附表目錄

Table 1-1.	The regression equations, concentration ranges and
	correlation coefficients of anthraquinones in rhubarb107
Table 1-2.	Intra-day and inter-day analytical precision and accuracy of
	aloe-emodin in methanol
Table 1-3.	Intra-day and inter-day analytical precision and accuracy of
	rhein in methanol
Table 1-4.	Intra-day and inter-day analytical precision and accuracy of
	emodin in methanol
Table 1-5.	Intra-day and inter-day analytical precision and accuracy of
	chrysophanol in methanol
Table 1-6.	Recovery (%) of aloe-emodin from traditional decoction of
	Da Huang (n=3)109
Table 1-7.	Recovery (%) of rhein from traditional decoction of Da
	Huang (n=3)109
Table 1-8.	Recovery (%) of emodin from traditional decoction of
	Da Huang (n=3)110
Table 1-9.	Recovery (%) of chrysophanol from traditional decoction of
	Da Huang (n=3)110
Table 1-10.	Contents $(\mu g/g)$ of total aloe-emodin, rhein, emodin and
	chrysophanol in decoctions of rhubarb (R) and rhubarb
	steamed with wine (RSW), respectively111

Table 1-11. Contents $(\mu g/g)$ of aloe-emodin, rhein, emodin and
chrysophanol in decoctions of rhubarb (R) and rhubarb
steamed with wine (RSW), respectively111
Table 1-12. Contents $(\mu g/g)$ of glycosides of aloe-emodin, rhein,
emodin and chrysophanol in decoctions of rhubarb (R) and
rhubarb steamed with wine (RSW), respectively111
Table 1-13. Contents $(\mu g/g)$ of aloe-emodin, rhein, emodin and
chrysophanol in decoctions of rhubarb (R) and rhubarb
steamed with wine (RSW)112
Table 1-14. Contents (%) of aloe-emodin, rhein, emodin and
chrysophanol in decoctions of rhubarb (R) and rhubarb
steamed with wine (RSW)112
Table 2-1. The regression equations, concentration ranges and
correlation coefficients of anthraquinones in rat serum113
Table 2-2. Intra-day and inter-day analytical precision and accuracy of
aloe-emodin in rat serum
Table 2-3. Intra-day and inter-day analytical precision and accuracy of
rhein in rat serum
Table 24. Intra-day and inter-day analytical precision and accuracy of
emodin in rat serum
Table 25. Intra-day and inter-day analytical precision and accuracy of
chrysophanol in rat serum
Table2-6. Recovery (%) of aloe-emodin from rat serum (n=3)116

Table 2-7. Recovery (%) of rhein from rat serum (n=3)116
Table 2-8. Recovery (%) of emodin from rat serum (n=3)116
Table 2-9. Recovery (%) of chrysophanol from rat serum (n=3)116
Table 2-10. The serum concentrations (nmol/mL) of aloe-emodin sulfates
in six rats after oral administration of decoction of rhubarb (5
g/kg)117
Table 2-11. The serum concentrations (nmol/mL) of aloe-emodin
glucuronides in six rats after oral administration of decoction
of rhubarb (5 g/kg)117
Table 2-12. The serum concentrations (nmol/mL) of rhein in six rats after
oral administration of decoction of rhubarb (5 g/kg)118
Table 2-13. The serum concentrations (nmol/mL) of rhein sulfates in six
rats after oral administration of decoction of rhubarb (5
g/kg)118
Table 2-14. The serum concentrations (nmol/mL) of rhein glucuronides in
six rats after oral administration of decoction of rhubarb (5
g/kg)118
Table 2-15 The serum concentrations (nmol/mL) of emodin sulfates in six
rats after oral administration of decoction of rhubarb (5
g/kg)119
Table 2-16. The serum concentrations (nmol/mL) of emodin glucuronides
in six rats after oral administration of decoction of rhubarb (5
g/kg)

Table 2-17. The serum concentrations (nmol/mL) of chrysophanol
sulfates in six rats after oral administration of decoction of
rhubarb (5 g/kg)120
Table 2-18. The serum concentrations (nmol/mL) of chrysophanol
glucuronides in six rats after oral administration of decoction
of rhubarb (5 g/kg)120
Table 2-19. The serum concentrations (nmol/mL) of aloe-emodin sulfates
in six rats after oral administration of decoction of rhubarb
steamed with wine (5 g/kg)121
Table 2-20. The serum concentrations (nmol/mL) of aloe-emodin
glucuronides in six rats after oral administration of decoction
of rhubarb steamed with wine (5 g/kg)121
Table 2-21. The serum concentrations (nmol/mL) of rhein in six rats after
oral administration of decoction of rhubarb steamed with wine
(5 g/kg)122
Table 2-22. The serum concentrations (nmol/mL) of rhein sulfates in six
rats after oral administration of decoction of rhubarb steamed
with wine (5 g/kg)122
Table 2-23. The serum concentrations (nmol/mL) of rhein glucuronides in
six rats after oral administration of decoction of rhubarb
steamed with wine (5 g/kg)122
Table 2-24. The serum concentrations (nmol/mL) of emodin sulfates in
six rats after oral administration of decoction of rhubarb
steamed with wine (5 g/kg)

Table 2-25. The serum concentrations (nmol/mL) of emodin glucuronides
in six rats after oral administration of decoction of rhubarb
steamed with wine (5 g/kg)123
Table 2-26. The serum concentrations (nmol/mL) of chrysophanol
sulfates in six rats after oral administration of decoction of
rhubarb steamed with wine (5 g/kg)124
Table 2-27. The serum concentrations (nmol/mL) of chrysophanol
glucuronides in six rats after oral administration of decoction
of rhubarb steamed with wine (5 g/kg)124
Table 2-28. Pharmacokinetic parameters of aloe-emodin sulfates and
glucuronides in serum after oral administrations of decoction
of R and RSW and (5 g/kg) to six rats125
Table 2-29. Pharmacokinetic parameters of rhein, rhein sulfates and
glucuronides in serum after oral administrations of decoction
of R and RSW (5 g/kg) to six rats126
Table 2-30. Pharmacokinetic parameters of emodin sulfates and
glucuronides in serum after oral administrations of decoction
of R, RSW and (5 g/kg) to six rats127
Table 2-31. Pharmacokinetic parameters of chrysophanol sulfates and
glucuronides in serum after oral administrations of decoction
of R, and RSW (5 g/kg) to six rats128
Table 3-1. Intra-day and inter-day analytical precision and accuracy of
emodin in rat serum
Table 3-2. Recovery (%) of emodin from rat serum (n=3)129

Table 3-3.	The serum concentrations (nmol/mL) of emodin sulfates in
	five rats after oral administration of emodin (50
	mg/kg)
Table 3-4.	Individual pharmacokinetic parameters of emodin sulfates in
	serum after oral administration of emodin (50 mg/kg) to five
	rats130
Table 3-5.	The serum concentrations (nmol/mL) of emodin glucuronides
	in five rats after oral administration of emodin (50
	mg/kg)131
Table 3-	6. Individual pharmacokinetic parameters of emodin
	glucuronides in serum after oral administration of emodin (50
	mg/kg) to five rats
Table 3-7.	Comparison of pharmacokinetic parameters of emodin sulfates
	and glucuronides in serum after oral administration of emodin
	(50 mg/kg) to five rats
Table 3-8.	The serum concentrations (nmol/mL) of emodin in five rats
	after intravenous administration of emodin (10
	mg/kg)133
Table 3-9.	Individual pharmacokinetic parameters of emodin in serum
	after intravenous administration of emodin (10 mg/kg) to five
	rats
Table 3-10). The serum concentrations (nmol/mL) of emodin sulfates in
	five rats after intravenous administration of emodin (10
	mg/kg)

Table 3-11.Individual pharmacokinetic parameters of emodin sulfates in
serum after intravenous administration of emodin (10 mg/kg)
to five rats134
Table 3-12. The serum concentrations (nmol/mL) of emodin glucuronides
in five rats after intravenous administration of emodin (10
mg/kg)135
Table 3-13. Individual pharmacokinetic parameters of emodin
glucuronides in serum after intravenous administration of
emodin (10 mg/kg) to five rats
Table 3-14. Comparison of pharmacokinetic parameters of emodin,
emodin sulfates and emodin glucuronides in serum after
intravenous administration of emodin (10 mg/kg) to five
rats136
Table 3-15. Individual AUC0-720 of emodin, emodin sulfates and
glucuronides in serum after intravenous administration of
emodin (10 mg/kg) to five rats
Table 4-1. Contents $(\mu g/g)$ of anthraquinones in decoctions of Hu Zhang,
and Da Huang137
Table 42. Cyclosporine blood concentrations (ng/mL) of five rats after
oral administrations of cyclosporine (1.25 mg/kg) with
tetraglycol/PEG400 (1:1) to five rats138
Table 43. Cyclosporine blood concentrations (ng/mL) of six rats after
oral coadministration of cyclosporine (1.25 mg/kg) with
emodin (40 mg/kg)

Table 4-4. Comparison of pharmacokinetic parameters of cyclosporine in
rats after oral administrations of cyclosporine alone (n=6
and coadministration with emodin (40 mg/kg)
(n=5)139
Table 45. Cyclosporine blood concentrations (ng/mL) of five rats after
oral administration of cyclosporine (2.5 mg/kg)140
Table 46. Cyclosporine blood concentrations (ng/mL) of five rats after
oral administrations of cyclosporine (2.5 mg/kg) and
traditional decoction of Da Huang (0.25 g/kg)14
Table 4-7. Pharmacokinetic parameters of cyclosporine in rats (n=5) after
oral administrations of cyclosporine (2.5 mg/kg) alone and
coadministration with decoction of Da Huang (0.25
g/kg)14
Table 4-8. Pharmacokinetic parameters of cyclosporine in rats (n=6) after
oral administration of cyclosporine (2.5 mg/kg) alone and
coadministration with decoction of Da Huang (0.25
g/kg)14
Table 49. Cyclosporine blood concentrations (ng/mL) of six rats after
oral administration of cyclosporine (2.5 mg/kg)142
Table 410. Cyclosporine blood concentrations (ng/mL) of six rats after
oral coadministration of cyclosporine (2.5 mg/kg) with
decoction of Hu Zhang (2 g/kg)142
Table 4-11. Comparison of pharmacokinetic parameters of cyclosporine
in rats (n=6) after oral administration of cyclosporine (2.5)

mg/kg) alone and coadministration with traditional decoction
of Hu Zhang (2 g/kg)143
Table 4-12. Cyclosporine blood concentrations (ng/mL) of seven rats
after intravenous administration of cyclosporine (0.8
mg/kg)
Table 4-13. Cyclosporine blood concentrations (ng/mL) of seven rats
after coadministration of cyclosporine (0.8 mg/kg, i.v.) and
decoction of Da Huang (0.25 g/kg, p.o)145
Table 414. Comparison of pharmacokinetic parameters of cyclosporine
in rats (n=7) after intravenous administration of cyclosporine
(0.8 mg/kg) alone and oral coadministration with decoction of
Da Huang (0.25 g/kg)146
Table 5-1. Transport of rhodamine 123 (ng/mL) from serosal to mucosal
side across the everted jejunum of rats (n=3, control)147
Table 5-2. Transport of rhodamine 123 (ng/mL) from serosal to mucosal
side across the everted jejunum of rats (n=3) in the presence of
Da Huang decoction (1.25 mg/mL)147
Table 5-3. Transport of rhodamine 123 (ng/mL) from serosal to mucosal
side across the everted jejunum of rats (n=3) in the presence
of Hu zhang decoction (10 mg/mL)147
Table 5-4. Transport of rhodamine 123 (ng/mL) from serosal to mucosal
side across the everted ileum of rats (n=3, control)148.
Table 5-5 Transport of rhodamine 123 (ng/mL) from serosal to mucosal

S	side across the everted ileum of rats ($n=3$) in the presence of
Ι	Da Huang decoction (1.25 mg/mL)148
Table 5-6. T	Transport of rhodamine 123 (ng/mL) from serosal to mucosal
S	side across the everted ileum of rats (n=3) in the presence of
I	Hu Zhang decoction (10 mg/mL)148
Table 5-7. T	Fransport of rhodamine 123 (ng/mL) from serosal to mucosal
S	side across the everted jejunum of rats (n=3, control)149
Table 5-8. T	Transport of rhodamine 123 (ng/mL) from serosal to mucosal
S	side across the everted jejunum of rats (n=3) in the presence of
e	emodin (0.2 mg/mL)149
Table 5-9. T	Transport of rhodamine 123 (ng/mL) from serosal to mucosal
S	side across the everted ileum of rats (n=3, control)150
Table 5-10.	Transport of rhodamine 123 (ng/mL) from serosal to mucosal
S	side across the everted ileum of rats (n=3) in the presence of
e	emodin (0.2 mg/mL)150