In Table 2, the ordinary logrank test (G0,0) and the Breslow’s test (B) have the best performance

in power when φ = 0, which corresponds to the proportional hazards model; Moreau’s LMP

test M has the best performance when β = 0. However, even in these two cases, the statistical

power of the proposed test W still is comparable with those of the former two. In other cases,

W has greater power for both cases of 0%- and 25%-censoring. If there is early crossing, e.g.

when s = 0.221 or (β, φ) = (− log 2,− log 2), the G1,0-test has the lowest power since it puts

greater weight on early-stage observations. For late crossings when s = 0.982 and 0.865, the

powers of G1,1- and G0,1-tests are both poor because weights are leaned on in the middle and

late stages. However, the results of s = 0.632 and 0.393 have to be interpreted with more

care. At first glance, they may be considered as crossing near the middle stage, if ’middle’ is

recognized as representing the common survival of 0.5. The former case, s = 0.632, includes

two combinations: (β, φ) = (0, log 2) and (0,− log 2). In this case, G1,0 has the lowest power for
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the ’0%-censoring’ (rejection propabilities of 0.124 and 0.135) and G0,0 has the lowest power for

the ’25%-censoring’ (rejection propabilities of 0.047 and 0.065). For the latter case, s = 0.393,

which corresponds to (β, φ) = (log 2, log 2), G1,0 again has the lowest power. We learn from

these results that the interpretation of ’early’, ’middle’, or ’late’ crossings are not dogmatic.

Rather, it depends on the interrelation between the groups, including the value of s (1 minus

the common survival), the curvature of (estimated) survivor functions, and even the censoring

mechanism. In some situations, for example, censoring can delay the point of intersection of

hazards. So, a test which puts weight on a late-stage may have good or moderate power for

a middle-stage crossing in the case of 0%-censoring but a much smaller power in the case of

25%-censoring. The two cases of s = 0.632 illustrate this situation. Finally, Moreau’s M is

not sensitive enough to reject the null hypothesis when there is only ’location-shift’ but no

’scale-change’, i.e., when β 6= 0 and φ = 0. In general, the power of W is superior to the

weighted logrank tests, Gρ,γ and M, as well as to the R- and B-tests, revealing the benefits

gained by considering the current semiparametric model. If the nonproportionality cannot be

modelled by the HHR model, on the other hand, nonparametric tests are still recommended.

4.2 Actual data analysis

In this section, the data listed in Piantadosi (1997, Chapter 19, pages 483-488) concerning

the survival times of lung cancer patients and those analyzed in Stablein and Koutrouvelis

(1985) and Hsieh (2001) concerning a set of gastric carcinoma patients are used to illustrate

the implementation of model (1) and the W-statistic in the case of a two-sample problem,

compared with other statistics. For both datasets, event time is defined as the ’survival’ time

of cancer patients. It is crucial that model (1) is appropriate in order that the W-statistic can

be applied to test for differences. In the literature concerning the proportional hazards model,

checking model adequacy can be accomplished by ’omnibus’ tests, including those of Schoenfeld
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(1980), Wei (1984), Gill and Schumacher (1987), and Lin (1991). Regarding the HHR model

(1), a chi-square goodness-of-fit test is suggested in Hsieh (2001) and Wu et al. (2002) for a

similar purpose, based on the OEE approach. As mentioned in a previous context, however, we

suggest that data practitioners diagnose the fits of model (1) by simply plotting the estimated

survivor curves of different groups (ŜHH) according to distinct covariate values and comparing

them with the Kaplan-Meier (K-M) estimates (ŜKM). (See Fig. 1 for lung cancer data and

refer to Hsieh (2001) for gastric cancer data.) The rationale is that when the model is adequate,

and consistent estimators β̂, φ̂, and Λ̂0 have been solved from §2, the estimated survivals based

on the semiparametric HHR model,

ŜHH(t; z) = exp[−{Λ̂0(t)}exp(φ̂′z) exp(β̂ ′z)], (15)

must be close to the nonparametric K-M estimates. Table 3 gives the results of the tests after

estimation for the datasets mentioned above.

For gastric cancer data, 90 patients were randomized into two groups, each containing 45

individuals receiving chemotherapy and chemo- plus radiotherapy, respectively (Stablein and

Koutrouvelis, 1985). There is a cross at around 2.7 years between the two groups. At that

place, the survivor estimate for both groups is around 0.2 (s = 0.8), which can be interpreted as

a late or middle stage. The p-values of the G1,1- and G0,1-tests are 0.902 and 0.150, respectively,

for they put weights on middle and late stages, respectively. The G1,0-test, as well as Moreau’s

test M and the proposed test W, give significant results of testing for the group difference at

the 0.05 α-level. Neither results of R- or B-tests are significant. However, Moreau’s test is the

most significant due to the fact that if we apply the HHR model, the parameter estimates of

(β, φ) are (β̂, φ̂) = (0.3251,−0.7933), with corresponding p-values of 0.3267 and 0.0559. The

estimated heteroscedasticity parameter φ̂ is nearly significant, but the estimate β̂ is not. This

is a situation when Moreau’s LMP test, M, performs the best. However, the proposed test

W also performs well in this case. Furthermore, if the estimated β̂ becomes more significant,
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not necessarily at the customary 0.05 level, the W-test will be more powerful, as the following

dataset shows.

[Table 3 about here.]

The situation is more complicated for lung cancer data. There were 164 patients divided in

two groups who received radiotherapy (sample size of 86) or radiotherapy plus ’CAP’ (sample

size of 78). From Fig. 1, there are two places at which nonproportionality is apparent. First,

the Kaplan-Meier estimates tend to cross at a time of around 7 months. Second, they cross

at around 33 months, and at the intersection, the common survival of these two groups is 0.26

(s = 0.74), which also can be recognized as a late- or middle-stage crossing. For this sort of

data, seeking a model which accounts for multiple crossings is a forthcoming effort. In the

current analysis, however, applying the HHR model can only model the dataset as if it has a

single crossing, which appears near the second place. We observe that, for most places, the fit

of ŜHH is fine, except for those near the early stage in the radiotherapy-plus-CAP group. In our

analysis, it is expected that G0,1, which places weight on the late stage, is poor at detecting the

difference (p-value of 0.994) and G1,1, which puts weight on middle stage, is also not capable

of reaching this goal (p-value of 0.555). Contrastingly, the G1,0-test has a p-value of 0.075;

Moreau’s M and the proposed W state a more-significant difference between the two groups

than the Gρ,γ-statistic. Likewise, neither the R- nor the B-tests give significant results. The

estimated parameters (β̂, φ̂) = (0.2781,−0.4914) have p-values of 0.181 and 0.085, which can

be used to compare W and M. We can see from this example that the estimate β̂ becomes

more significant than the former dataset. The result can be interpreted to mean that the W-

test has a smaller p-value (0.041) than Moreau’s M-test (0.046). In conclusion, analyses of

these two datasets, along with the simulations, reveal benefits of modeling nonproportionality,

if possible, rather than choosing different weights for a nonparametric class.

[Fig. 1 about here.]
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5 Discussion

In model (1), there are two components which are expressed as linear combinations of two

sets of covariates: the component exp(β ′Z) appears as the risk function as in Cox’s model

and exp(φ′X), referred to as the heteroscedasticity component, appears as the power of the

baseline cumulative hazard. Generally, exp(φ′X) determines the ’shape’ of cumulative hazards.

If the heterogeneity (modelled by the heteroscedasticity component) is not accounted for, the

estimate of effect-measure associated with Z is biased. This is similar to the arguments given

by Gail, Wieand, and Piantadosi (1984) which dealt with the case of omitting an important

explanatory variable in a nonlinear regression. If the true model is the current HHR model,

analytical computation of bias when it is misspecified as the PH model can be obtained from

mimicking the calculations in the paper by Gail et al. (1984) along with those in Tsiatis’s

(1981) work. Here, relaxing the simple disposition that Z = X, model (1) allows the vector X

to share common components with Z, and the common part is the ’mechanism’ which results in

heterogeneity. As an illustration, let X = (X ′
1, Z

′
1)
′ and Z = (Z ′

1, Z
′
2)
′. Omitting X1 and/or Z1

in the heteroscedasticity component can induce bias, even if X1 is independent of Z1 and Z2. If

there is hazards crossing when analyzing actual life-time data, positive and negative differences

may balance each other out before and after the place where the cross-effect occurs (Marubini

and Valsecchi, 1995; Chapter 4). Given this concern, logrank or weighted logrank statistics are

not globally capable of capturing the genuine difference. Moreover, the locally most powerful

test constructed in Moreau et al. (1992) is only sensitive for detecting differences in ’shape’.

With the HHR model, however, differences between groups appearing as a location shift or

scale change can be captured by the system of score-type estimating functions (6) and (7). An

important step is to provide a formal test other than visual diagnostics. In this regard, Hsieh’s

(2001) test is an omnibus one and can be viewed as a by-product of his OEE approach. In

contrast, it is also worth noting that the tests of Quantin et al. (1996), Bagdonavičius, Hafdi,

16



and Nikulin (2002), and Devarajan and Ibrahimi (2002) are only designed to test for validity

of the PH model (H0) which is nested in the class of HHR models (Ha).

With Hsieh’s test of model validity, a smoothing factor m (the number of cutoff segments)

needs to be decided on according to the order m = O(n1/3), where n is the total sample size.

In the procedure of data analysis, the selected cutoff points should be adapted in some cases

to the ’pattern’ of estimated survivor functions. For example, the cutoff points for lung cancer

data can either be chosen as the {20, 40, 60, 80}-th percentiles or the {4, 8, 18, 65}-th percentiles.

The former gives an equal-number partition which results in a p-value of 0.052 for the W-test;

the latter was reported in the last section. As a result, the second set of cutoff points gives a

better fit for both groups using the HHR model. Thus far, a unified rule is still lacking for the

choice of cutoff points and/or the value of m in order for an optimal result to be obtained when

the total sample size n is moderate or less.
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Table 1: Upper-tailed probabilities in 1000 replicates of Fleming-Harrington’s Gρ,γ-statistics,

a Renyi-type test R, Breslow’s acceleration test B, Moreau’s M-statistic, and the proposed

partial-score test W. The value p is the specified probability of the theoretical sampling

distribution at which the tailed behavior of each test’s statistics is to be investigated. The

Gρ,γ- and M-statistics both have a χ2
1 sampling distribution; Breslow’s B and the proposed

partial-score statistic W are distributed as χ2
2; whereas the distribution of R-statistic is

approximated by the supremum of standard Brownian motion. In each simulation, we chose

the censoring distribution so that 0% and 25% of the sample was censored.

0% censored
p G0,0 G1,0 G1,1 G0,1 Renyi Breslow Moreau Proposed

R B M W
0.100 0.106 0.104 0.094 0.100 0.128 0.130 0.098 0.106
0.050 0.047 0.049 0.050 0.057 0.071 0.076 0.059 0.052
0.010 0.005 0.012 0.006 0.013 0.017 0.022 0.011 0.008

25% censored
0.100 0.095 0.083 0.095 0.119 0.168 0.131 0.114 0.105
0.050 0.050 0.042 0.045 0.057 0.105 0.081 0.066 0.049
0.010 0.012 0.008 0.011 0.012 0.041 0.029 0.011 0.008
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Table 2: Empirical rejection probability of Fleming-Harrington’s Gρ,γ-statistics, a Renyi-type

test R, Breslow’s acceleration test B, Moreau’s M-statistic, and the proposed partial-score

statistic (W) under various β-φ configurations with the HHR model; s is the ’probability’ at

which the survivor functions of the two groups cross (s means ’1-survival’). When φ = 0,

there are no crossings; we denote this case by the symbol ’−’. There are 1000 replications in

cases of 0% and 25% censored samples.

β 0 log2 − log 2
φ 0 log2 − log 2 0 log2 − log 2 0 log2 − log 2
s − 0.632 0.632 − 0.393 0.982 − 0.865 0.221

0% censored

G0,0 0.047 0.139 0.138 0.922 0.824 0.893 0.934 0.228 0.990
G1,0 0.049 0.124 0.135 0.821 0.201 0.996 0.860 0.791 0.802
G1,1 0.050 0.354 0.347 0.884 0.927 0.763 0.878 0.108 0.995
G0,1 0.057 0.811 0.798 0.844 0.997 0.256 0.846 0.162 1.000

Renyi-type (R) 0.071 0.352 0.364 0.894 0.920 0.930 0.889 0.410 0.995
Breslow (B) 0.076 0.768 0.761 0.938 0.992 0.842 0.935 0.344 1.000
Moreau (M) 0.059 0.988 0.986 0.101 0.994 0.686 0.082 0.915 0.969

Proposed test (W) 0.052 0.972 0.978 0.858 0.999 0.998 0.876 0.976 1.000
25% censored

G0,0 0.050 0.047 0.065 0.829 0.413 0.965 0.831 0.421 0.904
G1,0 0.042 0.189 0.203 0.769 0.086 0.997 0.746 0.824 0.622
G1,1 0.045 0.163 0.189 0.751 0.746 0.785 0.771 0.162 0.979
G0,1 0.057 0.391 0.440 0.691 0.913 0.396 0.720 0.087 0.991

Renyi-type (R) 0.105 0.283 0.332 0.842 0.837 0.961 0.881 0.547 0.983
Breslow (B) 0.081 0.426 0.480 0.839 0.883 0.910 0.834 0.387 0.992
Moreau’s M 0.066 0.900 0.891 0.094 0.944 0.585 0.102 0.810 0.937
Proposed W 0.049 0.883 0.878 0.754 0.946 0.992 0.738 0.953 0.993
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Table 3: Analyses of gastric cancer data and lung cancer data with the weighted logrank tests

of Fleming-Harrington’s Gρ,γ- and Moreau’s M-statistics, a Renyi-type test R, Breslow’s

acceleration test B, and the proposed test W.

Test statistic G0,0 G1,0 G1,1 G0,1 Renyi Breslow Moreau Proposed
R B M W

Gastric cancer

Realization 0.222 3.963 0.015 2.071 1.857 3.435 9.054 7.941
(p-value) (0.637) (0.046) (0.902) (0.150) (0.127) (0.179) (0.003) (0.019)

Lung cancer

Realization 1.275 3.177 0.349 0.001 1.255 1.458 3.976 6.394
(p-value) (0.259) (0.075) (0.555) (0.994) (0.419) (0.482) (0.046) (0.041)
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Figure 1: Comparison between Kaplan-Meier estimates and 
those of survivor functions obtained from the HHR model

for lung cancer data.
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K-M: Radiotherapy
K-M: Radiotherapy+CAP
HHR: Radiotherapy
HHR: Radiotherapy+CAP


