表目錄

Table 1.	Retention time of flavonoid aglycones and internal standard in various feces by HPLC analysis
Table 2.	Concentrations of hesperetin after incubation of hesperidin with rabbit, rat and human feces at 37
Table 3.	Concentrations of naringenin after incubation of naringin with rabbit, rat and human feces at 37
Table 4.	Concentrations of quercetin after incubation of rutin with rabbit, rat and human feces at 37
Table 5.	Concentrations of neophellamuretin after incubation of phellamurin with rabbit, rat and human feces at 37119
Table 6.	Contents (µg/mL) of metabolites after incubation of daidzin and genistin with rabbit and rat feces at 37
Table 7.	Remaining percentages (%) of flavonoid aglycones incubated at 37 with artificial intestinal juice
Table 8.	Remaining percentages (%) of flavonoid aglycones incubated at 37 with rabbit feces
Table 9.	Remaining percentages (%) of flavonoid aglycones incubated at 37 with rat feces
Table 10.	Remaining percentages (%) of flavonoid aglycones incubated at 37 with human feces
Table 11.	Degradation slope (r) of flavonoid aglycones incubated at 37 with rabbit, rat, human feces and artificial intestinal juice125
Table 12.	Remanence (peak area ratio) of catalpol with heating or with artificial gastric juice
Table 13.	Intraday and interday analytical precision and accuracy of paeoniflorgenin assay in serum (n=3)
Table 14.	Recovery (%) of paeoniflorgenin from serum (n=3)127

Table 15.	Paeoniflorgenin concentrations (μ g/mL) in serum after oral administration of Paeoniae radix decoction to rats (n=6)128
Table 16.	Pharmacokinetic parameters of paeoniflorgenin after oral administration of Paeoniae radix decoction to rats (n=6)128
Table 17.	Remanence (peak area ratio) of paeoniflorgenin after incubation of paeoniflorin with rabbit, rat, pig and human feces at 37129
Table 18.	Quercetin contents after hydrolysis of onion and Huaimi with 1.2 N HCl in the presence of various amount of vitamin C at 80 for 1 h or 2 h (n=3)
Table 19.	Intraday and interday analytical precision and accuracy of quercetin in human feces (n=3)
Table 20.	Intraday and interday analytical precision and accuracy of quercetin in rat feces (n=3)
Table 21.	Concentrations (µg/mL) of quercetin after incubation of onion juice and Huaimi infusion with human and rat feces
Table 22.	Peak area ratios of quercetin (to internal standard) after incubation of quercetin sulfates with various substances
Table 23.	The concentration ranges, regression equations and their correlation coefficients of anthraquinones in rubarb
Table 24.	Intraday and interday analytical precision and accuracy of aloe-emodin in rat feces (n=3)
Table 25.	Intraday and interday analytical precision and accuracy of rhein in rat feces (n=3)
Table 26.	Intraday and interday analytical precision and accuracy of emodin in rat feces (n=3)
Table 27.	Intraday and interday analytical precision and accuracy of chrysophanol in rat feces (n=3)
Table 28.	Concentrations (µg/mL) of aloe-emodin, rhein, emodin and chrysophanol after incubation of rubarb decoction with rat feces

Table 29.	Remaining percentages (%) of aloe-emodin, rhein, emodin and chrysophanol after incubation with rat feces at 37, respectively
Table 30.	Remaining percentages (%) of aloe-emodin, rhein, emodin and chrysophanol after incubation of their mixture at 37 with rat feces
Table 31.	Intraday and interday analytical precision and accuracy of rhein in rabbit feces (n=3)
Table 32.	Intraday and interday analytical precision and accuracy of rhein in rat feces (n=3)
Table 33.	Concentrations (μ g/mL) of rhein after incubation of sennosides A (SN-A) and B (SN-B) with rabbit and rat feces
Table 34.	Remaining percentages (%) of rhein incubated at 37 with rabbit and rat feces
Table 35.	The concentration ranges, regression equations and their correlation coefficients of flavonoids in Scutellariae Radix143
Table 36.	Intraday and interday analytical precision and accuracy of baicalein in rat feces (n=3)
Table 37.	Intraday and interday analytical precision and accuracy of wogonin in rat feces (n=3)
Table 38.	Concentrations (µg/mL) of baicalein and wogonin after incubation of S, SFW or HTS decoctions with rat feces
Table 39.	Remaining percentages (%) of GA and 3-dehydroGA after incubation of glycyrrhizin or licorice decoction incubated at 37 with rat feces
Table 40.	Remaining percentages (%) of GA and 3-dehydroGA after incubation of glycyrrhizin or licorice decoction incubated at 37 with pig feces

Table 41.	Remaining percentages (%) of GA and 3-dehydroGA after
	incubation of glycyrrhizin or licorice decoction incubated at 37
	with human feces
Table 42.	Remaining percentages (%) of 18ß-glycyrrhetinic acid after incubation of licorice decoction alone and with honey, fructose or glucose in rat feces
Table 43.	Remaining percentages (%) of 3-dehydroglycyrrhetinic acid after incubation of licorice decoction alone and with honey, fructose or glucose in rat feces