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Heterogeneity and Varying E®ect in Hazards Regression:
Revisiting the Stanford Heart Transplant Data

Summary

In the analysis of survival data, when nonproportional hazards are encountered, the popu-
larly used Cox's model (Cox, 1972, JRSS-B 34, 187-200) is often extended to allow for time-
dependent e®ect by accommodating a varying coexcient. This extension, however, cannot take
care of the nonproportionality which is a result of heterogeneity. In contrast, the heteroscedas-
tic hazards regression (HHR) model proposed by Hsieh (2001, JRSS-B 63, 735-748) is capable
of modeling the heterogeneity and thus can be applied when dealing with nonproportional haz-
ards. In this paper, we study the application of the HHR model possibly equipped with varying
coexcients. For investigations of the need to impose varying coezxcients, an LRR (logarithm of
relative risk) plot is suggested. Constancy and degeneration in the plot are used as diagnostic
criteria. Two variants of the HHR model, a 'piecewise e®ect’ (PE) analysis and an ‘average
e®ect' (AE) analysis, are introduced and implemented using the Stanford Heart Transplant
data. Under the framework of the varying-coexcient HHR model, the meanings of the PE and
AE analyses, along with their dynamic interpretation, are discussed.

Key words: proportional hazards, varying coexcient, nonproportional hazards, heterogene-
ity.



1 Introduction

Despite the fact that the proportional hazards (PH) model (Cox, 1972) has been popularly used
to analyze survival data, nonproportional hazards among treatments or covariates have also
attracted much attention in the past few decades (Stablein and Koutrouvelis, 1985; O'Quigley,
1994). In view of the proportionality, the ratio of hazard rates (or relative risk) associated with
di®erent covariate values or their con gurations is a time-invariant constant proportional to the
di®erence; additionally the relative risk between groups is homogeneous over strata. Indeed,
this is a rather strong assumption. In real applications, however, nonproportionality arises in
plots of (cumulative) hazard rates which may indicate that ‘time" itself can implicitly be a
variable of concern. Statistically, modeling nonproportionality is appealing in that it avoids
biased inferences; and a suitable biological model can be essential for the purpose of prediction,
in particular on an individual prognosis. A model commonly used is the proportional hazards
model equipped with varying coexcients (Murphy and Sen, 1991; Marzec and Marzec, 1997;
Martinussen, Scheike, and Skovgaard, 2001):

(6Z,X) = F_o(t)gexpf '(t)Z(t)g; (€N

where ~(t) denotes the varying e®ect of Z. Although the varying-coexcient model (1) has
the <exibility of modeling 'nonproportionality’ with regards to progressing time, it still is a
homogeneous model. Basically, Cox's PH model and the associated partial likelihood inference
estimates a mean (or an average) e®ect at the end of an observational period. When its varying-
coezxcient setting (1) is used, the covariate e®ect can theoretically be evaluated at any xed
time, but the e®ect has the homogeneity property, i.e., some kind of 'average' with regards to
the space spanned by the covariate. In other words, the *homogeneity property’ can be viewed
as an 'average' taken over di®erent subpopulations represented by di®erent covariate values.
When time changes, the average is permitted to di®er. Hereafter, this property of variation
in time is termed nonconstancy. The feature of model (1) brings two aspects of limitations:
First, the smoothness of ~(t) can be very important but hard to ascertain. Second and more
importantly, it can be very dixcult to interpret (t) biologically.

When ‘nonproportionality’ is the result of heterogeneity, the heteroscedastic hazards regres-
sion (HHR) model proposed by Hsieh (2001) successfully accommodates the nonproportionality
from the perspective of variation over di®erent subjects (hereafter termed heteroscedasticity):

a(t; Z; X) = Fragt)g® P exp(7'z); @)

where X and Z may be two sets of predictable, time-dependent covariates. In terms of the
hazard function, model (2) is written as:

(62 X) = _o(£)exp(X)Foo () g P itexp(2): ®

When X = Z, it is the same model studied by Quantin et al. (1996) to test for the propor-
tional hazards assumption. Note that model (2) (or (3)) involves no varying coezxcient, but
a 'monotone’ time-varying e®ect can still be calculated (see a later context) since there is a
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power factor, exp(=*X), of the baseline cumulative hazard. The power factor is a device used
to explicitly model the heterogeneity.

According to the previous statement, the heterogeneous e®ect or nonproportionality can be
due to two sources: nonconstancy (variation in time) and heteroscedasticity (variation across
subjects). We can thus ask the question: Is there any other source of nonproportionality? In
this regard, a straight inclusion of an interaction between "time' and 'heteroscedasticity’ leads
to the consideration of time-dependent heteroscedasticity, represented by <(t). So, model (3)
can be extended to allow for varying coe=xcients:

L(6Z;X) = _o(0)expFA(t)X gfeg(t)g®PTOXdilexpf (1) Zg; 4

where expf °(t)Zg is referred to as the I-component and expf<(t)Xg as the ¥scomponent.
Equation (4) is a little sophisticated in its expression. It is not directly integrated to give an
more elegant expression in terms of o(¢:

a(t; Z; X) = Fop(t)g¥PT " OX9exp (1) Zg;

unless suitable parameterizations of (t) and <(t) are used. (See the piecewise e®ect analysis
in Section 3.) Moreover, it is also not adequate to directly extend model (2) to the above
expression due to a usual requirement that the cumulative hazard increases in time, for xed
X and Z.

Note that when a regressive hazard model is adopted and equipped with varying coe=-
cient(s), it is possibly made more “exible or even more accurate from the viewpoint of statistical
modeling. On the other hand, however, conclusions about the implemented varying-coe=cient
model can only be applied to a more-restricted subpopulation compared to those obtained
from using the model without a varying coexcient. By reanalyzing the famous Stanford Heart
Transplant (SHT) data (Miller and Halpern, 1982) with consideration of the covariate 'age’, in
this paper, we study the varying-coexcient HHR model under two of its variants, a piecewise
analysis and a 'thus-far-average’ analysis, without going into smoothing techniques. We also
demonstrate the strategy of diagnosing the nonconstancy and time-dependent heteroscedastic-
ity.

The "varying e®ect’ property, which entitles this article, of the HHR model ((2) or (4)) needs
more explanation. With respect to model (4), rst, the varying eRect comes from the time-
varying coexcients. Second, from model (2), the varying e®ect is intrinsic in model formulation
(Wu, Hsieh, and Chen, 2002). Speci cally, let X = Z. If the 'e®ect-measure’ is the relative
risk (RR), the corresponding hazard function is _(t;Z) = 3(Z)fo,(t)g D il_,(t)X(Z), where
Y(Z) =exp(Z) and X(Z) =exp( 'Z); then the logarithm of the relative risk between strata
Z=z,and Z =12, is

logfRR(t)g = F%(z1) i ¥Az0)glogao(t) +(°+ ) (z1 i 2o); ©®)

which is obviously a function of time and increases or decreases according to whether ¥(z;) >
Y{z0) or ¥(z1) < ¥z0), respectively. The heteroscedasticity of RR is explained by the fact that
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it not only depends on the relative di®erence between z; and zp, but also on the di®erence
between functions ¥{z;) and ¥4zp). Here we emphasize that when a varying-coexcient model is
used, one have to pay much attention to the interpretation and reasoning behind it, in particular
to the dynamics or causal mechanism of what makes the coexcients time dependent.

In the next section, distinction between the PH model and the HHR model is illustrated
through several arti cial examples by plotting the logarithm of the relative risk (LRR plot).
With model (4), since there are three parameters which are dependent on t, estimating equa-
tions along with the sieve method, similar to the over-identi ed estimating equation (OEE)
approach (Hsieh, 2001), is introduced in Section 3. When the sieve approximation is used in
the analysis of a varying-coezxcient model, it involves a suitable partitioning of the time interval.
Basically, a reasonable partition cannot be too ne to make each time segment contain enough
information (observations), or else the associated estimates of the piecewise coe=xcients will
all be nonsigni cant. An alternative consideration is to accumulate the piecewise information
and to give a 'thus-far-average' estimate. In Section 4, a 'piecewise e®ect' (PE) analysis and
an 'average e®ect’' (AE) analysis of the SHT data are reported through the implementation of
the OEE approach. Hazards-crossing between di®erent age groups is explored and interpreted
through the Kaplan-Meier estimates. With the PE analysis, LRR plots among di®erent age
groups are displayed to address the existence of nonconstancy and heteroscedasticity. Finally,
we give brief discussions on the procedure of modeling heterogeneity, the applicability of the
HHR model, and the implication of its varying-coe=xcient setting.

2 Numerical Examples

Survival data collected from organ transplant or clinical trials often appear to be heterogeneous
over one or several variables. If the heterogeneity stems from a dichotomous variable, it can be
diagnosed simply by plotting the Kaplan-Meier estimates of the survivor functions for the two
groups or their associated cumulative hazard estimates, to see if the proportional hazards rule is
sustained (Wu et al., 2002). Note that a possible result of heterogeneity is nonproportionality
between di®erent groups. In some cases, nonproportionality can be modeled by (1), in the
setting of a varying-coe=xcient proportional hazards model. When the covariate of concern (say,
Z) is itself the source of heterogeneity and it is a continuous variable, however, the application
of (1) is limited, and nonproportionality must be carefully diagnosed. With the HHR model
and valid estimates, in this paper, we suggest plotting the logarithm of the (estimated) relative
risk (Iogf',\(t; Zj):/_:(t; zi)g), abbreviated as the LRR plot, where z; and z; represent two possible
strata of Z. Here we give some arti cial examples, in which the LRR plot of the PH model
retains the pattern of (t), while the plot under the HHR model is diverse.

Consider a univariate case for the PH model (1), where the expression for the relative risk
is expf (t)(z; i zi)9. The LRR plot, (t)(z; i z), has the pattern of (t) except for a scale
multiplication which depends only on the di®erence between covariates for the di®erent strata
z; and z;. Further consider the HHR model (4) or (2), with or without varying coezxcients,
where X and Z are taken to be one-dimensional, continuous, and fully identical (i.e., X = Z).



In this situation, the heterogeneity is a result of covariate Z (or X) itself. The corresponding
relative risk between strata z; and z; will be

Fag(t)g" @ ¥ ®exp (F (9 + 2(D9(zj i 2)); (6)
and the LRR plot consists of two components:

194z;) 1 ¥Azi)glog=o(t) + F (1) + 2()9(z; i zi); ()

where the pattern of (t)(z; i z;) is complicated by the relative di®rence of the ¥scomponent,
¥(z;) i ¥4z;), multiplied by log=g(t), as well as by (t)(z; i z;). The following numerical
examples illustrate cases in which the nonproportional hazards cannot be fully accounted for
by the varying-coezxcient PH model.

The rationale of using model (4) rather than (1) is twofold: (i) you add the heteroscedasticity
exp(<'X); and (ii) the heteroscedasticity parameter ©may also be time varying: © = °(t). Table
1 summarizes several characteristics of the speci ed model.

[Table 1 about here.]

Throughout these examples, X = Z, and Z only t%kes three values: zo = 0;z; = 1; and z, = 2;
the baseline =, (t) = texp(t) is used, and y(t) = § _o(u)du. To illustrate the possibility of a
varying- coezxcient PH model being capable of treating the crossing hazards phenomenon, i.e.,
a special case of "nonproportionality’, we choose (t) =sin(¥4). Case A assumes the varying-
coexcient PH model since © = 0; Case B and Case C assume the HHR model with ~xed and
time-varying heteroscedasticities, respectively, when © =log2 and © =sin(¥4). The time interval
is selected to be (0;2) for all cases.

[Figures 1(a)>>1(d) about here.]

In Figures 1(a) to 1(c), three curves of logf_(t; z;)=_(t; z;)g are plotted, with the (j; i) pairs
equal (1,0), (2,1), or (2,0). In Fig. 1(a), however, only two curves are identi ed due to the
fact that z, j z;y =21 § zo = 1. This can be called a case of degeneration, which results from
the model formulation of the 'proportional hazards'. That means, if the covariate values z;, zj,
and zi are representatives of some strata with zj § zi = zx i zj, the homogeneity property of
the PH model makes two of the curves logf_(t; zj)=_(t; zi)g and logf_(t; z«)=_(t; z;)g coincide
or become very close in the LRR plot. Moreover, the observed curves retain the same shape’
as (t) except for being multiplied by the di®erence of zj j zi. The situation di®ers in the
HHR model. In Figures 1(b) and 1(c), degeneration is not present, and the relative magnitudes
among curves both change in time and are diverse between di®erent (j;i) pairs. In both
~gures, if the two curves are close at some time, they may be separated some other 'place’
(or 'time"). We can say that the existent heterogeneity assures a situation of no degeneration.
But it is worth mentioning that if the heteroscedasticity parameter, <, is small or not very
signi cant, degeneration may also take place in the LRR plot. In contrast to Case B, consider
an example of time-dependent degeneration such as Case D: ©=log2 d1(t > 1), where 1(¢ is the
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indicator function; the other conditions are the same as those of Case B. Case D is designed
to illustrate a special case of time-varying heteroscedasticity. The corresponding LRR plot is
shown in Fig. 1(d), in which a dramatic change occursatt = 1. Whent - 1, © =0, the
phenomena of degeneration and homogeneity observed in Figure 1(a) remain. When t > 1,
<=log2, the curves are the same in Fig. 1(b). As a summary, nonproportionality accompanied
by 'degeneration’ implies that the nonproportionality can be modeled by the conventional PH
model with a varying coexcient, = (t); otherwise the nonproportionality should be thought
of as a phenomenon of heteroscedasticity which results from the variable ‘age’ and involves
the parameter < in model (4). Furthermore, if degeneration exists at several places but not
everywhere, a time-varying coexcient °(t) is possible. This means that at the place where
there is degeneration, * does not signi cantly di®r from 0; elsewhere, however, = is signi cant
and the heteroscedasticity parameter causes the interrelation among the curves to di®er.

3 Estimating Equations and the Sieve Method

Suppose there are n ordered, randomly right-censored observations (survival times or censored
times) T1,To, :::, Tnh. Let hij(t; Z; X) and N;(t) be the intensity process and counting process
for the ith individual and Y;(t) be the associated at-risk indicator at time t. Further denote

S0 = (1=n) Yi(Dexp(Z)%Fe(g

i=1

S2(0)= (=) VA(DZi(Dep(Z)Tau(g™ % and
i=1

X Y5il
Su(t) = (1=n)  Yi(t)Vi(Yexp(""Zi)%foo(t)g" ®)
i=1
with predictable time-dependent covariates Z;i(t) and X;(t). In (8), % =exp(<X;), and V;j(t) =
Xi()[1+exp(*X;)logfey (t)g]. By Johansen's decomposition (Johansen, 1983), the full likeli-
hood process has the following form:

Ztnh. . Zy Z 4
Bt omg =t PO el SN ®pfi | nSidug: O

The rst factor of (9) is the partial likelihood process. The logarithm of the partial likelihood is

- > thi(u)dN(u)
|p(t, ; ,00) = |0gf 0 T(U) . (10)
When time-varying coezcients are not considered, that is when (t) = and <(t) = “in

(4), taking partial derivatives of I, with respect to  and © leads to the following estimating
equation processes:

Z
X4t
0fZi i z—zngi(u) =0;
1
XZ t SV
Vi i =gdN;(u) =0: (11)
0 Sl
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Moreover, a Breslow-type estimating equation for the baseline cumulative hazard can be con-

structed as: 7
Xt dN;(u)

0 Yi(Wexp(7Zj + X)) [mo(u)FXPCXi L
With model (2), statistical inferences based on a modi ed partial likelihood, other than the
previous estimating equations, are also studied in Bagdonavicius, Hafdi, and Nikulin (2002).
Since the baseline gy (t) is not eliminated in (10), a sieve method (Geman and Hwang, 1982)
is used to approximate it. By dividing entire observation period [0; ¢] into m segments by
0=¢o;é1 éz it ém = ¢, We have the following approximation of gg(t):

z

My = O g
g (1) . ®l(¢j1<u - ¢)du: (13)
1

2o(t) = (12)

Under the varying-coezxcient model (4), a similar approximation can be imposed on (t) and
(1), along with a little amendment of the estimating equations.

3.1 Piecewise e®ect and average e®ect analyses

Instead of u%pg smoothing techniques, when tp)e sieve approximations are taken for (t) and
A), % T jl(Gia<t-g)and ()% I GU¢;1 <t - ), itis termed a 'piecewise
e®ect’ analysis of model (4):

.62 X) = GFg (g5 YY1 <t - G (14

where _(M(q denotes the approximation of _(§, ¥% =exp(°}X), and 1 =exp(_j?Z). In terms
of the cumulative hazard, (¢, model (14) has the following expression:

a™(t; Z; X) = M (4 ,1;Z; X) + [Fai™(0)g% i Foi(6,1)0% 1Y, 1<t - ¢ (15

with 8™ (s Z:X) = a{™ (&%) = 0. The estimating equation for & remains the same, but
those for j and < become:

? fZ;i i %ngi(u) =0;j=1,2;:::;m; and
dil Sl
z, (m)
<4 g )
V™ —?m)ngi(u) =0 =120 m; (16)
dil 1

where V(M and S are the corresponding V and Sk (for any K) with a§™(t) in place of 2(t).
The parameters f@g{”;f"’]g?‘; and T=;07") are simultaneously solved from the corresponding
estimating equations.

As stated in Sec. 1, when the partition f¢;g" gets ner, each segment (¢j;1; ¢j] contains
smaller number of observations, and the nal estimates of j and < often will be nonsigni cant,
a redundant situation when partitioning and modeling of the time-varying coexcient are used.
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There is, however, a compromise which lies between the analysis using model (4) without a
varying coezxcient and the PE analysis. That is, a "thus-far-average' analysis (hereafter referred
to as an 'average-e®ect' (AE) analysis) can be considered when an average coexcient, ; and <,
is calculated at each ¢s. In this case, (t) and <(t) are replaced by j and <j, fort - ¢;. With
the same sieve approximation, the hazard function of the k-th segment (i.e., é&;1 <t - &,
k- J)is

LGt - 2 X) =@ (09 Y Yaa 1 < t - a (17)
In terms of the cumulative hazard, the AE model is expressed as:
- z t X (m) s il
et - i ZX) = F @&laqr<u - &ofafP(Ugh % de (18)
k=1

stimation under model (17) can be ac%omplished by simply replacing the integration interval
+in (11) and (12) (and thus (13)) by J. In this paper, we claim that the AE analysis (17)
is simply the HHR model implemented at each time point ¢;, 2 - j - m. When j =m, it is
reduced to the ordinary HHR model without varying coezcients. In the following section, the
SHT data are analyzed by the PE and AE methods and compared to the result of using the
conventional PH model with a varying coe=cient.

4 Data Analysis

4.1 Nonproportionality of the Stanford heart transplant data

Analyses of the SHT data (Miller and Halpern, 1982; Lin, Wei, and Ying, 1993) suggested that
'age’ and its square (age?) are important explanatory variables. Since there is nonproportion-
ality among di®erent age groups (see Fig. 2 below), inclusion of the covariate age? is to explain
the crossing-e®ect. See also Aitkin, Laird, and Francis (1983) and Arjas (1986, 1988) for more
discussion. To deal with the nonproportionality, Marzec and Marzec (1997) tted the PH model
with a varying coexcient on the parsimony of only one covariate, age, and proposed goodness-
of- t tests to demonstrate the validity of their sieve-approximated varying-coe=xcient setting.
The SHT data analyzed in Marzec and Marzec (1997) contain 154 observations (denoted by
T, - T, - i1 - Tys), Of which 102 are noncensored failures. To motivate the accommodation
of a heteroscedasticity component by using the HHR model, on the other hand, survivor func-
tions according to di®erent age groups can be displayed. First, the 154 patients are divided into
four groups according to the three quartiles of age: 35.25, 44.5, and 49.0. Each group contains
38 or 39 patients. Since there is no signi cant di®erence between the younger two groups (lo-
grank statistic=0.0050, p-value=0.9436), we combine them into a single group and denote the
patients with age< 45, 45 -age-49, and age_50 as groups 1, 2, and 3, respectively. Instead
of showing the Kaplan-Meier (K-M) estimates directly, however, we mimic the idea behind
the LRR plot in Sec. 2 and display the pairwise log-ratios logf&y, (t)=5;(t)g, logfcs(t)=5,(t)g,
and logf&;(t)=5;(t)g, where &;(t) = jlogfSj(t)g;j = 1;2;3; and $;(t) is the K-M estimate of
group j. Since the plot of Iogfﬁj (©)=56;(t)g involves the K-M estimates of groups j and i, the
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log-ratio is plotted at the union of the two sets of time points where K-M estimates have been
calculated. Plotting the log-ratios, Iogféj (t)=8;(t)g, of all possible (J; 1) pairs has the merit of
exploring pairwise relations among groups. Moreover, proportionality, hazards crossing, and
time-varying e®ect may also be explored. If the proportional hazards rule holds, the ratios
must be some constants, although small “uctuations are possible. Otherwise, nonconstancy
may exist (which implies = (t)). Moreover, if a curve crosses the horizon ‘log-ratio=0" (the
dotted line) at some t = tp, it means that there is a hazards crossing near to between the two
associated age groups.

[Figure 2 about here.]

In Fig. 2, the curves show nonproportionality among groups. Moreover, since the interrelations
of the three curves change in time, heteroscedasticity may also exist. The existence of time-
varying heteroscedasticity will be shown later by the LRR plot. The estimated cumulative
hazards of groups 1 and 2, &; and &,, cross each other “rst at a time of between 130 and 250
days, and second at a time of 2127 days. The curve logf&,=8,g is basically concave. Another
curve, logff,=8,g, crosses the horizon 'log-ratio=0" before 25 days and has a similar shape.
However, the two curves have di®erent curvature (in terms of t) which results in a third plot,
logf&3=5i,g, distinct from the former two. As a whole, the three curves give the impression
that the three groups are heteroscedastic, in particular at a time between 200 and 700 days
which corresponds to the third segment in the following PE analysis and LRR plot.

4.2 Piecewise e®ect (PE) analysis and LRR plot

When the HHR model is used, the number of segments, m, for the sieve approximation has to
be decided. Since Hsieh (2001) suggested m to be of the order O(n*®) to make the asymptotic
results valid, we divide the observation period [0,2984] into m = 5 segments, each containing
30 or 31 observations, failured or censored. In the setting of PE analysis, the parameters are
allowed to di®er between segments. For the SHT data, the 2- and ¥ components of the PE
model are:

Y =exp( 1jage + zjage?); and
Y5 = exp(age); é5; 1<t - ¢, =125 (19)

In contrast, Marzec and Marzec's (1997) analysis is basically the varying-coexcient PH model
without the covariate age?. Thus, their model can be treated as being nested in the current
PE model, via which the needs to add age? and impose the ¥-component can be tested by the
signi_ cance of " and . In particular, bias of the e®ect estimate of age can be avoided because
in model (19), heterogeneity has been accounted for by the ¥component. Table 2 shows the
estimated values of all parameters 15, 2, and < which vary from segment to segment, showing
the time-dependent ‘e®ect’ from the model considered. Among those estimated values of <, in
particular, =5 (=0.0354) signi cantly di®ers from zero (p-value=0.015); the estimate = has a
p-value of 0.115, a mild signi cance of heteroscedasticity for the rst segment. This signi cance
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can increase when additional sample is accumulated; that is, when the analysis is extended to
the next segment using the following AE method.

When an HHR model has been estimated through the PE analysis, logarithm of the es-
timated relative risk (LRR) can only be plotted according to several predisposed covariate
values. In Fig. 3, LRR plot of three combinations, Iogf/;(t; 21):/;(t; Z0)9, Iogfi(t;zz):ﬁ(t;zl)g,
and logf (t; 22)="(t; zo)g are presented for age= 35 (z0), 45 (z1), and 55 (z2), respectively.
These values are representative of the three age groups discussed previously and retains the
property, z; § Zo = Z, i Z;, to make a degeneration possible if the underlying model is an
homogeneous one (i.e., the PH model with or without a varying coezcient). The curves in Fig.
3 look like (but are not) step functions due to the sieve approximation. In the third segment
(i.e., the time interval of [227; 631] days), the three curves are very distinct. In the rst segment
(i.e., the time interval of (0; 50] days), logf” (t; z;)="(t; zo)g and logf” (t; ,)="(t; ;)g are closer
to, but still can be distinguished from each other (this can be observed more clearly when the
plot is ampli ed). As for the remaining segments, degeneration becomes clear and heteroscedas-
ticity may disappear. In conclusion, the SHT data appears to be an example of time-dependent
degeneration illustrated by the last example in Sec. 2., implying a varying-coezxcient <(t).

In practice, one may ask the question: When the true model is the PH model and the HHR
model is adopted, will the LRR plot exhibit non-degeneration? The answer relies on the large
sample asymptotics of the parameter estimates. For simplicity, let X = Z and dim(Z) = 1.
The statistics (Ai 2§ 9 and So(t) i =o(t) obtained from the OEE method (Hsieh, 2001;
Theorem 1) have the order of Oy(1=""n). According to (7), the estimated log-relative risk
between strata Z; and Z; is

logRR = expf=(z; i z)9 dlogfey(t)g+ "+ ®) (i zi)
= Oyl= n)+7(giz) foro<t< 1A, (20)

which retains the shape of (¢ for an large sample size, if the true model is the PH model
(°=0or 2(t)=0)and 0 < =p(t) < A for 0 < t < . When sample size is small, the LRR
plot speci ¢ to the HHR model may not be 'stable’, in particular at the early stage of time.

[Table 2 and Figure 3 about here.]

4.3 Average e®ect (AE) analysis

A di®erent perspective results in model (17) or (18) when an average e®ect is of interest even
if the e®ect is time-varying, whereas investigations are made along the time axis so that the
information about the model and parameters are collected as a process. Speci cally, let the
estimation be executed at the time points ¢; é&;:::; &. In this case, a thus-far-average estimate
is calculated at each ¢;, and this estimate has a dynamic meaning with regards to progressing
time. It has the interpretation of an ageing e®ect at the population level. The results of the AE
analysis are displayed in Table 3. (The analysis at ¢; is exactly the result of the rst segment
in the PE analysis and is omitted.)
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[Table 3 about here.]

In summary, the di®erence between the PE and AE analyses is that the PE model is actually an
approximation of the varying-coexcient model (4), and it assumes that for each time segment,
the coexcients may di®er. On the other hand, the AE model is not an approximation of (4).
It is simply a practice of the HHR model at the selected times ¢ to &n. For the goodness-of-
~ t test for model validity in Table 3, see Hsieh (2001) and Wu, Hsieh, and Chen (2002) for
further details. In brief, it is an omnibus test for global adequacy of tting the HHR model at
t=¢:;J =2 3;:::,5, and the constructed testing statistic follows, asymptotically, a chi-square
distribution with 3(J j 1) degrees of freedom for 2 - j - 5. From the last panel of Table 3, the
results of the goodness-of- t test show that the HHR model with AE analysis is adequate for
t=¢:J=23;:::,5.

4.4 Implication of the results

In terms of the partitions taken for the sieve approximation, there is no segment-to-segment
correspondence between the previous analyses and those of Marzec and Marzec (1997). Never-
theless, comparisons can be made by carefully connecting the results of the LRR plotin Fig. 3

are not signi cant, PE analysis is still necessary as the rst step to investigate the existence
of the varying coezxcients. From Table 2, the signi cance lewels of *; (p-value of 0.115) and
2 (p-value of 0.015) imply that heteroscedasticity exists in the corresponding periods. The
LRR plot displayed in Fig. 3 gives a similar explanation. Since the information used in the
PE analysis is accumulated, nonsigni cant results appearing in the PE analysis may become
signi cant in the AE analysis. The goodness-of- t tests for model adequacy in Table 3 reveal
that the HHR model is adequate.

As compared with the rst analysis (a partition with equal time intervals) of Marzec and
Marzec (1997), their rst segment, [0,746] days, contains 98 observations, nearly corresponding
to the [Ty; Te] interval of our AE analysis in Table 3. However, it should be noted that if a
varying-coe=+cient PH model without heteroscedasticity and which omits the covariate, age?,
can take care of the nonproportionality, the LRR plots in Fig. 3 should not have this pattern.
Degeneration may exist everywhere. In addition, "%z and =5 in the AE analysis should be both
nonsigni cant since the varying-coezxcient PH model can be viewed as a submodel nested in
the more-extended varying-coexcient HHR model. From Table 3, since both “55 and = are
signi cant (p-values of 0.017 and 0.026) at the level of 0.05, Marzec and Marzec's estimate in this
period is a biased one. Under model (4) and its variants (14) and (17), the result of Marzec and
Marzec can be reasonably explained by that the in“uences of omitting the heteroscedasticity
and the covariate age? cancelling each other. Similarly, in our AE analysis (Table 3), % is
nonsigni cant in [Tq; T4s54], Which corresponds to the result of a conventional PH analysis with
the covariates of age and age?. Finally, although the estimated heteroscedasticity parameter
may not be signi cant in the AE analysis, the heteroscedasticity component % =exp(° age)
should not be dropped from the analysis due to the fact that, from Fig. 2 and Fig. 3, the
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heterogeneity is from the covariate 'age’. This is similar to the concern of *variable selection’
procedures in an ordinary linear regression where variables of interest should always be included.
Importantly, with a nonsigni cant ¥scomponent, ts can be improved over those without it.

5 Discussion

To deal with nonproportional hazards, heterogeneity due to variation over subjects is the main
focus of the current study. To diagnose heterogeneity, survival data can be grouped according
to some important variable (for example, ‘age’ as in the SHT data). By plotting log-ratio of
estimated cumulative hazards of all pairs based on the K-M survivor estimates, rstly, interre-
lation among age groups can be explored (Fig. 2). If the K-M estimates cross one another at
an early stage and the interrelation changes in time, heterogeneity may exist, and incorporation
of heteroscedasticity in a Cox-type regression can be taken into consideration. The method of
- tting the varying-coexcient PH model to tackle nonproportional hazards phenomena is only
feasible when there is no heteroscedasticity. In this paper, we demonstrate that when the non-
proportionality is a result of heterogeneity, the varying-coexcient HHR model (4) is applicable.
After applying model (4), an LRR plot (Fig. 3) is suggested to diagnose the need of imposing
~(t) and <(t). Constancy of log-ratios of relative risk and degeneration of some curve(s) are
used as criteria. In our analyses of the SHT data, the estimated piecewise parameters di®er at
various time intervals (the PE model). As well, the average estimates of the three parameters
change in a pointwise manner at ¢s (the AE model). From Table 3, s decrease in ¢;. This
also implies that there is time-dependent heteroscedasticity when age is the only covariate of
concern.

The existent heteroscedasticity may be easily neglected if the varying-coexcient PH model
(1) is used. In Table 3, the AE analysis made at ¢ (that is, the column [Tq; Tis4]) has a
nonsigni cant estimate of < * = 0:0064 with a p-value of 0.39. This corresponds to the
conventional analysis using the PH model in which age and age? are considered explanatory
variables. The inclusion of age? reveals that there is nonproportionality. In the analysis of
Marzec and Marzec, the nonproportionality is accounted for by  (t) in model (1) where "age’
is the unique explanatory variable. In this paper, however, we demonstrate by the LRR plot
of Fig. 3 that there is heterogeneity which can be adequately modeled by a time-dependent
heteroscedasticity parameter: <(t). For diagnosing <(t), we suggest using 'degeneration’ as
a tool for visualization. Moreover, time-dependent degeneration implies time-dependent het-
eroscedasticity, but not vice versa. In the case when <is not very large, a practitioner need only
be concerned with the signi cance of #® and its time-varying properties, while degeneration is
a valid criterion of the varying coexcient <(t). As the heteroscedasticity parameter < becomes
large, a formal test for its time-varying property along with a companion diagnostic tool still
needs to be developed.

In fact, the HHR model is a special case of a transformation model with heteroscedastic
error terms (Hsieh, 1995). In this article, we emphasize that adequate modeling of the existent
heteroscedasticity can, in some cases, explain the time-varying e®ect. In addition, coexcients
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in the HHR model can also be time dependent. In that case, one has to pay attention to the
rationale of using a varying-coezxcient setting. If the dynamics of the condition implied by
the covariate process or data history can in<uence the e®ect and signi cance of the covariate
itself, a varying-coexcient model is reasonable. In an analysis of follow-up experimental data,
‘dynamical’ meaning can implicitly be designed into the study. For observational data, on the
other hand, conclusions about the e®ects of environmental factors on changes in the health
condition or behavior should be drawn carefully.
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Table 1: Speci ed conditions for the varying-coexcient PH and HHR models. A general
formula of the assumed model is: _(t; Z; X) = _o(t)Fog(t)gtXPF 029 lexpf (1) + °(t)gZ, in
which we choose X and Z to be identical. Case A assumes a varying-coexcient PH model. Cases
B and C assume HHR models with xed and time-varying heteroscedasticities, respectively.
Case D speci es an HHR model with time-dependent degeneration, a special case of time-
varying heteroscedasticity.

Parameters gy(t) = texp(t)
~ (t)=sin(¥4)

Covariate z70=0;z,=1;2,=2

Case A °=0 PH model

Case B < =log2 HHR model with
~ xed heteroscedasticity

Case C < =sin(¥%) HHR model with
time-varying heteroscedasticity

Case D °=log2 ¢1(t > 1) HHR model with
time-dependent degeneration
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Table 2: Analyses of SHT data using the piecewise e®ct method calculated at t = ¢;

(meaning ¢ = Ts30;¢é2 = Te1; it
associated Wald tests for signi cance.

[T1;Tzo]  (Tz0; Ter] (Te1; Toz]l  (Toz; Tazs] (T123; Tisa)
1 2 3 4 5

i -0.0959 -0.1580  0.0116  -0.1128  -0.2380
(0.2650) (0.8357) (0.9476)  (0.8950)  (0.8660)

; 00016  0.0032  -0.0014  0.0022 0.0039
(0.1444) (0.0255) (0.6749)  (0.5064)  (0.4656)

0.0160 -0.0086  0.0354  -0.0110  -0.0098
(0.1147) (0.9903) (0.0150) (0.9807)  (0.9885)

-0
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Table 3: Analyses of SHT data using the average e®ect method calculated at t = ¢j;j =
2;3;4;5. Values in parentheses are the p-values of the associated tests for signi cance of pa-
rameters or the model. For j = 1, the AE analysis is exactly the PE analysis in Table 2, so it
is omitted from this table. The last panel shows the goodness-of- t test for model validity.

[T1; Ter]  [T1;To2]l  [T1;Ta2s]  [T1; Tasal

T -0.1424  -0.1217  -0.1207  -0.1300
(0.0372) (0.0593) (0.0442) (0.0237)

2 00023  0.0020  0.0019 0.0021
(0.0076) (0.0165) (0.0111) (0.0047)

< 00174 00137  0.0079 0.0064
(0.0037)) (0.0257) (0.3014)  (0.3927)

Goodness-of- t test  6.12 [A2]  8.82 [AZ] 10.18 [A] 18.03 [AZ)]
(0.1059)  (0.1834)  (0.3356)  (0.1149)
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