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Chapter 1 Introduction 
 
1.1 Background  

From 1999 to 2000, a regular screening program was executed at Hsin-Yi rural area of 

Nantou County of Taiwan. This program targeted at several purposes. First, potential 

chronic disease patients could be traced and followed-up through this program since 

the resources and accompanied medical care are not well established in this area. 

Second, health-related interventions could be implemented via face-to-face interview 

and physical examinations. Third, an epidemiologic cohort of a health promotion plan 

and consecutive researches could be built on the basis of this cross-sectional sample. 

In this program, physical examinations, collection of serum and urine samples, as well 

as a questionnaire, were administrated on each person. The risk factors of several 

chronic diseases, including GOUT, hyperuricemia,..etc., have already been reported in 

Lai (2002).  

 

Physiological phenomena and the motivation problem 

As we know that many chronic diseases are related with each other in that 

there might be one or even several common factors or latent variables involve 

in the mechanism of these diseases. Investigation of the relationship between 

factors is thus appealing in several aspects. (1) A further causal structure can be 

clarified if prospective data are available. (2) Prediction models (for early 

detection and treatment) of diseases can be set-up. (3) Confounding and/or 

variance component structure of an extra variable, the genetic factor for 

example, can be readily added. With this concern, we implemented a structural 

equation model (SEM) to explore the interrelations of physiological indices 

since they are closely related to each other group-by-group, along with a set of 

‘baseline’ variables.   
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Structural equation modeling 

Structural equation model (SEM) is often used in psychometrics. It allows one to 

evaluate causal hypotheses on a set of inter-correlated non-experimental data. 

Mathematically, SEM can be thought of as a combination of classical path analysis 

(possibly with latent variables) and the ‘confirmatory factor analysis (‘CFA’, or 

‘measurement model’). Recently, the CFA have been proved suitable for evaluating 

the quality of blood pressure measurements other than the psychiatric data in early 

researches.( Batista-Foguet) It summarizes the relationships between latent 

variables in a standard model or between risk factors and outcomes in 

‘nonstandard model’. SEM techniques are distinguished by two characteristics: 

estimation of multiple and interrelated dependence relationships, and, more 

importantly, the ability to represent unobserved, conceptualized variables in 

these relationships and account for measurement errors in the estimation 

process. 

 

1.2. Goal of this study 

The collected data, which is described and explored in the next chapter, contains 

various serum indices (including urine, GOT, GPT,… , etc.), physiological variables 

(including systolic pressure, diastolic pressure, WBC, RBC, … , etc.), the baseline 

variables, and some variables representing personal lifestyle in cigarette smoking, 

drinking, and betel nut eating. (In addition, genetic factors including family data are 

being collected.) If further information about the status of several chronic diseases 

such as GOUT, hypertention, DM, was available, these variables/risk factors can be 

used as predictors of disease under the follow-up study framework. To this end, a 

number of linear regression or prospective logistic regression models are usually used. 

That is, the physiological and biochemical measurement of an individua l may have 

power of prediction on several diseases. In the present study, however, no specific 

diseases status was diagnosed. So the main purpose of this article is to construct a 

primary model, an SEM, to build a possible inter-relation structure among these 
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variables.  

 

    This thesis is organized as follows. Chapter 2 reviews the role and characteristics 

of the serum biochemical measurements, and the notations and expressions of 

structural equation model (SEM). Motivations contrasting with the conventional 

analysis procedure are also addressed. Chapter 3 gives exploratory data analyses for 

the whole dataset. The results of univariate analyses and pair-wise correlations are 

reported. Note that the preliminary correlation matrix offers a naïve perspective of the 

multi-collinearity structure among the covariables, it paves way to a later factor 

analysis with latent variables. Chapter 4 gives the main result of this thesis, which 

suggests a two-stage algorithm of model construction. First, The ‘measurement 

model’ is constructed using a data-dependent exploratory factor analysis (EFA). 

Second, the structure of measurement model is employed in a construction of the 

entire structural equation model. In this procedure, goodness-of- fit (GOF) indices are 

the main criteria to give a valid, or at least, reliable modeling. The complexity of 

model building task always involves the inclusion and elimination of some variable(s) 

and/or factor(s). As a first step, we use a multivariate regression analysis for each 

primary ‘univariate’ variables or for each secondary factor score  consisting of several 

primary variables in the same factor. Different rules for the assessment of contribution 

to the significance of a ‘factor’ can be used to select some possible models. As a final 

step, the marginal correlation structure of all observed variables serves as a tool to 

give a ‘final’ model, in terms of the GOF indices. In Chapter 5, we give some 

discussion about our results.  
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Chapter 2 Notations and Literature Review 
 

2.1 On the biochemical values 

In the natural history of a chronic disease, pre-clinical symptoms are usually not 

apparent to be diagnosed. In spite of this, a public-health concern is to seek for 

suitable indicators obtained from serum samples in regular examinations. Laboratory 

tests are then used as overall physical assessments to detect some abnormal results. 

Routinely performed tests include hemoglobin, red blood cell count, cholesterol, 

triglycerides, total lymphocyte count, serum albumin, etc. Other tests such as pla telet, 

globulin, glucose, AST, ALT, BuN, creatinine, and uric acid also provide 

non- ignorable information. In this thesis, all these values are called physiological or 

biochemical indices. They are used as variables to be classified into several groups or 

factors.  

In a general classification, white blood cell, red blood cell, hemoglobin, platelet 

are usually grouped together and treated as being related to the “function of blood 

manufacturing”. A group of “cardiovascular function” includes systolic and 

diastolic blood pressures, cholesterol level, triglycerides, HDL-C/LDL-C. Another 

group related to “liver function” includes the synthesis of albumin and globulin, AST, 

and ALT. The other group of “kidney function” is composed of nitrogen balance, 

creatinine, serum uric acid and one about metabolism and nephritic absorption, blood 

sugar. In the following, we describe some characteristics and functions of these 

indicators. 

 

Specific indicators  

(1) Uric acid is synthesized in liver, and excreted from kidney and intestine. In 

blood, a part of ion of uric acid combine with albumin, some exists with an ion type, 

and most of them exist in body fluid outside of vessel. The rates of decomposition and 

synthesis of protein balance each other.    

   (2) Blood pressure  (BP) is the force of the blood pushing against the side of 
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vessel wall. The systolic pressure is the maximum pressure felt on the artery during 

left ventricular contraction. The diastolic pressure is the elastic recoil, or resting, 

pressure that the blood exerts constantly between each contraction. These variations 

come from age, sex, race, rhythm, weight, exercise, emotions, stress, and so on. 

   (3) Red blood cell count is the total number of hemoglobin per cubic millimeter 

in blood. The hemoglobin is an important part in red blood cell, and carries oxygen 

around our bodies. If a person suffers from anaemia, their red blood cell count and 

hemoglobin will always be under a normal level.  

   (4) White blood cell count and type are the most commonly used tests of immune 

function. The number of white blood cells increases as a result of bacterial infection, 

bleeding, fever, inflammation, metabolism, and smoking and decreases due to 

antibodies which induce the autoimmune response. 

   (5) Platelets are very small cells in the blood, and their major function is blood 

clotting. The decrease of platelets number will increase the chance of bleeding, even 

without injury. The mechanism involves autoimmune, chemotherapy, leukemia, viral 

infection, anaemia. An increase of number will make more blood clots, this involves 

bone marrow, splenectomy, etc.  

   (6) Serum albumin and globulin make up most of proteins and their major 

functions are to provide nutrition for our body tissues. Hyperproteinemia is the major 

result of globulin. The albumin and globulin major synthesize in liver. In clinical 

aspects, decreases in concentration of albumin may due to hunger, malnutrition, 

synthesis velocity, liver cirrhosis, kidney syndrome, and infection, etc. 

   (7) In human body, there are two important kinds of aminotransferase: aspartate 

oxaloacetate transaminase (GOT/AST), and alanine pyruvate transaminase 

(GPT/ALT). They are used to detect the damage in liver. Note that GOT also exists in 

brain, heart, and blood cell, the increase in GOT-value may imply health problems of 

related organs. The major function of a liver relates to metabolism, storage, 

phagocytosis, and maintain plasma capacity and concentration.  

   (8) Glycogen is the important part of sugar, and it stored by high concentration in 
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liver and muscle, and supplies the large number of energy for all body tissue by blood 

circulation. The glucose dissolution produces most of energy for the demand of 

human body. A greater part of the glucose in lipocyte will become lipide and be stored 

in lipidic tissues. Insulin can promote the glucose to form lipide. A part of the glucose 

in lipocyte changes to glycogen in the muscle tissues, and the process is also affected 

by insulin. As what is known, diabetes-status is a risk factor for the cardiovascular 

disease, and the cardiovascular disease can also lead to diabetes. A high level of blood 

sugar thus indicates problems in these organs or in hormone. 

   (9) The lipids  of human body contains triglyceride and cholesterol. Clinically, 

many diseases relate to lipoprotein change. Lipoprotein is a combination of lipid and 

protein (for example, triglyceride combines with alpha-globulin). Most of lipids 

combine with globulin. The sources of triglyceride and cholesterol are food and 

synthesized by liver. The causes of a high triglyceride level are due to diabetes, 

arteriosclerosis, kidney syndrome, hypothyroidism, hungry, diet, obesity, obstructive 

jaundice, acute/chronic pancreatitis, uremia, alcohol, hormone. The reasons for a low 

level are beta- lipoprotein deficiency, liver diseases, absorption deficiency syndrome, 

heparin use, or the problems in metabolism function. The value of serum triglyceride 

is age-dependent, and can be used for a screening of hyperlipidemia and to determine 

the risk of coronary artery disease. Moreover, total cholesterol is measured to evaluate 

fat metabolism and to assess the risk of cardiovascular disease. The normal range of a 

cholesterol level varies with age and gender.  

   (10) Nitrogen balance (BuN) is a basic item of kidney examination, it is also an 

index of protein nutritional status. Nitrogen is released with the metabolism of amino 

acids, and the final production is urea. The concentration of BuN in blood is 

determined by protein ingestion and excretive rate of kidney. 

   (11) Creatinine  is derived from the breakdown of creatine through the synthesis 

of liver. It is not affected by protein ingestion and excreted unchanged in the urine at a 

constant rate. Thus the increase of concentration of creatinine in blood indicates the 

kidney function deficiency. The level of creatinine depends on individual weight, 
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height, gender, and age. It is sometimes viewed as an indicator of ageing.  

   (12) Uric acid is released with metabolism of amino acid through purine. A high 

level of uric acid is due to hungry, obesity, hyperlipide ingestion, and alcohol. 

Hyperlipide produces ketone and alcohol restrains the excretive function of uric acid 

in kidney. Furthermore, diuretic, adrenalin, Niacin, Ethambutol, L-DOPA affect the 

uric acid level. The complication of hyperuricemia is an increase in red blood cell, 

leukemia, kidney function deficiency, or hypertension. The value of uric acid is also 

age-dependent.   

 

The common ranges of the biochemical data 

Blood pressure : 120 ~ 159mmHg in SBP; 80 ~ 90mmHg in DBP. 

WBC (white blood cell) : 5000 ~9000/ul. 

RBC (red blood cell) : 4.5 ~ 5.5×106/ul for male; 4.0 ~ 5.0×106/ul for female. 

Hb (hemoglobin) : 14 ~ 18g/dl for male; 12 ~ 16g/dl for female. 

PLA (platelet) : 140 ~ 350×103/ul.  

ALB (albumin) : 3.7 ~ 5.2 mg/dl.  

GLO (globulin) : about 2.4 mg/dl.  

Liver function: AST or ALT is higher than 40 U/ml and it is defined abnormal. 

BS (fasting blood sugar): 60 ~ 120 mg/dl.  

CHO (cholesterol level) : 130 ~ 225 mg/dl.  

Triglyceride is 25 ~ 150 mg/dl. The definition of hypertriglyceridemia is 

higher than 200mg/dl. 

In kidney function blood urea nitrogen is higher than 22mg/dl or creatinine  is higher 

than 1.2mg/dl. 

Uric acid is 3.5 ~ 7.2mg/dl. It is abnormal when UA is higher than 7mg/dl for male or 

6mg/dl for female. 

 

2.2 Notations  

Structural equation model (SEM) 
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Notations adopted in this thesis are the ‘LISREL notation’ system. The SEM is 

composed of two primary components: a structural model and a measurement model. 

The structural model is ? = G?+?. Two equations for the measurement model are  

y =? y?+e and x =? x?+d. There are two kinds of variables: endogenous variables and 

exogenous variables. ‘Endogenous’ refers to variables that are influenced by other 

variables in SEM and ”exogenous” describes variables that are determined outside of 

the model system. The ‘matrix’ expression of the SEM structure include three parts: 

the structural model, the measurement model, and the covariance matrices. In this 

section, we take Figure 2.1 as an illustration of our notations.  
 
Structural model: 
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Measurement model: 
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Covariance matrices: 
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Var(δ)=
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The y-variables are the 16 observed (measured) physio logical/biochemical indices 

which are expressed as y=?×?+e. The ?-variables are the latent endogenous variables 

with errors ?s. The x-variables are the exogenous variables obtained with or without 

errors. If there is no error (d) in x, then ?=x. The parameters of major interests to be 

estimated are ? (the factor loading of a ‘y’ with respect to an ’?’) and ? (the effect of 

an ‘x’ or ‘?’ on a factor ’?’). In order to obtain valid estimates, the covariance 

parameters are usually solved simultaneously with the parameters of interests. Finally, 

F and ?  are covariances of ? and ?, respectively.  

 

 
Fig. 2.1 An illustration of notations using an SEM structure obtained in Chapter 4. 

 

 

2.3 Literature review 

The SEM approach to statistical analysis is largely studied in econometrical and 
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psychometrical literatures as well as in behavioral sciences, clinical researches in 

nursing, and the field of hospital management, etc. General studies of development of 

SEM methodology include Bollen (1989), Mueller (1996), and Wan (2002). Bollen 

(2001) also provided a simple introduction to the theory, notations, and statistical 

issues of SEM. With SEM method, several systems of analysis packages (among 

others) have been developed: 

(1) SAS PROC CALIS (SAS Inc., Version 8.2) contains unconstrained estimation 

of measurement model (CFA) as well as the entire SEM. It provides generalized least 

squares (GLS option), weighted least squares (ADF option), and maximum likelihood 

estimates (ML option) in the MODEL statement. 

(2) LISREL (Jöreskog and Sörbom, 1992, LISREL 8) offers constrained 

estimation of CFA and SEM components. It is user friendly but suffers for 

convergence problem (in our experience!) if data analyzed is not suitably standardized 

in some situation. 

(3) EQS (Bentler, 1989) is developed as a simple version of LISREL. 

 

In order to obtain a final structural model, first one has to obtain a measurement 

model based on a confirmatory factor analysis (CFA). The CFA framework is usually 

executed with the knowledge of which variable(s) should be grouped together and 

which should not. And then, based on the construct of the measurement model 

obtained from CFA, an SEM is fitted. There are two scenarios played in the 

procedures of constructing an SEM: the one-stage and two -stage approaches. In a 

one-stage approach (or simultaneous estimation), parameters are estimated through 

maximum likelihood method, for example, in a simultaneous estimation procedure, in 

which, however, a problem of non-convergence is often encountered. In a two-stage 

approach, on the other hand, the parameter in a measurement model (CFA) is firstly 

estimated and the entire part is then used as fixed to undergo the construct of a 

likelihood in the coming estimation. 

In our problem, however, there is no confirmatory part based on physiological 
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reasons. It is thus appealing to use an exploratory factor analysis (EFA) and its 

corresponding result to build a measurement model. A question arises since the errors 

or residuals of an EFA are not correlated but those of a CFA are correlated. This 

induces a concern about the procedure of constructing a full SEM. In this thesis, we 

suggest a hybrid approach to the construction of the SEM by the following three 

steps: (I) To give an EFA analysis for the observed variables (y) in order to obtain a 

primary measurement model; (II) to construct the SEM according to some preliminary 

analyses on the inter-relations between the observed/latent variables; and (III) since 

the previous step introduces some correlations between the errors (or residuals), a 

correlation structure of the observed variables (y) is considered in a stepwise manner 

to improve the fit. We call this hybrid procedure a two-stage construct of SEM with 

a ‘simultaneous’ (rather than ‘two-stage’) estimation. 

  For our dataset and whole research structure, population and family data of disease 

status, genotype, and other variables are still in collection. Before we can try to 

implement an SEM analysis on a future (more complete) dataset, an application of the 

SEM method to the present cross-sectional data serves as a premise to further 

statistical analysis. For example, on the stand of population-level, heritability 

estimation based on population and/or family data is of interest. (Pausova et al.2001). 

On a lower but more structured level, Province et al.(2001) use path analysis 

modeling to estimate familial aggregation and heritability; and Williams (1999) use a 

variance component analysis, along with the knowledge of genetic segregation, to 

give a linkage analysis. These also motivate our present study of SEM (using our 

present and future datasets). 

 

For the techniques of implementing a system of structural equations, several aspects 

of data characteristics need to be checked. For example, if the observed variables are 

seriously skewed, a robust approach via transformation of variables can be considered 

(K.H.Yuan et al.2000). Second, if non-convergence problem and/or improper 

solution are encountered, guidelines of a model-building procedure have to be taken. 
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In what follows, we use the suggestion of Chen et al. (1999), which is summarized 

and expressed in the following diagram (Figure 2.2). 

 

Fig. 2.2 A diagram of possible chart for model fitting techniques. 
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Chapter 3 Materials and Preliminary Analyses 
 

3.1 Dataset 

Our dataset is collected and offered by Dr. Li-Hsin Lai and his staff of health 

section of Hsin-Yi township, Nantou County of Taiwan. A cross-sectional 

community-based survey and screening program was conducted on 2,565 adult 

participants (aged 40 or older) during a health examination. Demographic data and 

variables concerning life-style are obtained from questionnaire; biochemical values 

are from blood extraction. The screening rate (or participation proportion) was 45.8%. 

There was no significant difference between the participants and non-participants in 

terms of the age, sex, and race structure/distributions of the whole township. In the 

sample, there were 1226 (47.8%) males and 1339 (52.2%) females, and 1318 (51.4%) 

aborigines and 1247 (48.6%) non-aborigines.  

 

Covariables and measurements 

In our study, we used age, life-style (smoking, drinking, betel nut chewing) and as 

risk factors. In particular, they were treated as exogenous variables in the SEM 

context. Endogenous variables mainly consisted of the physiological and biochemical 

measurements such as systolic blood pressure (SBP), diastolic blood pressure (DBP), 

white blood cell (WBC), red blood cell (RBC), hemoglobin (Hb), platelet (PLA), 

albumin (ALB), globulin (GLO), AST (GOT), ALT (GPT), blood sugar (BS), 

cholesterol (CHO), triglyceride (TRI), blood urea nitrogenk (BuN), creatinine (CRE), 

and uric acid level (UA). These instruments included Sysmex-100 in blood 

examination, Hitach 704 in biochemical examination, UA by enzymatic-color method, 

blood sugar by oxidase method and cholesterol and triglyceride by oxidase--peoxidase 

method and glycorokinas-glycerophosphate-oxidase-peroxidase method, respectively. 

For all of the above measurements, they was performed by a standard checkout  of lab 

condition. 
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3.2 A preliminary of data analysis procedure 

   As the first step of exploratory data analysis (EDA), the characteristics of all 

variables/covariables should be analyzed. There were three types of variables in our 

data: continuous variables (age and all physiological/biochemical measurements), 

indicator variables (sex and race), and ordinal variables (concerning life-style). 

Basically, all these variables are ‘primary’ or ‘directly observed’. In some researches, 

‘secondary’ variable such as BMI is also considered as a confounder which is defined 

by other primary variables. In our analysis, we only study the linear relationship 

among all these directly observable variables so the secondary variables are not 

included in the analysis. For discrete variables, we presented frequencies; for 

continuous variables, sample means and standard deviations are calculated and 

histograms (with smoothing loess curve estimates) are plotted. Because the 

relationships among these physiological/biochemical values are of interests, we 

presented the pairwise correlation matrix.  

  The second step is to construct the measurement model of an SEM. According to a 

previous context, there is no clear and evident classification for functional target of all 

the physiological/biochemical measurements of human body in clinical test, we used 

exploratory factor analysis (EFA) for the purpose of classification. The 16-item 

physiological/biochemical values were subjected to an exploratory factor analysis 

using the squared multiple correlations as prior communality estimates (L. Hatcher, 

1998). The maximum likelihood (ML) method was used to extract the factors, and 

ploted the factor pattern before rotation. The scree test and the rule of 

‘eigenvalu-one’ suggested a solution of four factors  that will be retained for further 

analysis (L. Hatcher, 1998). As a result, factors 1 to 4 accounts for nearly 100% of 

the total sum of squares. This classification was then treated as being useful for 

further development of confirmatory factor analysis (CFA). The measurement model 

comprised of latent endogenous variable and observed endogenous variables; it was 
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tested and renewed until a statistically acceptable model, in terms of ‘good fits’, was 

obtained.  

In order to select a construct of SEM, we compared factor scores in EFA and CFA 

and carried out multiple linear regression analysis for each factor score. However, 

there were different  choices of factor scores. For examples, Bartlett (1937,1938) and 

Thomson (1951) suggested Y=X Ψ̂ -1Λ̂ ( ˆ′Λ Ψ̂ -1Λ̂ )-1 and Y=XΨ̂ -1Λ̂ (I+ ˆ′Λ Ψ̂ -1Λ̂ )-1, 

respectively. The Bartlett’s score is hereafter referred to as a naïve method since 

Y=V Λ̂ 0( Λ̂ ’0Λ̂ 0)-1. (V= X Ψ̂ -1/2 ,Λ̂ 0= Ψ̂ -1/2 Λ̂ , Ψ̂ is symmetric.) So the factor scores 

produced by the naïve method could be compared to the Thomson’s scores.  Next, 

we carried out multiple regressions for factor score each in individual. That means we 

only considered one response (dependent variable) at a time, and the response 

variable can be the unobserved latent factor or the observed physiological or 

biochemical measurements. From the analysis, we recorded significant level and used 

some criteria to produce a construct of measurement model. In the procedure of model 

fitting, several goodness-of-fit indices were employed as indices of model adequacy.  

 

3.3 Exploratory data analysis 

 

Descriptive statistics 

   Descriptive statistics, as well as the distributions, of all exogenous and 

endogenous variables are reported in Table 3.1 and Figure 3.1. The joint distribution 

of sex and race of this sample is not significantly different from the distribution of the 

entire Hsin-Yi area for those aged 40 or older. Concerning the life-style variables, 

there are 76.22% of nonsmoking, 62.53% of non-drinking, and 72.28% of people 

without chewing betel nut. The mean age is 58.01 years old (standard deviation= 

12.02); the mean and standard deviation for physiological/biochemical values are 

134.17±22.18 mmHg (SBP), 80.45±12.99 mmHg (DBP), 6940.34±1971.14 /ul 

(WBC), 14.28±1.54 g/dl (Hb), 4.65±0.48 ×106µl (RBC), 232.96±70.07 (PLA), 

4.36±0.27 mg/dl (ALB), 3.01±0.31 mg/dl (GLO), 34.57±26.36U/ml (AST), 
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34.97±28.30 U/ml (ALT), 103.58±48.05 mg/dl (BS), 193.28±42.02 mg/dl (CHO), 

174.82±188.27 mg/dl (TRI), 15.42±4.82 mg/dl (BuN), 1.07±0.36 mg/dl (CRE), 

7.01±2.05 mg/dl (UA), respectively. To compare with the common range, we found 

that most of the observations falls into the common range except for uric acid. The 

uric acid level is obviously higher than the general population. Health-related  

problems of this community such as hyperuricemia and gout are thus important. 

 

Pairwise correlation matrix 

    Conventional factor analysis and principal component analysis rely heavily on 

the structure of inter-correlations among the variables studied. By calculating the 

pairwise correlations of physiological/biochemical data, it offers insight into the 

factor analysis. For example, SBP and DBP are both used to check the blood pressure  

and they surely have a high correlation. Similarly, AST and ALT, Hb and RBC, BuN 

and CRE, are used to check the liver function, blood function/anemia, and kidney 

function respectively. All pairs have high correlations. We draw the color with dark or 

light to represent different levels of correlations. By a suitable alignment, the pattern 

of clusters  could be determined from the correlation matrix. Nonetheless, some 

mathematical techniques is yet developed (at least in this thesis) and compared to the 

conventional principal component analysis (PCA) or factor analysis. From this matrix, 

on the other hand, we only distinguished (roughly) four clusters from PCA (Table 

3.2). The variables SBP, DBP, WBC, and CHO are treated as from a factor connected 

with cardiovascular function; the variables GLO, AST, and ALT are grouped and 

thought to be associated with liver function. We continued this process to group Hb, 

RBC, PLA, ALB, and TRI, connected with manufacture blood function, or quality 

of blood. Finally, BS, BuN, CRE, and UA are combined into one group correlated 

with metabolism, excrete, and kidney function. These groupings will be further 

checked and confirmed by exploratory factor analysis reported in the next chapter.
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Table 3.1 Descriptive statistics of the exogenous and endogenous variables 

Predictors  Frequency Percent (%)  
Sex Male 1226 47.80  
 Female 1339 52.20  
Race Non 1247 48.62  
 Aborigine 1318 51.38  
Smoke  Never 1955 76.22  
 Sometimes 88 3.43  
 Often 12 0.47  
 Everyday 510 19.88  
Drink Never 1604 62.53  
 Sometimes 725 28.27  
 Often 37 1.44  
 Everyday 199 7.76  
Betel nut Never 1854 72.28  
 Sometimes 465 18.13  
 Often 8 0.31  
 Everyday 238 9.28  

Variable Mean Std Dev Minimum Maximum 
AGE 58.01 12.02 39.43 93.71 
SBP 134.17 22.18 75.00 244.00 
DBP 80.45 12.99 32.00 155.00 
WBC 6940.34 1971.14 3100.00 29500.00 
Hb 14.28 1.54 4.90 18.90 
RBC 4.65 0.48 2.86 6.99 
PLA 232.96 70.07 25.00 536.00 
ALB 4.36 0.27 2.20 5.60 
GLO 3.01 0.31 2.10 4.50 
AST 34.57 26.36 11.00 612.00 
ALT 34.97 28.30 10.00 391.00 
BS 103.58 48.05 54.00 538.00 
CHO 193.28 42.02 78.00 391.00 
TRI 174.82 188.27 32.00 3063.00 
BuN 15.42 4.82 9.00 78.50 
CRE 1.07 0.36 0.70 8.30 
UA 7.01 2.05 2.10 17.20 
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Fig. 3.1 The distributions of eighteen continuous variables 
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Table3.2 Pairwise correlation matrix for 16 physiological/biochemical variables 
variables SBP DBP WBC CHO GLO AST ALT Hb RBC PLA ALB TRI BS BuN CRE UA 
SBP  

 
               

DBP 0.7695 
<.0001 

               

WBC 0.1095 
<.0001 

0.1195 
<.0001 

              

CHO 0.1009 
<.0001 

0.0934 
<.0001 

0.0970 
<.0001 

             

GLO 0.0907 
<.0001 

0.0780 
<.0001 

0.1046 
<.0001 

0.0337 
0.0882 

            

AST 0.0205 
0.2996 

0.0143 
0.4680 

-.0161 
0.4153 

-.0631 
0.0014 

0.2267 
<.0001 

           

ALT 0.0336 
0.0889 

0.0356 
0.0712 

0.0573 
0.0037 

-.0051 
0.7947 

0.1830 
<.0001 

0.7549 
<.0001 

          

Hb 0.0575 
0.0036 

0.1228 
<.0001 

0.1116 
<.0001 

0.1243 
<.0001 

-.0316 
0.1098 

0.0729 
0.0002 

0.1487 
<.0001 

         

RBC 0.0304 
0.1234 

0.0940 
<.0001 

0.0871 
<.0001 

0.0903 
<.0001 

-.0914 
<.0001 

-.0660 
0.0008 

0.0403 
0.0411 

0.6044 
<.0001 

        

PLA -.0294 
0.1360 

0.0154 
0.4360 

0.2075 
<.0001 

0.1125 
<.0001 

0.0136 
0.4918 

-.0982 
<.0001 

-.0787 
<.0001 

-.1423 
<.0001 

-.0286 
0.1477 

       

ALB 0.0353 
0.0743 

0.0667 
0.0007 

0.0603 
0.0022 

0.1953 
<.0001 

-.0338 
0.0872 

-.0921 
<.0001 

0.0225 
0.2552 

0.2713 
<.0001 

0.3096 
<.0001 

0.0994 
<.0001 

      

TRI 0.0849 
<.0001 

0.1263 
<.0001 

0.0744 
0.0002 

0.3105 
<.0001 

0.1643 
<.0001 

0.1267 
<.0001 

0.1233 
<.0001 

0.1287 
<.0001 

0.0072 
0.7163 

0.0751 
0.0001 

0.0805 
<.0001 

     

BS 0.0762 
0.0001 

0.0576 
0.0035 

0.0415 
0.0357 

0.0759 
0.0001 

0.1094 
<.0001 

0.0462 
0.0193 

0.0933 
<.0001 

0.0509 
0.0099 

0.0140 
0.4774 

-.0363 
0.0658 

0.0115 
0.5622 

0.2709 
<.0001 

    

BuN 0.0557 
0.0048 

0.0049 
0.8058 

0.1629 
<.0001 

0.1383 
<.0001 

0.0227 
0.2496 

-.0712 
0.0003 

-.0497 
0.0118 

-.1474 
<.0001 

-.1286 
<.0001 

-.0256 
0.1949 

-.0125 
0.5267 

-.0034 
0.8653 

0.0696 
0.0004 

   

CRE 0.0726 
0.0002 

0.0668 
0.0007 

0.0870 
<.0001 

0.0506 
0.0103 

0.0031 
0.8768 

-.0175 
0.3761 

-.0189 
0.3396 

-.0235 
0.2347 

-.0485 
0.0140 

-.0330 
0.0950 

-.0227 
0.2503 

0.0305 
0.1220 

0.0541 
0.0062 

0.5837 
<.0001 

  

UA 0.1008 
<.0001 

0.1410 
<.0001 

0.2197 
<.0001 

0.0401 
0.0424 

0.1981 
<.0001 

0.1752 
<.0001 

0.1605 
<.0001 

0.2028 
<.0001 

0.0699 
0.0004 

0.0653 
0.0009 

-.0010 
0.9592 

0.2496 
<.0001 

-.0132 
.5043 

0.1751 
<.0001 

0.2061 
<.0001 
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Chapter 4 Statistical Analysis and  
Main Results 

 

In sociological researches, often there is a hypothetical structure, which is referred to 

as a ‘model’, and data or information collection is processed through a (structured) 

questionnaire and accompanied statistical analysis to validate the model. The most 

common adopted statistical method is the structural equation modeling (SEM). 

However, it should not be a paradigm since this ‘model’ or ‘procedure’ a priori of 

scientific research tells no more story than a result obtained from that without a model 

assumption. That means, a scientific model could also be set-up by a procedure with a 

‘meta’-sense in that we can still build a posterior model after the analysis is 

completed, if there is some interpretability concerning the results. 

 

For our health-related data, it is still lack of theoretical support and 

physiological/pathological evidence or reasons that which variables should be 

grouped together and, likewise, the mechanism and causal results of a variables/index 

on the other(s) and their recursive  relationships are also unknown. For a set of 

variables collected from a cross-sectional sample consisted of aged people, the 

inter-relations between variables may have different pattern from the reasoning of 

physiological/pathological aspects. For example, SBP, DBP, and WBC grouped in a 

factor cannot be over- interpreted in that they do have causal relationship in the 

formation of chronic diseases. On the other hand, they should be viewed as being 

common results related to an unknown, unobservable pathway through a latent factor. 

In this regard, a confirmatory factor based on medical knowledge and an exploratory 

factor reflected from a ‘prevalence data’ give no confliction. 

 

4.1 The measurement model in SEM 

  There is a question about the ‘adequacy’ of giving a factor analysis before it is 

executed. To this end, a Kaiser’s pre-analysis measure can serve to judge the ‘level’ 
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of adequacy. For our data, the overall MSA (measure of sampling adequacy) is 0.563 

and variable-specific measures are: 

SBP  DBP  WBC  CHO  GLO  AST  ALT  Hb 

0.52   0.53  0.63   0.58  0.77   0.53  0.54  0.58 

RBC  PLA  ALB   TRI   BS   BuN  CRE  UA 

0.60   0.44  0.71   0.59  0.52   0.52  0.55  0.65 

As an usually experience, the level of 0.5 is recognized as an lowest acceptable 

threshold; and the level of 0.7 or above as being promising for a good factor analysis 

(H-J Chiou). It is noted from the above result that most of the ‘adequacy’ level lie 

within 0.5 to 0.6, the level of PLA is 0.44, and those of GLO and ALB are greater 

than 0.7. It is treated as being feasible to undergo a factor analysis. Another measure 

of sampling adequacy is the communality, which will be discussed later for specific 

models. 

In an exploratory factor analysis, each observed variable y1, y2, … , yp of a centered 

random vector y is assumed to be a linear combination of m factors f1, f2, … , fm : 

y1-μ1=λ11f1+λ12f2+ ⋯ +λ1mfm+ε1 

y2-μ2=λ21f1+λ22f2+ ⋯ +λ2mfm+ε2 

… … … …  

yp-μp=λp1f1+λp2f2+ ⋯ +λpmfm+εp. 

The coefficientsλij  is referred to as the loading of factor j (fj) on the i-th observed 

variable yi. Ifλi1 is close to zero, for example, it means that the level of yi which is 

attributable to factor 1 (f1) is nearly zero or at least very non-significant. Moreover, 

with the above expressions, each yi represents a ‘point’ in the space spanned by 

factors (f1,f2,… ,fm). A suitable presentation of the ‘position’ of the point with respect 

to an (fi,fj)-pair can reveal comparative factor loadings between fi and fj of the 

variable concerned. If one plots the point of a variable yk in the fi-fj plane, for example, 

and if the position of yk is very close to the fi-axis, then the factor loading of yk with 

respect to fi is much larger than that of fj. In this case we believe that the ‘path’ from fi 
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to yk should be considered, and the path from fj to yk may not be an important one. 

However, if the location of yk is just between the two axes (or lies around the line 

fi=fj), it means that both of the pathways from the two factors to the variable yk should 

be considered. 

 The exploratory factor analysis (EFA) suggested four factors according to at least 

one of the following four criteria: eigenvalue -one  criterion, the scree-plot diagnostics, 

the attributable proportion of (centered) sum of squares, and the ‘interpretability’ 

criterion. Of course, more factors also could be considered if the ‘interpretability’ 

criterion is greatly emphasized. In an analysis not reported in the context, most of 

measurement models based on more factors with a great physiological assortment and 

interpretability do not converge even under a low decimal criterion. The resultant 

classification of the 16 physiological/biochemical values into four factors is as 

follows. 

        Table 4.1 A classification according to exploratory factor analysis. 

        Variables (y) 

Factor 1 (f1) GLO, AST, ALT 

Factor 2 (f2) SBP, DBP, WBC, CHO 

Factor 3 (f3) Hb, RBC, PLA, ALB, TRI 

Factor 4 (f4) BS, BuN, CRE, UA 

The plots of each ‘y’-variables on various fi- fj planes are shown in Figure 4.1. By 

careful examinations, one can check the above classification through the six plots in 

that which variable (y) is reasonably classified into which factor (f), as well as the 

co-influence of two or more factors on the same variable (y). For example, the points 

A and B (SBP and DBP) are almost no doubt to be classified as Factor 2 (f1), but the 

point C (WBC) can be attributed by Factor 2 (f1) and Factor 4 (f4). The latter 

suggested a possible path from Factor 4 to WBC in the measurement model or SEM 

analysis. Similarly, the points D and E (Hb and RBC) both can be co-attributed by 

Factors 3 and 4, and so paths from Factor 4 to Hb and RBC are then possible. 
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Unfortunately, however, later analyses of measurement model and SEM with these 

‘inter- factor relationship’ usually resulted in improper solutions, non-convergence 

estimates, and/or worse fits. At a request of parsimony when improper solutions are 

encountered (Chen, Bollen, et al., 1999), hereafter we will not take the case of 

‘inter- factor relationship’ into consideration in our presentation and analysis. Figure 

4.2 gives the estimates associated with the EFA of Table 4.1. When the biggest 

marginal correlation (CHO and TRI) among the observed variables is considered, 

goodness-of- fit indices (GFI and AGFI) were improved to a satisfactory level; though, 

substantial changes in the estimates of each factor loadings are not observed. This 

construct will be used as an initial ‘guess model’ for later modeling of SEM except for 

that more of the inter-variable correlations could be included to improve the fits. 

  Finally, it is worth noting that the pairwise correlation matrix of Table 3.2 gives a 

contrast with the results of exploratory factor analysis of Table 4.1. 

[Put Figures 4.1 and 4.2 about here.] 

 

4.2 The structural model in SEM 

As a primary hypothesis, we assumed that the physiological/biochemical 

mechanism is not different between races and genders. With this assumption, we did 

not take race and gender as exogenous variables to make things simple and then the 

whole dataset was used to pursuit a reasonable model-building procedure in SEM.  

When it is believed that there is different among genders and/or races, however, more 

complicated fitting can be considered. For example, a ‘stratification’ on gender or race 

is possible. 

 

Full model 

Since the inter-relationship between the four factors, reduced from 16 observed 

variables, and four risk factors or risk taking behaviors is of major concern, first we 

draw all possible paths as an initial construct of SEM. It is hereafter referred to as the 

full model. The fit of full model is not a good one (GFI=0.6808, NFI=0.0452, 
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CFI=0.0424). Standardized parameter estimates are presented in Figure 4.3.  

In order to improve the fit (in terms of goodness-of-fit indices), significant paths 

from the exogenous variables to the latent factors (terms as the γ-path) need to be 

identified and non-significant paths to be deleted. Traditional method concerning this 

‘model-selection’ procedure is to use the Lagrange multiplier test (a parallel of Rao’s 

score test in regression set-up when there exists a likelihood) or the Wald test in a 

stepwise manner. However, when the likelihood of an SEM is written, it involves the 

whole structure of the SEM, including all the covariance parameters, γ-paths, and 

λ-paths (from factors to the observed y variables). This implies that the stepwise 

procedure involves a simultaneous estimation of all parameters, not only theγ-paths 

(orγ-parameters). In this thesis, we propose that the construct of an SEM as a 

two-stage procedure, but the estimation is a simultaneous  one. In this regard, an 

alternative (but naïve) algorithm based on the two-stage thinking is proposed based 

on the building stone of univariate-multiple linear regression. ‘Univariate’ means that 

the outcome can be (i) the univariate observed variable, y, or (ii) a combined factor 

score; ‘multiple’ indicates that the explanatory variables are the set of risk factors 

(AGE, SMK, DRI, and PEA). For (ii), we use the naïve score proposed by Bartlett 

(1937) in which factor loadings are substituted by those parameter estimates obtained 

from the ML estimation of measurement model. There is another factor score 

suggested by the SAS system and, for the current dataset, scatter-plots (Figure 4.4) of 

these two factor scores shows that these two scores are high surrogates to each other. 

[Put Figures 4.3 and 4.4 about here.] 

 

Univariate linear regression with observed dependent variables 

  We used the physiological/biochemical variables as outcome variables and risk 

factors as predictors and proceeded regression analyses. In this process, we 

considered one responser (dependent variable) at a time, and the model could have 

many predictors (independent variables), so it is called a univariate multiple 

regression analysis. According to the analysis, we recorded the significant level and 
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provided some criteria to decide the structural model. The double asterisks 

represented the p-value less than 0.01, and one asterisk indicated a p-value within 

0.01 to 0.05. In each cell, a ‘double asterisks’ is treated as being a full mark. The 

result of univariate multiple regression analysis was reported in Table 4.2.  

Next, total numbers of asterisks of x’s (age, smoking, drinking, and betel nut eating) 

on every observed variable (y) were counted for each factors (f). After this, various 

criterion rules can be used. (Note that each criterion rule corresponds to a construct.) 

Examples of considerations on the rules and their interpretation are as follows.   

(1) Additive-1/2 rule : The total number of asterisks is greater than or equal to a 

half of the possible number of asterisks. In this case, the corresponding γ-path is 

identified as being important. For example, from Table 4.2, since Factor 1 (f1) 

consisted of 4 variables, thus there must be 8 possible asterisks in 4 cells for each 

of the 4 risk factors. As a result, the age-f1 relation has 6 asterisks, reveals that the

γ-path from AGE to Factor 1 should be considered. Similarly, theγ-paths from 

SMOKE and DRINK to Factor 1 are both important, but that from BETEL NUT to 

Factor 1 is not. This criterion relies on the additive effect of significance attributed 

from the relationship between risk factors (x) and distinct observed variables (y). 

(2) Relative significance rule: If the number of cells (which equals the number of 

variables related to a factor) with two-asterisks significance level exceeds, or equals 

to, the total number of cells, the γ-path is considered. This rule is very strict in 

asking for parsimony in the construct ofγ-path. 

(3) Strict additive-1/2 rule : Like the rule of (1) except for that the ‘equal 

to’-requirement is cancelled.  

(4) Absolute significance rule : When the number of cells with two-asterisks 

significance level exceeds 2, it is also reasonable to treat the factor to be highly 

attributable to the x variables in the sense that there are genuine contributions from 

x to the combined observed variables (y) which consisted of the factor (f).  

It is important to note that some variants of (1)~(4) or their configurations are also 

possible. (For details, please refers to the results of Table 4.4.) 
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Univariate linear regression with latent factor scores 

When the naïve factor scores were used as outcome variables, the case of p-value 

less than 0.01 were further partitioned into two sub-cases: 0.001<p< 0.01 and p< 

0.001. We set 3 asterisks to the case of p-value<0.001, 2 asterisks to the case of 

0.001<p< 0.01, and 1 asterisk to tha t of 0.01<p< 0.05. The result was presented in 

Table 4.3.  

[Put Tables 4.2 and 4.3 about here.] 

 

According to the results of multiple regression analyses, we borrowed the criterion 

of relative significance rule. (i) If the number of cells (which equals the  number of 

variables related to a factor) with 2 or more asterisks, or, (ii) if, in a more restrict 

sense, the number of cells with 3 asterisks exceeds or equals to the total number of 

cells, the γ -path is considered. The first consideration gives the following 

goodness-of- fit indices: GFI=0.7853, NFI=0.4782, CFI=0.4828; The second one gives 

GFI=0.8200, NFI=0.5500, CFI=0.5558.  

 

As a final construct by combining the above results, we obtained an SEM shown 

in Figure 4.5 with the best goodness-of-fit indices with GFI=0.8445 and  

AGFI=0.7920.   

[Put Table 4.4 and Figure 4.5 about here.] 

 

Adding/deleting correlated error terms stepwisely 

   In order to obtain a satisfactory fit, in terms of goodness-of-fit indices, we tried to 

add the path of correlations between error terms of observed variables (y) in the order 

from high to low level of marginal correlations (though partial correlation also could 

be considered). We had the following order of correlations: SBP/DBP (0.769), 

AST/ALT (0.755), Hb/RBC (0.604), BuN/CRE (0.584), CHO/TRI (0.311), RBC/ALB 

(0.310), Hb/ALB (0.271), TRI/BS (0.271), TRI/UA (0.250), GLO/AST (0.227), 
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WBC/UA (0.220), WBC/PLA (0.208), CRE/UA (0.206), Hb/UA (0.203). According 

to this order, we added the path between variables (y) one at a time. This is why we 

called it a ‘stepwise’ manner. It is very different from the standard procedure 

suggested by most of the statistical packages that the selection of path is decided by a 

Wald test or a Lagrange multiplier test. The reason is, as stated previous ly, we seek to 

add the path(s) by a ‘two-stage’ manner. After the global structure is constructed, we 

can add the correlation terms by considering the ‘correlations’ between the observed 

variables (y) to raise the goodness-of- fit indices (GFI or AGFI, etc.) to a acceptable 

level. As suggested by this thesis, the primary pairwise (marginal) correlations can be 

used in a descending order. The result is shown in Table 4.5, in which adding the 

marginal correlation greater than 0.2 will finally give a GFI index greater than 0.90. 

On the other hand, if the Lagrange multiplier test is used from this stage (as suggested 

by the statistical packages) without regards to the parts other than the correlations 

between error terms, a model-building procedure can also be adopted. We contrasted 

these two procedures, in terms of the GFI/AGFI index, by Figures 4.6 and 4.7, 

respectively. It demonstrates the growth rate of GFI/AGFI and tells the betterment of 

our procedure at the early inclusion of higher correlations. Nonetheless, the Lagrange 

multiplier test still gives better fits from some step although it still falls into the 

framework of ‘two-stage’ modeling. Before a ‘final’ model is obtained, we can still 

investigate the ‘lack-of-fit’ problem in what the change is when deleting a correlation 

between the observed variables (y). The results are reported in Table 4.6 and Figure 

4.8.  

Finally, the magnitude of GFI-change when deleting one path of correlation in a 

‘backward’ manner is shown in Figure 4.8; and a ‘final’ model is given in Figure 4.9.  

[Put Tables 4.5 and 4.6 about here.] 

[Put Figures 4.6, 4.7, 4.8, and 4.9 about here.] 
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4.3 Enhancing the model 

As stated in a previous context, there may be sex and/or race difference in the 

distributions of indicator variables of serum sample, but the mechanism or structure 

among all variables discussed is believed to be the same. There are at least two ways 

to deal with the effect of causal or confounding effect introduced by sex and race. 

They are very similar to the discussion in regression setting of statistical and 

epidemiological fields in which we consider two ways of treating confounding effect. 

Hereafter, we will further consider variables age and race to enhance the power and 

feasibility of an SEM model. That is, to add the sex/race variable into the structure as 

an exogenous variable or to use sex/race as a stratification variable. We illustrate the 

case of using race as an exogenous variable and sex as a stratification variable. 

Model building procedure follows what has been taken in this chapter except for the 

third step of adding correlations between observed variables (y) is neglected. The 

results are shown in Figures 4.10 and 4.11. Comparison of parameter estimates of 

different genders are attached at the end of these two figures using SAS PROC 

CALIS (unconstrained estimates). 

[Put Figures 4.10 and 4.11 about here.] 
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Table 4.2. Univarate linear regression analysis 
Y=ß0+ß1(age)+ ß2(smoke)+ ß3(drink)+ ß4(Betel nut) 

p-value of β̂ (t-test) F-test 
Y 

AGE 
(x1) 

SMOKE 
(x2) 

DRINK 
(x3) 

BETEL NUT 
(x4) 

x1+x2+x3+x4 

SBP ** ** ** ** ** 
DBP  ** ** * ** 
WBC **    * 
CHO **    ** 

GLO  ** * ** ** 
AST   ** ** ** 
ALT ** *  ** ** 

Hb ** ** **  ** 
RBC ** **   ** 
PLA **    ** 
ALB ** *   ** 
TRI **  ** ** ** 

BS  ** **  ** 
BuN **    ** 
CRE ** ** * ** ** 
UA   ** ** ** 

 
Table 4.3  Univarate linear regression analysis 

f=ß0+ß1(age)+ ß2(smoke)+ ß3(drink)+ ß4(Betel nut) 

p-value of β̂ (t-teast) F-test 
Y 

AGE 
(x1) 

SMOKE 
(x2) 

DRINK 
(x3) 

BETEL NUT 
 (x4) 

x1+x2+x3+x4 

FACTOR1 *** *** *** * *** 
FACTOR2  ** *** *** *** 
FACTOR3 *** ***   *** 
FACTOR4 ***   *** *** 

***：p<0.001 
** ：0.001<p<0.01 
*  ：0.01<p<0.05   
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Table 4.4 To determine theγ-paths based on univariate linear regressions and several rules 

Criteria 
Y: observed 

Total no.(**&*)≧ 
1/2 no. (**&*) 

No. of cell(**)≧ 
1/2 no. of cell 

Total no.(**&*)＞ 
a half no. (**&*) 

No. of cell “**”≧2 

Fit function 2.5260 1.8968 6.6842 3.7064 

?2 6476.7421 4863.3846 17138.2794 9503.2163 
?2/df 6476.7421/152 4863.3846/155 17138.2794/160 9503.2163/153 

GFI 0.7992 0.8321 0.7389 0.7120 

AGFI 0.7226 0.7725 0.6574 0.6047 
NFI 0.4691 0.6014 -0.4048 0.2210 

NNFI 0.3417 0.5194 -0.6788 0.0332 

CFI 0.4734 0.6080 -0.4137 0.2214 
PGFI 0.6394 0.6788 0.6223 0.5733 

Criteria: FS ** &*** *** Combine “No. of cell(**)≧ a half no. cell” and “***” 

Fit function 2.4826 2.1412 1.6573 
?2 6365.4117 5490.0760 4249.2828 

?2/df 6365.4117/154 5490.0760/155 4249.2828/157 

GFI 0.7853 0.8200 0.8445 
AGFI 0.7072 0.7561 0.7920 

NFI 0.4782 0.5500 0.6517 

NNFI 0.3619 0.4555 0.5876 
CFI 0.4828 0.5558 0.6593 

PGFI 0.6365 0.6689 0.6978 
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Table 4.5 The model-fit indices for the cases of adding correlated error terms in a stepwise (forward) manner 

Criteria: 
correlation 

Add SBP/DBP 
(0.769)model A 

A+AST/ALT 
(0.755)model B 

B+Hb/RBC 
(0.604)model C 

C+BuN/CRE 
(0.584)model D 

D+CHO/TRI 
(0.311)model E 

E+RBC/ALB 
(0.310) model F 

F+Hb/ALB 
(0.271)model G 

Fit function 1.4284 1.4288 1.3318 1.3489 1.2698 1.2293 1.1644 

?2 3662.4104 3663.3917 3414.8134 3458.5558 3255.6965 3152.0024 2985.4060 
?2/df 3662.4104/156 3663.3917/155 3414.8134/154 3458.5558/153 3255.6965/152 3152.0024/151 2985.4060/150 

GFI 0.8572 0.8572 0.8810 0.8799 0.8842 0.8886 0.8930 

AGFI 0.8078 0.8065 0.8377 0.8351 0.8400 0.8451 0.8502 
NFI 0.6998 0.6997 0.7201 0.7165 0.7331 0.7416 0.7553 

NNFI 0.6444 0.6419 0.6650 0.6582 0.6770 0.6856 0.7009 

CFI 0.7080 0.7079 0.7285 0.7248 0.7416 0.7501 0.7639 
PGFI 0.7038 0.6993 0.7141 0.7085 0.7073 0.7062 0.7050 

Criteria: 
correlation 

G+TRI/BS 
(0.271)model H 

H+TRI/UA 
(0.250)model I 

I+GLO/AST 
(0.227)model J 

J+WBC/UA 
(0.220)model K 

K+WBC/PLA 
(0.208)model L 

L+CRE/UA 
(0.206) model M 

M+Hb/UA 
(0.203) model N 

Fit function 1.1628 1.1038 1.1729 1.1378 1.0955 1.0828 1.0583 
?2 2981.2940 2830.0509 3007.3030 2917.2612 2808.8118 2776.2852 2713.4437 

?2/df 2981.2940/149 2830.0509/148 3007.3030/147 2917.2612/146 2808.8118/145 2776.2852/144 2713.4437/143 

GFI 0.8931 0.8979 0.8927 0.8963 0.8987 0.9009 0.9028 
AGFI 0.8493 0.8552 0.8467 0.8508 0.8534 0.8554 0.8573 

NFI 0.7556 0.7680 0.7535 0.7609 0.7698 0.7724 0.7776 

NNFI 0.6993 0.7133 0.6922 0.6997 0.7094 0.7108 0.7156 
CFI 0.7642 0.7767 0.7618 0.7692 0.7782 0.7808 0.7860 

PGFI 0.7004 0.6994 0.6906 0.6887 0.6859 0.6828 0.6795 
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Table 4.6 The model-fit indices for the cases of deleting correlated error terms in a backward manner considering only one step 

Criteria: 
correlation 

N- SBP/DBP 
(0.769)model I 

N- AST/ALT 
(0.755)model II 

N-Hb/RBC 
(0.604) III 

N-BuN/CRE 
(0.584)VI 

N-CHO/TRI 
(0.311) V 

N-RBC/ALB 
(0.310)VI 

N-Hb/ALB 
(0.271)VII 

Fit function 1.0583 1.1460 1.1559 1.1285 

?2 2713.4318 2938.2705 2963.80033 2893.5676 
?2/df 2713.4318/144 2938.2705/144 2963.8033/144 2893.5676/144 

GFI 0.9028 0.8974 0.8935 0.8973 

AGFI 0.8583 0.8503 0.8446 0.8502 
NFI 0.7776 0.7592 0.7571 0.7628 

NNFI 0.7177 0.6930 0.6902 0.6979 

CFI 0.7861 0.7673 0.7652 0.7711 
PGFI 

NON- 
CONVERGE 

0.6843 

NON- 
CONVERGE 
 

NON- 
CONVERGE 

0.6801 0.6771 0.6801 

Criteria: 
correlation 

N-TRI/BS 
(0.271) VIII  

N-TRI/UA 
(0.250) IX 

N-GLO/AST 
(0.227) X 

N-WBC/UA 
(0.220) XI 

N-WBC/PLA 
(0.208) XII 

N-CRE/UA 
(0.206)  XIII 

N-Hb/UA 
(0.203) XIIII 

Fit function 1.0599 1.0491 1.0589 1.0943 1.0982 1.0674 1.0828 
?2 2717.5263 2689.8768 2715.0217 2805.8833 2815.8276 2736.8329 2776.2852 

?2/df 2717.5263/144 2689.8768/144 2715.0217/144 2805.8833/144 2815.8276/144 2736.8329/144 2776.2852/144 

GFI 0.9027 0.9036 0.9028 0.8984 0.9004 0.9005 0.9009 
AGFI 0.8581 0.8595 0.8583 0.8519 0.8548 0.8549 0.8554 

NFI 0.7772 0.7795 0.7775 0.7700 0.7692 0.7757 0.7724 

NNFI 0.7173 0.7203 0.7175 0.7076 0.7065 0.7151 0.7108 
CFI 0.7857 0.7880 0.7859 0.7784 0.7775 0.7841 0.7808 

PGFI 0.6842 0.6849 0.6842 0.6809 0.6824 0.6825 0.6828 
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Criteria: 
correlation 

SBP/DBP, Hb/RBC, 
BuN/CRE 

N-TRI/UA, 
AST/ALT 

N-TRI/UA, 
  TRI/BS 

N-TRI/UA, 
  GLO/AST 

N-AST/ALT, 
   TRI/BS 

N-AST/ALT, 
  GLO/AST 

N-TRI/BS 
  GLO/AST 

Fit function 1.3489 1.0491 1.0507 1.0496 1.0599 1.0589 1.0402 

?2 3458.5586 2689.8872 2693.9674 2691.1847 2717.5759 2714.9895 2667.0988 
?2/df 3458.5586/154 2689.8872/145 2693.9674/145 2691.1847/145 2717.5759/145 2714.9895/145 2667.0988/145 

GFI 0.8799 0.9036 0.9035 0.9036 0.9027 0.9028 0.9049 

AGFI 0.8362 0.8604 0.8602 0.8604 0.8591 0.8593 0.8623 
NFI 0.7165 0.7795 0.7792 0.7794 0.7772 0.7775 0.7814 

NNFI 0.6605 0.7223 0.7219 0.7222 0.7193 0.7196 0.7248 

CFI 0.7248 0.7881 0.7878 0.7880 0.7858 0.7860 0.7900 
PGFI 0.7132 0.6896 0.6895 0.6896 0.6889 0.6890 0.6906 

Criteria: 
correlation 

N-TRI/UA 
AST/ALT, TRI/BS 

N-TRI/UA, 
AST/ALT, GLO/AST  

N-AST/ALT,  
TRI/BS, GLO/AST 

N- TRI/BS, AST/ALT, 
   GLO/AST, TRI/UA 

Fit function 1.0507 1.0487 1.0605 1.0512 
? 2 2693.9418 2688.9534 2719.1212 2695.2408 

? 2/df 2693.9418/146 2688.9534/146 2719.1212/146 2695.2407/147 

GFI 0.9035 0.9036 0.9027 0.9035 
AGFI 0.8612 0.8613 0.8600 0.8622 

NFI 0.7792 0.7796 0.7771 0.7791 

NNFI 0.7239 0.7244 0.7212 .0.7258 
CFI 0.7878 0.7883 0.7857 0.7878 

PGFI 0.6943 0.6943 0.6937 0.6990 
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Fig. 4.1 The factor-to-factor position of each variable (y) 
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Fig. 4.2 The measurement model obtained from EFA. The inter-factor paths (orange arrows) 
are not included in later analyses. The attached table gives model-fit indices for 

measurement model based on EFA of Figure 4.2 and Table 4.1 
 

 

Fit function 0.8765 

?2 2247.4033 
?2/df 2247.4033/98 

GFI          0.8989  (0.9066) 
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Fig. 4.3 The full structural model estimates and model-fit indices for the full structural 

model in SEM without correlations among observed (y) variables 

  

Fit function 4.5432 ?11 = -0.218 D2 = 0.980* ?44= -0.044 
?2 11648.8043 ?12 = -0.055 ?31 = -0.052* D4 = 0.991 
?2/df 11648.8043/148 ?13 = 0.057 ?32 = 0.151* C12= -0.043 
GFI 0.6808 ?14 = 0.026 ?33 = 0.403 C13= -0.245 
AGFI 0.5470 D1 = 0.969 ?34 = -0.289* C14= -0.255 
NFI 0.0452 ?21= -0.014* D3 = 0.908 C23= 0.332 
NNFI -0.2294 ?22= -0.024* ?41= -0.057* C24= 0.303 
CFI 0.0424 ?23= 0.028* ?42= 0.101 C34= 0.482 
PGFI 0.5303 ?24= 0.185* ?43= -0.110  
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Figure 4.4 The comparison of the standardized factor scores in factor analysis with 

naïve Bartlett factor scores and the factor scores used by SAS System.  
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Fig. 4.5 The SEM obtained from a combination of the constructs corresponding with criteria 
in Table 4.4 (without considering error-covariance of y-variables.) 

 
Fit function 1.6573 
?2 4249.2828 
?2/df   4249.2828/157 
GFI 0.8445 
AGFI 0.7920 
NFI 0.6517 
NNFI 0.5876 
CFI 0.6593 
PGFI 0.6978 
 

 

SBP 

DBP 

WBC 

CHO 

GLO 

AST  

Hb 

UA 

CRE 

BuN 

BS 

RBC 

ALB 

PLA 

TRI 

 

 

 

DRI 

AGE 

SMK 

PEA 

1.116 

1.000 

0.705 

0.988* 

0.997 

0.973 

0.193* 

0.639 

0.710 

0.230 

0.156 

0.073 

0.981 

0.769 

1.529 

0.392 

0.020* 

0.104 

0.173 

0.013* 

0.518 

1.074 

0.187 

1.000 

0.920 

1.000 

0.995 

0.991 

1.000 

E14 0.855

1.000* 

0.982 

0.237 

-0.022* 

0.041

-0.036

0.054 

0.165 

-0.172 

-0.043

0.332 

0.482 

-0.245 

0.303    

0.973 

0.986 

1.000 

0.983 

ALT  

-0.255



 
39 

 
Fig.4.6 and Fig. 4.7 

A comparison of the trend in GFI (the upper panel) and AGFI (the bottom panel) at the step 
of adding covariance path in a forward manner based on marginal correlations (blue) and 

Lagrange Multiplier test (red) 
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Fig. 4.8 The model fit index, GFI, of deleting a covariance path from a ‘final’ Model 

(Model N) with error covariance paths in Figure 4.6 with GFI=0.9028 
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Fig. 4.9 An ‘final’ construct of SEM with covariance paths  

 
  

 Fit function 1.6573 1.0402 

?2 4249.2828 2667.0988 
?2/df 4249.2828/157 2667.0988/145 

GFI 0.8445 0.9049 

AGFI 0.7920 0.8623 
NFI 0.6517 0.7814 

NNFI 0.5876 0.7248 

CFI 0.6593 0.7900 
PGFI 0.6978 

Add correlated errors： 
SBP/DBP(0.000), AST/ALT(-0.001), 
Hb/RBC (0.602), WBC/PLA (0.196), 
Hb/ALB (0.263), RBC/ALB (0.308), 
CHO/TRI(0.287), BuN/CRE (0.566), 
WBC/UA (0.179), Hb/UA   (0.130), 
TRI/UA  (0.047), CRE/UA (0.098) . 
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Fig. 4.10.  An ‘final’ construct of SEM for male with race as an exogenous variable but 

without considering covariance paths 

 
 

Fit function 1.5905 

?2 1948.4221 
?2/df 1948.4221/159 

GFI 0.8789 

AGFI 0.8240 
NFI 0.6816 

NNFI 0.6001 

Add correlated errors： 
SBP/DBP(0.000), 

Hb/RBC (0.571), WBC/PLA (0.189), 
Hb/ALB (0.316), RBC/ALB (0.360*), 
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WBC/UA (0.130), Hb/UA   (0.040), 
CRE/UA (-0.131*) .GLO/AST (0.051) 
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CFI 0.6972 

PGFI 0.6654 

 

Fig. 4.11.  An ‘final’ construct of SEM for female with race as an exogenous variable but 
without considering covariance paths 

 
  

Fit function 1.1272 
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?2/df 1508.1554/159 
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Add correlated errors： 
SBP/DBP(0.040), 

Hb/RBC (0.516), WBC/PLA (0.215), 
Hb/ALB (0.249*), RBC/ALB (0.277), 
CHO/TRI(0.301), BuN/CRE (0.619), 
WBC/UA (0.117), Hb/UA   (0.103), 
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0.424 

0.011 

0.345 



 
44 

NNFI 0.7345 

CFI 0.7990 
PGFI 0.6854 

CRE/UA (0.082) .GLO/AST (0.000) 
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Parameters All Male Female Parameters All Male Female 

?11 1.006 1.001* 0.918 E1 1.000  1.000* 0.398 
?21 1.037 1.006* 0.813* E2 1.000  1.000* 0.582 

?31 0.091 0.125 0.175 E3 0.996  0.992 0.985 

?42 0.071* 0.057* 0.102 E4 0.998  0.998 0.995 
?52 0.249 0.260  0.199 E5 0.968  0.966 0.980 

?62 0.981 0.799 1.002 E6 0.193 0.601 1.000 

?73 0.770 0.883  0.789 E7 0.638 0.470 0.615 
?83 0.092 0.178 0.059* E8 0.996 0.984 0.998 

?93 -0.049* 0.022* -0.023* E9 0.999 0.999 0.999 

?103 0.126 0.189 0.059 E10 0.992 0.982 0.998 
?113 0.054* 0.086* 0.047* E11 0.999 0.996 0.999* 

?123 0.604 0.392 0.786 E12 0.797 0.920 0.618 

?134 0.125 3.691 0.149 E13 0.992 1.005 0.989 
?144 0.369 -0.381 0.535 E14 0.929 1.006 0.845 

?154 0.158* -0.069* 0.254* E15 0.987 1.042* 0.967* 

?164 0.335* 2.009* 0.400* E16 0.942 1.625* 0.917* 

?11  0.129 0.149 0.192 D1 0.986 0.983 0.946 
?12  0.124 0.110  0.268     

?14  0.046 0.084 0.094     

?21  0.102* 0.139* 0.099* D2 0.981*  0.974* 0.989* 
?25  0.142* 0.154* 0.082*     

?31  0.280 0.361 0.194 D3 0.911  0.679* 0.971 

?32 -0.257* -0.558* -0.116     
?41  0.541 0.500 0.370 D4 0.808  1.000 0.850 

?42  0.361 -0.011* 0.424     

?43  0.045 -0.022* 0.011     

C12 -0.179 -0.240 -0.124 C24 -0.245 -0.274 -0.238 
C13 -0.147 -0.228 0.063 C25 -0.255 -0.310 -0.208 

C14 0.215  0.183 0.345 C34 -0.332 0.265 0.172* 

C15  0.221 0.215 0.311* C35 0.303 0.247 0.132* 
C23 -0.043 -0.073  0.002* C45  0.482 0.427 0.491 

CE1E2 0.000 0.000 0.040 CE8E11  0.268 0.316 0.249* 
CE3E10  0.196 0.189 0.215 CE8E16 0.121 0.040 0.103 

CE3E16  0.188 0.130 0.117 CE9E11  0.313 0.360* 0.277 
CE4E12 0.287  0.303 0.301 CE14E15 0.567 0.534 0.619 

CE5E6 -0.096  0.051 0.000 CE15E16  0.126 -0.131* 0.082 

CE8E9  0.606 0.571 0.516     
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Chapter 5 Discussion 
 

Since our data came from a cross-sectional (which may be a biased) survey, it is 

difficult to check the causal-effect relationship among observed/latent variables. In a 

population-based study, this may be due to systematic errors and selection biases of 

the sample. In summary,  sample fluctuations may exist and it is not possible to release 

it. Nevertheless, to embed the analysis into a framework of follow-up study is our 

forthcoming effort. This research offers a chance to explore a model with prediction 

ability for disease development, and serves as a statistical tool for screening programs 

of multiple chronic diseases with considerations on genetic/familial factors. 

 

Our goal of this thesis 

Since an EFA is used in place of the CFA for a construction of the measurement 

model, we seek to offer a hybrid algorithm for a cross-sectional dataset without 

resorts to a confirmatory structure of the observed endogenous variable. There may be 

some drawbacks in the model building process. It relies too much on the statistical 

tool of exploratory factor analysis and thus, sometimes, it is difficult to address the 

mechanism with physiological feasibility. On the other hand, our study renders a 

simple and easy treatment of how to build an acceptable model, in terms of the 

goodness-of-fit indices.  

 

Constrained vs. unconstrained estimates. (SAS PROC CALIS vs. LISREL or EQS) 

  The LISREL software offers constrained estimates for the measurement model and 

the entire structural equation model (SEM). When improper solutions are encountered, 

we followed the guidelines of Chapter 2 to solve it. With the present dataset, the 

factor loading of SBP (with respect to Factor 1) is improper in any case. We have two 

ways to deal with this problem. First, the error terms may be set to zero. By doing this, 

since the first factor loading of each factor is reasonably set to be one in LISREL 
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estimation, it means that in this case Factor 1 is recognized as being totally equal to 

SBP. This is an unavoidable identification when there are improper solutions appeared 

in the estimated model. It also reveals that Factor 1 needs more amendment. Second, 

we considered a possibility to delete the SBP variable and re-estimate the model. The 

result is coherent in other factors except for Factor 1 in which only three variables are 

retained. (See Figures 5.1 and 5.2.) 

[Put Figures 5.1 and 5.2 here.] 
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Fig. 5.1 To deal with improper solutions: the error terms set to zero 

 
Fig. 5.2 To deal with improper solutions: to delete the SBP variable 
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