附圖目錄

Fig. 1-1 大黃之組織切片圖73
Fig. 3-1 HPLC fingerprint chromatograms of decoctions of Rhubarb (R)
and Rhubarb steamed with wine (RSW) (Detection wavelength:220
n m)
Fig. 3-2 HPLC fingerprint chromatograms of decoctions of Rhubarb (R)
and Rhubarb steamed with wine (RSW) (Detection
wavelength:250 nm)75
Fig. 3-3 HPLC chromatograms of decoction of Rhubarb prior to (a) and
after (b) acid hydrolysis76
Fig. 3-4 UV spectra of (a) aloe-emodin (b) rhein (c) emodin (d)
chrysophanol and their glycosides (peak 1,2,3 and 4) in Rhubarb
decoction77
Fig. 4-1 Chromatograms of aloe-emodin, rhein, emodin, chrysophanol
and 2-methylanthraquinone (internal standard) in decoctions of R
and RSW.(R: Rhubarb; RSW:Rhubarb steamed with
wine)
Fig. 4-2 Mean(\pm S.E.) contents(μ g/g) of total anthraquinones, aglycon and
glycosides in deceotions of R and RSW.(R: Rhubarb;
RSW:Rhubarb steamed with wine)79
Fig. 4-3Contents(μ g/g) of aloe-emodin(AE), rhein(RH), emodin(EM),
chrysophanol(CH) and their glycosides in deceotions of R and
RSW.(R: Rhubarb; RSW:Rhubarb steamed with wine)80

Fig. 4-4 Contents($\mu g/g$) of aloe-emodin, rhein, emodin, chrysophanol and

- Fig. 5-2. Chromatograms of (a) serum spiked with aloe-emodin, rhein, emodin, chrysophanol and 2-methylanthraquinone (internal standard) and (b) serum sample obtained at 10 minute after oral administration of Rhubarb decoction (5 g/kg)......83
- Fig. 5-3 Mean (±S.E.) serum concentration-time profiles of (a) aloe-emodin, (b) rhein, (c) emodin,(d) chrysophanol and their conjugate metabolites in six rats after oral administration of decoction of rhubarb (R) or rhubarb steamed with wine (RSW) (5 g/kg).

- Fig. 5-6 Serum concentration-time profiles of rhein, rhein sulfates and rhein glucuronides after oral administration of decoction of

- Fig.5-9 Serum concentration-time profiles of aloe-emodin, aloe-emodin sulfates and aloe-emodin glucuronides after oral administration of decoction of Rhubarb steamed with wine (5g /kg) to (a) rat 1, (b) rat 2, (c) rat 3, (d) rat 4, (e) rat 5 and (f) rat 6......90
- Fig. 5-11 Serum concentration-time profiles of emodin, emodin sulfates and emodin glucuronides after oral administration of decoction of Rhubarb steamed with wine (5g /kg) to (a) rat 1, (b) rat 2, (c) rat 3, (d) rat 4, (e) rat 5 and (f) rat 6......92
- Fig. 5-12 Serum concentration-time profiles of chrysophanol, chrysophanol sulfates and chrysophanol glucuronides after oral administration of decoction of Rhubarb steamed with wine(5g /kg) to (a) rat 1, (b) rat 2, (c) rat 3, (d) rat 4, (e) rat 5 and (f) rat

6.	()3
		_

- Fig. 6-1 Mean (± S.E.) blood concentration-time profiles of cyclosporine in rats after oral administrations of cyclosporine alone (1.25 mg/kg,n=5) (♥) and coadministration with emodin (40 mg/kg, n=6)

- Fig.6-3 Mean (± S.E.) blood concentration-time profiles of cyclosporine after oral administration of cyclosporine alone (2.5 mg/kg) (↓) and coadministration with decoction of Da Huang (0.25 g/kg) () to

five rats
Fig. 6-4 Individual blood concentration-time profiles of cyclosporine in
six rats after oral administration of cyclosporine (2.5 mg/kg)
alone () and coadministration with decoction of Hu Zhang (2 g/kg)
()
Fig.6-5 Mean (± S.E.) blood concentration-time profiles of cyclosporine
after oral administration of cyclosporine alone (2.5 mg/kg) (ψ) and
coadministration with decoction of Hu Zhang (2 g/kg) () to six
rats
Fig. 6-6 Individual blood concentration-time profiles of cyclosporine in
seven rats after intravenous administration of cyclosporine alone
(0.8 mg/kg) (Ψ) and coadministration with oral Da Huang (0.25
g/kg) decoction ()103
Fig. 6-7 Mean (± S.E.) blood concentration-time profiles of cyclosporine
after intravenous administration of cyclosporine alone (0.8 mg/kg)
(\blacklozenge) and coadministration with oral Da Huang decoction (0.25 g/kg)
() to seven rats
Fig. 7-1 Mean (±S.E.) transport of rhodamine 123 (ng/mL) across
jejunum in the absence (control) ($\mathbf{\Psi}$) or presence of decoction of Da
Huang (1.25 mg/mL) () or Hu Zhang (10 mg/mL) $$
(t)105
Fig. 7-2 Mean (±S.E.) transport of rhodamine 123 (ng/mL) across ileum
in the absence (control) (\blacklozenge) or presence of decoction of Da Huang
(1.25 mg/mL) () or Hu Zhang $(10 mg/mL)$
(t)105

Fig. 7-3 Mean (±S.E.) transport of rhodamine 123 (ng/mL) across

jejunum in the absence (control) (\blacklozenge) or presence of emodin (0.2)
mg/mL) ()106
Fig. 7-4 Mean (±S.E.) transport of rhodamine 123 (ng/mL) across ileum
in the absence (control) () or presence of emodin (0.2 mg/mL)
()

•