壹、緒論

第一章 研究背景和目的

白鳳菜(*Gynura divaricata* (L.) DC. subsp. *formosana* (Kitam.) F. G. Davies)⁽¹⁾為菊科 (Compositae) 三七草屬 (Gynura) 植物,為民間 常用草藥。以全草入藥,具有消炎解毒、清熱降壓、涼血止血和舒筋 接骨的功用⁽²⁾,民間療效甚驗。但其成分研究之相關報告不多,雖然 本所學姊曾研究過此植物,但未發現抗發炎、抗過敏之活性成分、在 抗細胞增殖作用方面為本所新研究的方向且無相關文獻記載。故取甲 醇粗抽物,作抗發炎、抗過敏、抗細胞增殖藥理試驗,發現具有活性,以期從該植物中單離出更具活性之成分,再經由結構與活性成分之相 關研究,提供新藥開發之參考。

第二章 白鳳菜之藥用植物學基原考察

第一節 白鳳菜在植物學上的分類位置^(3,4)

被子植物門(Angiospermae) 雙子葉植物綱(Dicotyledoneae) 合瓣花植物亞綱(Sympetalae) 菊上目(Asteranae) 菊目(Asterales) 菊科(Compositae) 千里光族(Senecioneae) 三七草屬(Gynura) 白鳳菜(Gynura divaricata (L.) DC. subsp. formosana (Kitam.) F. G. Davies) 菊科植物多為草本植物或稀灌木。花兩性或單性,花有管狀花、 舌狀花、假舌狀花及漏斗狀花四種,通常管狀花位於中央部位,假舌 狀花,漏斗狀花位於四周,但也有全為管狀花或全為舌狀花的。雄蕊 5,聚葯;雌蕊由2心皮組成,1室,1胚珠,基生。瘦果(菊果 Cysela), 種子無胚乳。

本科植物幾乎均有含黃酮類(flavonoids), 倍半 內酯類, 果籽 裡含大量的油脂。特殊的聚炔類成分和三 皂 主要分布於管狀花亞 科, pyrrolizidine alkaloids 主要分布於千里光族 (Senecioneae)。

第三節 白鳳菜 - 菊科三七草屬植物

【學名】(1)

Gynura divaricata (L.) DC. subsp. formosana (Kitam.) F. G. Davies

【別名】^(2,6)

台灣土三七、長柄橙黃菊、白黃菜、白鳳菊

【英文名】⁽²⁾

Taiwan velvet plant

【分布】^(2,7)

台灣固有植物,廣泛分部在全島海濱至低海拔山區。

【產地】⁽⁷⁾

北部海岸、南部鵝鑾鼻及東部海岸數量最多。

【形態】(6~8)

多年生傾臥性草本,全株生有細毛,莖常臥伏。葉互生,具長翼 狀葉柄。下部葉長 8~10 公分,寬 2~4.5 公分,匙狀長橢圓形,葉尖 鈍,上下表面被短細毛,葉緣通常為羽狀裂,裂片 1~2 對。中部葉小 形,長橢圓形,羽狀淺裂或齒牙狀,基部有擬托葉包圍。上部葉長 0.5~2 公分,線狀披針形。春至夏季開花,頭狀花序,橙黃色。總苞 片排成二輪,內輪較長,均帶紫色。小花全為管狀花,頭狀花再排列 成繖房狀花序。瘦果圓筒形,具十稜,上披冠毛。

圖 1、白鳳菜⁽⁷⁾

【採集、加工】^(2,7)

台灣全年可採,採全草或地上部。採後除去泥土雜質,切斷鮮用 或曬乾備用。本品較少使用炮製品。

【性味】⁽²⁾

性涼,味甘淡。

【功效】^(2,7)

全草有清熱利尿,活血化瘀,涼血止血,舒筋活絡,解毒消腫之效。主治氣管炎、支氣管炎、咽喉炎、中耳炎、目赤腫痛、扁桃腺炎、高血壓、肺炎、肝炎、腎盂炎、感冒發燒、熱咳乾咳、百日咳、咳血、鼻血、便血、尿血、風濕關節炎、崩漏等。外用主治外傷出血、跌打 內外傷、骨折、疔瘡癰腫、乳腺炎、燒傷燙傷、陰道炎、龜頭炎等。

【方例】⁽⁷⁾

1. 白鳳菜莖葉鮮品, 絞汁和蜂蜜或冰糖服, 治感冒發燒。

- 2.白鳳菜莖葉一斤鮮品, 絞汁和蜂蜜服或煎濃汁服。另與含羞草五 兩, 煎濃汁服, 治急性肝炎、慢性肝炎、肝硬化或腹水。
- 3.白鳳菜、黃草、南風草、鳳尾草、白花仔草、水雞爪。煎服,治肺炎、肝炎。

4. 白鳳菜、黃草、麻芝糊。水煎服,治肺炎、肺癰。

5.白鳳菜、杉柳、水豬母乳。搗汁泡梨汁服,治發燒、腸炎。

6.白鳳菜、咸豐草、蘆薈。搗汁加蜂蜜服,治高血壓。

7.白鳳菜莖葉鮮品,搗爛敷患處,治創傷出血。

【禁忌】⁽²⁾

虛寒體質者應小心應用,虛寒的孕婦忌用。

【毒性】⁽²⁾

無毒。

第三章 白鳳菜及同屬植物之成分研究概況

第一節 Gynura屬植物之已知化學成分研究

(1) Gynura divaricata (L.) DC. subsp. formosana (Kitam.) F. G. Davies

- 1. phytosterols⁽⁹⁾
- 2. *a*-amyrin⁽⁹⁾
- 3. β -amyrin⁽⁹⁾
- 4. 6-acetyl-2-hydroxymethyl-2-methylchroman-4-one⁽⁹⁾
- 5. $uracil^{(9)}$
- 6. friedelin⁽¹⁰⁾
- 7. *epi*-friedelanyl acetate⁽¹⁰⁾
- 8. isobauerenone⁽¹⁰⁾
- 9. $glutino(^{10})$
- 10. 3-*epi*-friedelinol⁽¹⁰⁾
- 11. isobauerenol⁽¹⁰⁾

(2) Gynura segetum (Gynura japonica)

- 1. senecionine⁽¹¹⁻¹³⁾
- 2. seneciphylline⁽¹¹⁾
- 3. sineciphyllinine⁽¹¹⁾
- 4. (*E*)-seneciphylline⁽¹¹⁾
- 5. D-mannito $(^{12})$
- 6. succinic acid⁽¹²⁾
- 7. thymine $^{(12)}$
- 8. $adenine^{(12)}$
- 9. NH₄Cl⁽¹²⁾
- 10. 3-epi-diosgenin-3- β -D-glucopyranoside⁽¹⁴⁾
- 11. 3-epi-sceptrumgenin-3- β -D-glucopyranoside⁽¹⁴⁾

- 12. 3-*epi*-ruscogenin⁽¹⁴⁾
- 13. 3-epi-neoruscogenin⁽¹⁴⁾
- (3) Gynura scandens
 - 1. gynuramine⁽¹⁵⁾
 - 2. acetylgynuramine⁽¹⁵⁾

(4) Gynura divaricata

- 1. intergerrimine⁽¹⁶⁾
- 2. 18-hydroxyintergerrimine⁽¹⁶⁾

(5) Gynura crepioides

- 1. pentainen⁽¹⁷⁾
- 2. gynurone⁽¹⁷⁾
- 3. jacobine⁽¹⁸⁾
- 4. jacoline⁽¹⁸⁾

(6) Gynura aurantiaca cv. 'Purple Passion'

1. GAA (polyacylated anthocyanin)⁽¹⁹⁾

(7) Gynura procumbens

- 1. β -sitosterol⁽²⁰⁾
- 2. stigmastero $(^{20})$
- 3. $3-O-\beta$ -D-glucopyranosyl- β -sitosterol⁽²⁰⁾
- 4. $3-O-\beta$ -D-glucopyranosylstigmastero⁽²⁰⁾

(8) Gynura sarmentosa

- 1. otosenine⁽²¹⁾
- 2. senkirkine⁽²¹⁾
- 3. senecionine⁽²¹⁾
- 4. ancymidol⁽²¹⁾
- (9) Gynura elliptica
 - 1. (+)-gynunone⁽²²⁾
 - 2. gynunol⁽²²⁾
 - 3. (+)-senecionine⁽²²⁾
 - 4. (+)-senkirkine⁽²²⁾
 - 5. 6-acetyl-2,2-dimethylchroman-4-one⁽²²⁾
 - 6. 6-hydroxy-2,2-dimethylchroman-4-one⁽²²⁾
 - 7. vanillin⁽²²⁾
 - 8. syringaldehyde⁽²²⁾

(1) Pyrrolizidine alkaloids:

(2) Coumarins :

(3) Chromones :

6-acetyl-2-hydroxymethyl-2-methylchroman-4-one

6-hydroxy-2,2-dimethylchroman-4-one

(4) *p*-Acetophenone derivatives :

(5) Pentacyclic triterpenoids:

epi -friedelanyl acetate

isobauerenone

isobauerenol

(6) Steroid 及其配醣體:

3-epi -ruscogenin

第四章 藥理試驗法簡介

第一節 抗過敏、抗發炎作用

人體中的肥大細胞(mast cell)和嗜中性白血球(neutrophil)內 的顆粒,含有多種發炎媒介物質。當此兩種細胞各別接受到刺激後, 肥大細胞會釋放出 histamine、serotonin、PGs、neutral protease、 β -glucuronidase、 β -hexosamindase、PAF等媒介物^(23,24)。而嗜中性白 血球會釋放出 PGs、PAF、leukotrienes、lysozyme、neutral protease、 β -glucuronidase 等媒介物⁽²⁵⁾(如圖 2)。其中有些是發炎介質,會導致 血管擴張、細胞通透性增加、支氣管平滑肌收縮及組織損傷,與急性 發炎及過敏有密切的關係^(26,27)。所以如果化合物能抑制嗜中性白血球 及肥大細胞之活化,或阻止發炎媒介物的釋出,就能對發炎及過敏症 狀加以控制,並達到預防與治療的效果。

發炎反應

圖 2、肥大細胞釋出之媒介物質及所產生之生理反應

本實驗之藥理活性實驗係由台中榮民總醫院醫學研究部王繼平 教授實驗室代為測試。實驗內容如下:

(一)抗過敏活性實驗:

利用 Compound 48/80 (為 *N*-methyl-p-methoxyphenethylamine 與 formaldehyde 反應之產物)當做誘導劑引發肥大細胞釋放 histamine、 β -glucuronidase。實驗中以 Mepacrine 當抗過敏活性的 positive control, 觀察媒介物的釋出量並求其抑制百分比。

(二)抗發炎活性實驗:

利用 fMLP (*N*-formylmethionyl-leucyl-phenyl-alanine) 當做誘導 劑引發嗜中性白血球釋放 lysozyme、 β -glucuronidase。 實驗中以 TFP (Trifluoperazine) 當抗發炎活性的 positive control, 觀察媒介物的釋 出量並求其抑制百分比。

第二節 抗細胞增生作用

細胞的增殖作用主要受到細胞週期(cell cycle)的控制,人體內 的正常細胞多半停留在 G₀-G₁期(G₀-G₁arrest)進一步進行成熟分化, 而癌細胞不同於正常細胞之處在於細胞週期的失控而導致細胞不斷 的不正常增殖及複製不成熟的幼稚細胞,因而造成惡性循環引發癌 症,所以若能以藥物將不正常之增殖停止下來且促進細胞分化成熟的 進行,就可以利用在臨床的癌症的治療上。

本實驗之藥理模式係利用 3-(4,5-dimethylthiazol-2-diphenyl)-tetrazolium bromide (MTT)活性測試來檢測粗抽物及化合物在不同濃度對 HL-60 增殖的影響。MTT 染劑可穿透活細胞的細胞膜經由粒線體上 酵素的還原而成藍紫色反應,再利用 DMSO 將細胞膜溶解後釋出藍 色染料於 570 nm 下測量吸光度,即可得到粗抽物及化合物對細胞增 殖比例的百分比^(28,29),本實驗以 retinoic acid 當做抗細胞增值的 positive control。

貳、結果與討論

第一章 白鳳菜成分之抽取與分離

將生品之白鳳菜全草(60 kg)陰乾後,以果汁機打碎後,再以 甲醇浸漬抽取,甲醇粗抽物以氯仿進行分配抽取。取氯仿抽取物以矽 膠層析進行分離及純化,共得到九個化合物及一個混合物,經光譜解 析及化學方法確認其結構如下:

- (1) 化合物 : docosane
- (2) 化合物 : methyl hexadecanoate
- (3) 化合物 : methyl oleate
- (4) 化合物 : methyl linoleate
- (5)化合物 : friedelin
- (6) 混合物 : β -sitosterol and stigmasterol
- (7) 化合物 : methyl 13^2 -hydroxy- (13^2-S) -pheophorbide b
- (8) 化合物 : methyl 13^2 -hydroxy- (13^2-S) -pheophorbide a
- (9) 化合物 : 7,11,15-trimethyl-3-methylene-1,2-hexadecanediol
- (10) 化合物 : 1,2-dihydroxypropyl hexadecanoate

methyl oleate

methyl linoleate

 β -sitosterol

stigmasterol

methyl 13²-hydroxy-(13²-S)-pheophorbide a

1,2-dihydroxypropyl hexadecanoate

7,11,15-trimethyl-3-methylene-1,2-hexadecanediol

第二章 白鳳菜成分之化學結構鑑定

由於較低極性的分劃層具有抗發炎活性,對 HL-60 細胞的增殖 抑制也最具活性,故取甲醇抽取物以氯仿分配抽提後,進一步分離並 單離精製得到化合物 ~ ,其結構的鑑定如下:

【一】化合物 : docosane

化合物 為白色蠟狀物。由氫譜 (CDCl₃, 圖 3) 顯示 0.89 (*t*, *J* = 5.9 Hz, 3H)是末端甲基的吸收訊號 , 1.26 為直鏈烷 (CH₂)_n的吸收 訊號。

碳譜(CDCl₃,圖4)顯示在 13.9 為-CH₃之吸收訊號, 22.5 為-<u>C</u>H₂CH₃之吸收訊號, 29.1~29.9 為直鏈烷(CH₂)_n的吸收訊號。 從氫譜和碳譜中除了長鏈之吸收外並無其他的特殊官能基吸收。

由 EIMS 圖譜(圖 5)顯示約每隔 14 為一單位進行斷裂,因此推 測有可能為長鏈烷類。

又由紅外光光譜 (圖 6)顯示並無特殊的官能基之吸收,所以化 合物 應為烷類,由 EIMS 圖譜推測分子量為 310。

綜合上述光譜分析資料並與文獻比對⁽³⁰⁾後,推測此長鏈烷為 docosane,其結構如下:

 $CH_3(CH_2)_{20}CH_3$

18

【二】化合物 : methyl hexadecanoate

化合物 為透明油狀物。由紅外光光譜(圖 7)顯示,在 1744 cm⁻¹ 有 C = O 官能基的吸收峰, 2925、2856 cm⁻¹ 為飽和碳氫鍵伸縮振動之 吸收, 1243 cm⁻¹ 為 C-O-C 的吸收峰。

由 EIMS 圖譜(圖 8) 顯示 *m/z* 270 [M]⁺為分子離子峰,所以分 子量應為 270,由 MS 圖中其裂片 *m/z* 227、213、199、185、171 等 每隔 14 為一單位進行斷裂,因此推測結構中有可能有長鏈烷基,而 由 MS 的裂解模式出現 *m/z* 74、87 為長鏈脂肪酸甲酯類的特性離子 峰,且 *m/z* 239 [M-OCH₃]⁺應為結構中脫去一個甲氧基,因此初步推 測化合物 為長鏈脂肪酸甲酯類。

氫譜(CDCl₃,圖9)顯示 0.87 (*m*, 3H)是長鏈末端甲基的吸收 訊號, 1.25 為直鏈烷(CH₂)_n的吸收訊號, 2.30 為-C<u>H</u>₂CO 的吸收 訊號, 3.66 為酯類上甲氧基的吸收訊號。

碳譜(CDCl₃,圖 10)顯示在 13.9 為長鏈末端甲基碳的吸收訊號, 22.4~33.9 為直鏈烷 (CH₂)_n的吸收訊號, 51.2 為酯類上甲氧 基的吸收訊號, 174.1 為 C = O 的吸收訊號。

綜合上述光譜分析資料並與文獻⁽³¹⁾比對後,確定化合物為 methyl hexadecanoate,其結構如下:

 $\overset{16}{\text{CH}_3(\text{CH}_2)}_{13}^2 \overset{O}{\underset{1}{\text{CH}_2}} \overset{O}{\underset{1}{\overset{\parallel}{\text{COCH}_3}}}$

19

【三】化合物 : methyl oleate

化合物 為黃色油狀物。由 EIMS 光譜(圖 11)顯示 *m/z* 296 為 分子離子峰,即分子量為 296。MS 的裂解模式出現 *m/z* 74、87、143 為長鏈脂肪酸甲酯類的特性離子峰。

紅外光光譜(圖 12)顯示在 1740 cm⁻¹有 C = O 官能基的吸收峰, 2924、2859 cm⁻¹為飽和碳氫鍵伸縮振動之吸收,1462 cm⁻¹ 為 CH 的 變角運動,1246 cm⁻¹ 為醚基 (C-O-C) 的吸收。

氫譜 (CDCl₃, 圖 13) 顯示 : 0.89 (t, J = 6.3 Hz, 3H)為末端甲基 之吸收訊號 , 1.28~1.30 為 11 個 CH₂ 的吸收訊號 , 1.56 (m, 2H)、 2.01 (m, 4H)、2.30 (t, J = 7.6 Hz, 2H)分別為 H-3、H-8、H-11、H-2 的 吸收訊號 , 3.67 (s, 3H)為甲氧基上氫的吸收訊號 , 5.35 (t, J = 5.3Hz, 2H)為 olefinic protons 的吸收訊號。

碳譜 (CDCl₃, 圖 14) 顯示 13.9 為末端甲基(C-18)的吸收訊號, 22.4~33.9 為 14 個 methylenes (CH₂)的吸收訊號 51.2 為 methoxyl (-OCH₃)的吸收訊號, 129.8 為 olefinic carbons 的吸收訊號,而 174.2 為 carboxyl carbon (C = O)的吸收訊號

綜合上述光譜分析資料並與文獻比對^(32,33)後,確認此化合物 為 methyl oleate,其結構如下:

【四】化合物 :methyl linoleate

化合物 為淡黃色油狀物。由 EIMS 光譜 (圖 15) 顯示 m/z 294 為分子離子峰,即分子量為 294。

紅外光光譜(圖 16)顯示在 1737 cm⁻¹有 C = O 官能基的吸收峰, 2925、2856 cm⁻¹為飽和碳氫鍵伸縮振動之吸收,1459、1366 cm⁻¹為 CH 的變角運動,1250 cm⁻¹ 為醚基 (C-O-C) 的吸收。

氫譜 (CDCl₃, 圖 17) 顯示 : 0.89 (t, J = 6.5 Hz, 3H)為末端甲基 之吸收訊號 , 1.31 為 7 個 methylenes (CH₂)的吸收訊號 , 1.62 (m, 2H)、2.05 (m, 4H)、2.30 (t, J = 7.6 Hz) , 2.77 (m, 2H)分別為 H-3、H-8、 H-14、H-2、H-11 的吸收訊號 , 3.67 (s, 3H)為 methoxyl proton 的吸 收訊號 , 5.35 (m, 4H)為 olefinic protons 的吸收訊號。

碳譜 (CDCl₃, 圖 18) 顯示 13.8 為末端甲基(C-18)的吸收訊號, 22.3~33.9 為 12 個 methylenes (CH₂)的吸收訊號 51.2 為 methoxyl (-OCH₃)的吸收訊號, 127.7、127.8、129.8、130.0 為 olefinic carbons 的吸收訊號, 而 174.2 為 carboxyl carbon (C = O)的吸收訊號。

綜合上述光譜分析資料並與文獻^(32,34)比對後,確認此化合物 為 methyl linoleate,其結構如下:

【五】化合物 :friedelin

化合物 為白色柱狀結晶,測其熔點為 261-263 。其 TLC 片經 溶媒(benzene)展開 R_f值為 0.38,噴 10% H₂SO₄加熱後呈紫色。利 用 Liebermann-Burchard 試劑呈陽性反應(由紅色 紫色 褐黃色), 因此初步推測化合物 為植物固醇或三 類化合物。

紅外光光譜(圖 19) 顯示,在 1713 cm⁻¹有 C=O 官能基的吸收 峰,也有一般三 類所含有的吸收(1458, 1389, 1265, 1095, 1018, 794 cm⁻¹), 3000 cm⁻¹ 以上並無不飽和 C-H 的伸縮振動吸收。

由 EIMS 圖譜(圖 20) 顯示 *m/z* 426 [M]⁺為分子離子峰,所以分子量應為 426。由 MS 圖中 *m/z* 411 [M-15]⁺、341、302、273、246、205、191 等碎片的斷裂模式與 friedelin 的斷裂模式類似,因此推測此化合物可能為 friedelin^(35,36)。

由氫譜(CDCl₃,圖21)中顯示的 0.73 (*s*, 3H)、0.87 (*s*, 3H)、0.89 (*d*, *J* = 5.1 Hz, 3H)、0.96 (*s*, 3H)、1.01 (*s*, 6H)、1.05 (*s*, 3H)、1.18 (*s*, 3H)應該是結構中八個甲基吸收訊號,配合 MS 的斷裂情形,推測應為 friedelin 類的化合物,且八個甲基分別為 H-24、H-25、H-23、H-29、H-30、H-26、H-27、H-28 的訊號。

由碳譜(CDCl₃, 圖 22)及 DEPT(CDCl₃, 圖 23)顯示共有三十 個碳原子吸收訊號,其中包含八個 CH₃的碳原子訊號(6.6, 14.4, 17.7、18.4、20.0、31.6、31.9、34.8),十一個 CH₂的碳原子訊號(18.0、22.0、30.3、32.2、32.5、35.1、35.4、35.8、39.0、41.0、41.3), 四個 CH 的碳原子訊號(42.6、52.9、58.0、59.2),其餘的六個碳 原子訊號屬於四級碳(27.9、29.7、37.2、38.0、39.4、41.9、212.9), 在最低磁場的碳原子訊號 212.9為 C-3 的 C = O 基的吸收訊號。

綜合上述資料並與文獻⁽³⁷⁻⁴⁰⁾上 friedelin 的碳譜數據做比較後如表 1,確認此化合物 為 friedelin,其結構如下:

С	DEPT	化合物 V	Friedelin
		(CDCl ₃)	(CDCl ₃)
1	CH ₂	22.0	22.3
2	CH ₂	41.3	41.5
3	С	212.9	213.3
4	СН	58.0	58.2
5	С	41.9	42.1
6	CH ₂	41.0	41.3
7	CH ₂	18.0	18.2
8	СН	52.9	53.1
9	C	37.2	37.4
10	СН	59.2	59.5
11	CH ₂	35.1	35.3
12	CH ₂	30.3	30.5
13	C	38.0	38.3
14	C	39.4	39.7
15	CH ₂	32.2	32.4
16	CH ₂	35.8	36.0
17	С	29.7	30.0
18	СН	42.6	42.8
19	CH ₂	35.4	35.6
20	C	27.9	28.2
21	CH ₂	32.5	32.8
22	CH ₂	39.0	39.2
23	CH ₃	6.6	6.8
24	CH ₃	14.4	14.7
25	CH ₃	17.7	17.9
26	CH ₃	18.4	18.7
27	CH ₃	20.0	20.3
28	CH ₃	31.9	32.1
29	CH ₃	31.6	31.8
30	CH ₃	34.8	35.0

表 1、化合物 V 與參考文獻⁽³⁸⁾的碳譜數據之比較

【六】混合物 : β -sitosterol and stigmasterol (2:1)

混合物 為白色針狀結晶,測其熔點為 138.5-140 。其 TLC 片經溶媒(chloroform)展開 R_f 值為 0.37,噴 10% H_2SO_4 加熱後呈紫色。利用 Liebermann-Burchard 試劑呈陽性反應(由紅色 紫色 褐黃色),因此初步推測混合物 為植物固醇或三 類化合物。

紅外光光譜(圖 24)顯示,在 3211 cm⁻¹有-OH 基的吸收帶,2940, 2871 cm⁻¹為飽和碳氫鍵伸縮振動之吸收,1466 cm⁻¹為 CH 的變角運動,1050 cm⁻¹為醚基 (C-O-C) 的吸收訊號。

由 EIMS 圖譜(圖 25)顯示其 *m/z* 414 [M]⁺為主要的分子離子峰, 412 為次要的分子離子峰,所以分子量分別為 414 及 412。其他重要 的斷裂碎片 *m/z* 255 213 159 145,故推測化合物 可能為 ß-sitosterol 及 stigmasterol 的混合物。

氫譜(CDCl₃,圖 26)顯示 5.35(*d*, 1H, *J* = 4.8 Hz, H-6)是固 醇類的 olefinic proton H-6 的吸收訊號, 5.05(*dd*, 1H, *J* = 15.1, 8.1 Hz), 5.12(*dd*, 1H, *J* = 15.1, 8.1 Hz)是 stigmasterol ^{22,23}的 olefinic proton H-6 的吸收訊號,另外 3.52(*m*, 1H)為 H-3 的吸收訊號。因

5.05 及 5.12 二吸收峰面積與 5.35 不成應有比率,故證實化合物 為混合物。

碳譜 (CDCl₃,圖 27)及 DEPT (CDCl₃,圖 28)顯示不只 29個 碳,可知此化合物並非單一化合物,在 121.5、140.5 為固醇類烯碳 雙件之 C-5和 C-6 的吸收訊號,而 129.0、138.則為固醇類中 stigmasterol 之 C-23、和 C-22 的吸收訊號。

綜合上述光譜分析資料並與文獻^(38,41-43)比對後如表 2,確認此化 合物 為 β -sitosterol及 stigmasterol的混合物,其結構如下:

β-sitosterol

stigmasterol

С	DEPT	stigmasterol	β -sitosterol	混合物 VI
1	CH ₂	37.3	37.2	37.0
2	CH ₂	31.7	31.6	31.4
3	СН	71.8	71.8	71.6
4	CH ₂	42.3	42.2	42.1
5	C	140.8	140.8	140.5
6	CH	121.7	121.7	121.5
7	CH ₂	31.9	31.8	31.7
8	СН	31.9	31.8	31.7
9	СН	50.2	50.1	49.9
10	C	36.5	36.4	36.3
11	CH ₂	21.1	21.0	20.8
12	CH ₂	39.7	39.7	39.5
13	CH	42.2	42.3	42.1
14	CH	56.9	56.7	56.5
15	CH ₂	24.3	24.2	24.1
16	CH ₂	28.9	28.2	28.7 28.0
17	СН	56.0	56.0	55.8
18	CH ₃	12.1	11.8	11.6 11.7
19	CH ₃	19.4	19.3	19.2
20	CH	40.5	36.1	40.5 35.9
21	CH ₃	21.1	18.7	21.0 18.5
22	$CH_2 CH$	138.8	33.9	138.1 33.7
23	CH ₂ CH	129.3	26.0	129.0 25.8
24	CH	51.2	45.8	51.2 45.6
25	СН	31.9	29.1	31.9 28.9
26	CH ₃	21.2	19.0	21.2 18.8
27	CH ₃	19.0	19.0	19.6
28	CH ₂	25.4	23.0	25.2 22.8
29	CH ₃	12.3	11.9	12.0

表 2、混合物 VI 與參考文獻^(42,43)的碳譜數據之比較

【七】化合物 : methyl 13^2 -hydroxy- (13^2-S) -pheophorbide b

化合物 為綠色固體,經由 FABMS (圖 29)顯示[M+H]⁺在 m/z 637,即分子量為 636。

由紅外光光譜(圖 30)顯示在 3300 cm⁻¹附近為-NH 及-OH 的吸收,在 2925, 2856 cm⁻¹為飽和碳氫鍵伸縮振動之吸收,在 1744, 1713, 1667 為 2 個酯類及 1 個 a, β -unsaturated ketone 的吸收峰。

紫外光光譜 (圖 31)在 226、294、369、434、526、598 及 653 nm 有最大吸收波長,為 chlorophyll 類的化合物吸收模式。

氫譜 (CDCl₃, 圖 32) 顯示具有 pheophorbide b⁽⁴⁾的吸收特徵 , -1.68 (s)和 0.38 (s)為 NH 的吸收訊號 , 3.40 (s, 3H)、3.73 (s, 3H)分別 為 H-2¹、H-12¹二個甲基質子 , 而 H-20、H-5 和 H-10 三個烯基質子 , 由於位在環電流的去遮蔽區域內 , 其化學為移分別為 8.62 (s)、10.41 (s)和 9.69 (s) 8.01 (*dd*, H, *J* = 17.8, 11.6 Hz, H-3¹) 6.38 (dd, H, J = 17.8, 1.3 Hz, H-3²a)及 6.24 (dd, H, J = 11.6, 1.3 Hz, H-3²b)顯示含有一個乙烯基 質子(vinyl group) ,為 H-3¹和 H-3²的吸收訊號 , 4.03 (q, 2H, J = 7.8 Hz) 為 H-8¹ 的吸收訊號 , 4.14 (m, H)為 H-17 的吸收訊號 , 由文獻⁽⁴⁵⁾得 知 H-17 若與 C-13²上的 methoxy group 為同一平面 , 即 *R*-form , 因為 C-13²上的 methoxy group 對 H-17 有去遮蔽作用故其的化學位移會在 較低磁場出現。相反的若為 *S*-form 其化學位移會在較高磁場出現 , 因此由此化合物 H-17 的化學位移可判斷此化合物應為 *S*-form, 4.49 (m, H)為 H-18 的吸收訊號 , 5.58 (s, H)為 C-13²上的-OH 基 , 11.12 (*s*, H)為 1 醛基質子 H-7¹ 的吸收訊號。

由 COSY 光譜 (圖 33) 顯示在 2.31 (m, 2H, H-17¹a, H-17²a), 2.62 (m, H, H-17²b)、 2.98 (m, H, H-17¹b)為 2 個 CH₂且相互偶合, 而 2.31、 2.98 與 4.14 (m, H, H-17)相互偶合, 分別為 2 組 methylenes H-17¹和 H-17²的吸收訊號, 在 1.62 和 4.49 顯示有相互偶合, 在 1.82 和 4.03 顯示有相互偶合, 可知 1.62, 1.82 分別為 H-18¹和 H-8² 的吸收訊 號。(註: 1.25 可能為雜質)

27

由碳譜(圖 34)與 DEPT 光譜(圖 35)顯示共具有 36 個碳的吸 收訊號,包括六個 CH₃(11.8、12.2、19.1、22.5、51.8、53.3),四個 CH₂(18.8、30.9、31.3、123.4)、七個 CH(50.1、51.6、93.7、101.9、 106.4、128.3、187.4),十九個四級碳(88.6、107.2、127.5、131.9、 132.5、132.7、136.6、137.6、137.7、143.4、146.9、150.7、150.7、159.0、 165.0、172.8、173.6、174.0、191.8)。(註:29.5 可能為雜質)

而經由 HMQC (圖 36)和 HMBC (圖 37)的光譜決定碳的相關 位置,綜合上述資料,整理如表 3 並與文獻⁽⁴⁵⁻⁴⁷⁾比對後,確定此化合 物為 methyl 13²-hydroxy-(13²-S)-pheophorbide b 其結構如下:

表 3、化合物 VII 之 NMR 光譜數據

ID	¹³ C	DEPT	¹ H	COSY	HMBC
1	143.4	С			
2	131.9	С			
2^{1}	11.8	CH ₃	3.40 (s)		C-1 (³ <i>J</i>), C-2 (² <i>J</i>), C-3 (³ <i>J</i>)
3	137.7	С			
3 ¹	128.3	CH	8.01 (<i>dd</i> , 17.8, 11.6)	$H-3^2$	C-2 $({}^{3}J)$, C-4 $({}^{3}J)$
3 ²	123.4	CH_2	6.38 (<i>dd</i> , 17.8, 1.3)	$H-3^1$	C-3 $({}^{3}J)$, C-3 ¹ $({}^{2}J)$
			6.24 (<i>dd</i> , 11.6, 1.3)	H-3 ¹	
4	136.6	С			
5	101.9	CH	10.41 (s)		C-3 $({}^{3}J)$, C-7 $({}^{3}J)$
6	150.7	С			
7	132.7	С			
7^1	187.4	СН	11.12 (<i>s</i>)		C-6 $({}^{3}J)$, C-7 $({}^{2}J)$
8	159.0	С			
8^1	18.8	CH_2	4.03 (q, 7.6)	H-8 ²	C-7 $({}^{3}J)$, C-8 $({}^{2}J)$, C-8 $({}^{2}J)$, C-9 $({}^{3}J)$
8 ²	19.1	CH ₃	1.82 (<i>t</i> , 7.6)	$H-8^1$	C-8 $({}^{3}J)$, C-8 ¹ $({}^{2}J)$
9	146.9	С			
10	106.4	СН	9.69 (s)		C-11 (^{2}J), C-12 (^{3}J)
11	132.4	С			
12	137.7	С			
12^{1}	12.2	CH_3	3.73 (s)		C-11 (³ <i>J</i>), C-12 (² <i>J</i>), C-14 (⁴ <i>J</i>)
13	150.7	С			
13 ¹	191.8	С			
13 ²	88.6	С			
13 ³	173.6	С			
13 ⁴	53.3	CH ₃	3.64 (<i>s</i>)		$C-13^{3}(^{2}J)$
14	127.5	С			
15	107.2	С			
16	165.0	С			
17	51.6	CH	4.14 (<i>m</i>)	$H-17^{1}$	
17^{1}	30.9	CH ₂	2.31 (<i>m</i>)	H-17	$C-17^{3} (^{3}J)$
			2.98 (<i>m</i>)	H-17 ²	
17^{2}	31.3	CH_2	2.31 (<i>m</i>)	$H-17^{1}$	C-17 ¹ (² J), C-17 ³ (² J)
			2.62 (<i>m</i>)		
17^{3}	174.0	С			
17^{4}	51.8	CH ₃	3.69 (<i>s</i>)		$C-17^{3}(^{2}J)$
18	50.1	СН	4.49 (<i>m</i>)	$H-18^{1}$	$C-18^{1} (^{2}J), C-19 (^{2}J)$
18^{1}	22.5	CH_3	1.62 (<i>m</i>)	H-18	C-17 (${}^{3}J$), C-18 (${}^{2}J$), C-19 (${}^{3}J$)
19	172.3	С			
20	93.7	СН	8.62 (s)		C-1 $({}^{2}J)$, C-2 $({}^{3}J)$, C-18 $({}^{3}J)$
NH			-1.68 (s)		
			0.38 (s)		
OH			5.58 (s)		

【八】化合物 : methyl 13²-hydroxy-(13²-S)-pheophorbide a

化合物 為墨綠色固體,經由 FABMS(圖 38)顯示[M+H]⁺在 m/z 623, 即分子量為 622。

由紅外光光譜(圖 39) 顯示在 3434 cm⁻¹ 附近為-NH 及-OH 的吸收,在 2917, 2848 cm⁻¹ 為飽和碳氫鍵伸縮振動之吸收,在 1737, 1706, 1621 為 2 個酯類及 1 個 a, β -unsaturated ketone 的吸收峰。

紫外光光譜 (圖 40) 在 210、279、407、504、532、610 及 665 nm 有最大吸收波長,為 chlorophyll 類的化合物吸收模式。

氫譜 (CDCl₃, 圖 41) 顯示具有 pheophorbide a^(48,49)的吸收特徵, -1.84 (s)和 0.31 (s)為 NH 的吸收訊號, 3.21 (s, 3H)、3.42 (s, 3H)、3.74 (s, 3H)分別為 H-7¹、H-2¹、H-12¹三個甲基質子,而 H-20、H-5 和 H-10 三個烯基質子,由於位在環電流的去遮蔽區域內,其化學為移分別為

8.65 (s)、9.41 (s)和 9.57 (s)。 7.98 (*dd*, H, *J* = 17.8, 11.5 Hz, H-3¹)、 6.28 (d, H, J = 17.8, Hz, H-3²a)及 6.18 (dd, H, J = 11.5, 1.1 Hz, H-3²b)顯示 含有一個乙烯基質子(vinyl group),為 H-3¹和 H-3²的吸收訊號, 4.17 (m, H)為 H-17 的吸收訊號,由文獻⁽⁴⁵⁾得知 H-17 若與 C-13²上的 methoxy group 為同一平面,即 *R*-form,因為 C-13²上的 methoxy group 對 H-17 有去遮蔽作用故其的化學位移會在較低磁場出現。相反的若 為 *S*-form 其化學位移會在較高磁場出現,因此由此化合物 H-17 的化 學位移可判斷此化合物應為 *S*-form, 4.51 (m, H)為 H-18 的吸收訊 號, 5.51 (s, H)為 C-13²上的-OH 基。

由 COSY 光譜 (圖 42) 顯示在 2.31 (m, 2H, H-17¹a, H-17²a)、2.58 (m, H, H-17²b)、2.8 (m, H, H-17¹b)為2個 CH₂且相互偶合,而 2.31、 2.8 與 4.17 (m, H, H-17)相互偶合,分別為2組 methylenes H-17¹和H-17² 的吸收訊號,在 1.60~1.72 和 4.51 顯示有相互偶合,在 1.60~1.72 和 3.64 顯示有相互偶合。(註: 1.25 可能為雜質)

由碳譜(圖 43)與 DEPT 光譜(圖 44)顯示共具有 36 個碳的吸

收訊號,包括七個 CH₃(11.0、11.9、12.1、17.2、22.4、51.6、53.2), 四個 CH₂(19.2、30.9、31.2、122.6),六個 CH(50.1、51.6、93.4、 97.7、104.0、128.8),十九個四級碳(88.8、107.4、126.7、129.2、131.5、 136.0、136.0、136.3、137.6、141.8、144.9、149.6、150.8、155.1、162.2、 172.2、172.6、173.8、191.8)。(註: 29.5 可能為雜質)

而經由 HMQC (圖 45)和 HMBC (圖 46)的光譜決定碳的相關 位置,綜合上述資料,整理如表4並與文獻^(45,47,50)比對後,確定此化合 物為 methyl 13^2 -hydroxy- (13^2-S) -pheophorbide a 其結構如下:

表 4、	化合物	VIII 之 NMR	光譜數據

ID	¹³ C	DEPT	$^{1}\mathrm{H}$	COSY	HMBC	
1	141.8	С				

2	131.5	С			
2^1	11.9	CH ₃	3.42 (s)		C-1 (³ <i>J</i>), C-2 (² <i>J</i>), C-3 (³ <i>J</i>)
3	136.3	С			
3 ¹	128.8	CH	7.98 (dd, 17.8, 11.5)	H-3 ²	C-2 (³ <i>J</i>), C-3 (² <i>J</i>), C-4 (³ <i>J</i>)
3 ²	122.6	CH_2	6.28 (<i>d</i> , 17.8)	H-3 ¹	C-3 $({}^{3}J)$, C-3 ¹ $({}^{2}J)$
			6.18 (<i>dd</i> , 11.5, 1.1)	H-3 ¹	
4	136.0	С			
5	97.7	CH	9.41 (<i>s</i>)		C-3 $({}^{3}J)$, C-4 $({}^{2}J)$, C-7 $({}^{3}J)$
6	155.1	С			
7	136.0	С			
7^1	11.0	CH ₃	3.21 (<i>s</i>)		C-6 $({}^{3}J)$, C-7 $({}^{2}J)$, C-8 $({}^{3}J)$
8	144.9	С			
8^1	19.2	CH_2	3.64 (<i>m</i>)	H-8 ²	C-7 $({}^{3}J)$, C-8 $({}^{2}J)$, C-8 $({}^{2}J)$, C-9 $({}^{3}J)$
8^2	17.2	CH ₃	1.60~1.72	$H-8^1$	C-8 $({}^{3}J)$, C-8 ¹ $({}^{2}J)$
9	150.8	С			
10	104.0	CH	9.57 (s)		C-8 $({}^{3}J)$, C-11 $({}^{2}J)$, C-12 $({}^{3}J)$
11	137.6	С			
12	129.2	С			
12^{1}	12.1	CH ₃	3.74 (<i>s</i>)		C-11 (³ <i>J</i>), C-12 (² <i>J</i>), C-13 (³ <i>J</i>)
13	126.7	С			
13 ¹	191.8	С			
13^{2}	88.8	С			
13^{3}	173.8	С			
13 ⁴	53.2	CH_3	3.67 (<i>s</i>)		$C-13^{3}(^{2}J)$
14	149.6	С			
15	107.4	С			
16	162.2	С			
17	51.6	CH	4.17 (<i>m</i>)	$H-17^{1}$	C-17 ¹ (^{2}J), C-18 (^{2}J), C-18 ¹ (^{3}J)
17^{1}	30.9	CH_2	2.32 (<i>m</i>)	H-17	C-16 (³ <i>J</i>), C-17 ² (² <i>J</i>), C-17 ³ (³ <i>J</i>)
			2.80 (<i>m</i>)	$H-17^{2}$	
17^{2}	31.2	CH_2	2.32 (<i>m</i>)	$H-17^{1}$	C-17 ¹ (² J), C-17 ³ (² J)
_			2.58 (<i>m</i>)		
17^{3}	172.6	С			
17^{4}	51.6	CH_3	3.67 (<i>s</i>)		$C-17^{3} (^{2}J)$
18	50.1	СН	4.51 (<i>m</i>)	H-18 ¹	C-16 (${}^{3}J$), C-17 ¹ (${}^{3}J$), C-18 ¹ (${}^{2}J$)
18 ¹	22.4	CH_3	1.60~1.72	H-18	C-17 (${}^{3}J$), C-18 (${}^{2}J$), C-19 (${}^{3}J$)
19	172.2	С			
20	93.4	CH	8.65 (<i>s</i>)		C-1 (^{2}J) , C-2 (^{3}J) , C-18 (^{3}J)
NH			-1.84 (s)		
			0.31 (<i>s</i>)		
OH			5.51 (<i>s</i>)		

【九】化合物 : 7,11,15-trimethyl-3-methylene-1,2-hexadecanediol

化合物 為透明油狀物,由 EIMS (圖 47) 顯示 m/z 312 為分子

離子峰,即分子量為312。

紅外光光譜(圖 48)顯示 3229 cm⁻¹為-OH 基的吸收訊號, 2928、 2866 cm⁻¹為飽和碳氫鍵伸縮振動之吸收, 1462 cm⁻¹為雙鍵的吸收訊 號, 1072、1030 cm⁻¹為醇類 C-O 基伸縮振動的吸收訊號。

氫譜 (CDCl₃, 圖 49) 顯示 3.53 (*dd*, H, *J* = 11.2, 7.2 Hz), 3.71 (*dd*, H, *J* = 11.2, 3.2 Hz) 為 C<u>H</u>₂OH 質子的吸收訊號 , 4.20 (dd, H, J = 7.2, 3.2)為 C<u>H</u>OH 質子的吸收訊號 , 4.97 (s, H)、5.12 (s, H)為雙鍵質 子的吸收訊號。

由 COSY 光譜(圖 50) 顯示 3.53、3.71 和 4.20 相互偶合, 3.53 和 3.71 相互偶合。

碳譜(CDCl₃,圖 51)與DEPT(圖 52)光譜顯示具有 20個碳的 吸收訊號,包括四個 CH₃(19.5、19.5、22.4、22.5),十一個 CH₂(24.2、24.6、25.3、29.5、32.8、36.6、37.1、37.2、39.1、65.4、110.3), 四個 CH(27.7、32.5、32.6、74.8),一個四級碳(148.5)。

經由 HMQC (圖 53) 顯示 4.97 (s, H, H-3¹a)、5.12 (s, H, H-3¹b) 與 110.3 相互偶合,表示 110.3 為 C-3¹之訊號,且 H-3¹a 和 H-3¹b 為磁不相等的 diastereotopic 質子,同理 3.53 (*dd*, H, *J* = 11.2, 7.2 Hz, H-1a)、 3.71 (*dd*, H, *J* = 11.2, 3.2 Hz, H-1b)與 65.4 相互偶合表示 65.4 為 C-1 之訊號,且 H-1a 和 H-1b 為磁不相等的 diastereotopic 質子。

而經由 HMQC 和 HMBC (圖 54)的光譜決定碳的相關位置。綜 合上述資料,整理如表5並與參考文獻^(51,52)比對後如表6,確定此化合 物為7,11,15-trimethyl-3-methylene-1,2-hexadecanediol 其結構如下:

表 5、化合物 IX 之 NMR 光譜數據

ID	^{13}C	DEPT	$^{1}\mathrm{H}$	COSY	HMBC
1	65.4	CH ₂	3.53 (<i>dd</i> , 7.2, 11.2)	H-2	$C-2(^{2}J)$
			3.71 (<i>dd</i> , 3.2, 11.2)		

2	74.8	СН	4.20 (<i>dd</i> , 3.2, 7.2)	H-1	C-1 (² <i>J</i>), C-3 (² <i>J</i>)
3	148.5	С			$C-3^{1}(^{2}J), C-2(^{2}J), C-4(^{2}J)$
3 ¹	110.3	CH ₂	4.97 (s)		C-3 (^{2}J) , C-2 (^{3}J) , C-4 (^{3}J)
			5.13 (s)		
4	32.8	CH_2	1.96 (<i>m</i>)		C-5 (^{2}J) , C-3 (^{2}J) , C-3 ¹ (^{3}J) ,
					$C-2(^{3}J)$
5	25.3	CH ₂			C-4 (^{2}J)
6	36.6	CH ₂			
7	32.6	СН			
8	37.2	CH ₂			
9	24.2	CH ₂			
10	37.1	CH ₂			
11	32.5	СН			
12	37.2	CH ₂			
13	24.6	CH ₂			C-12 (² <i>J</i>), C-14 (² <i>J</i>)
14	39.1	CH ₂			C-13 (² <i>J</i>), C-15 (² <i>J</i>), C-16
					$(^{3}J), \text{C-17}(^{3}J)$
15	27.7	СН			C-16 (² <i>J</i>), C-17 (² <i>J</i>)
16	22.4	CH ₃			
17	22.5	CH ₃			
18	19.5	CH ₃			
19	19.5	CH ₃			

表 6、化合物 IX 與參考文獻⁽⁵²⁾的碳譜數據之比較

С	化合物 IX	phytene -1,2-diol
	(CDCl ₃)	(CDCl ₃)
1	65.4	65.8
2	74.8	75.1
3	148.5	148.9
3 ¹	110.3	110.6
4	32.8	33.1
5	25.3	25.7
6	36.6	36.9
7	32.6	32.8
8	37.2	37.5
9	24.2	24.5
10	37.1	37.5
11	32.5	32.9
12	37.2	37.4
13	24.6	24.8
14	39.1	39.5
15	27.7	28.0
16	22.4	22.6
17	22.5	22.7
18	19.5	19.7
19	19.5	19.8

【十】化合物 : 1,2-dihydroxypropyl hexadecanoate

化合物 為白色針狀結晶 (*n*-hexane/chloroform), 測其熔點為 71-73 ,其 TLC 片經溶媒 (chloroform: ethyl acetate = 1:1) 展開 R_f 值為 0.43, 噴 10 % H₂SO₄ 加熱後呈藍色。

紅外光光譜(圖 55)顯示,在 3300 cm⁻¹附近有-OH 基的吸收帶, 2917、2856 cm⁻¹為飽和碳氫鍵伸縮振動之吸收,1737 cm⁻¹為 C = O 基的吸收峰,1466 cm⁻¹為 CH 的變角運動,1181、1050 cm⁻¹為醇類 C-O 基伸縮振動的吸收訊號。

由 EIMS 圖譜(圖 56) 顯示其 m/z 331 [M+1]⁺為準分子離子峰, 即分子量為 330。

氫譜(CDCl₃,圖 57)顯示 0.88(t, J = 6.8 Hz, 3H)為長鏈末端 甲基之吸收訊號, 1.26(s, br)為長鏈 methylene(CH₂)的吸收訊 號, 2.36(t, J = 7.4 Hz, 2H)為 carbonyl group 旁 O = C-CH₂ 質子的 吸收訊號, 2.07(t, br, H), 2.51(d, br, H)分別為 C-3 及 C-2 上之 -OH 基的吸收訊號, 3.63、4.19(m, 2H)為 CH₂OH 質子的吸收訊 號, 3.94(m, H)為 CHOH 質子的吸收訊號。

COSY 光譜 (圖 58) 顯示 2.36 和 1.63 相互偶合, 3.63 和 3.94 相互偶合, 4.19 和 3.94 相互偶合。

碳譜(CDCl₃,圖 59)顯示 13.9 為長鏈末端甲基碳的吸收訊號, 22.4~33.9為長鏈 methylenes (CH₂)的吸收訊號, 174.1為 carbonyl group (C=O)的吸收訊號。

由 HMQC 光譜(圖 60)與文獻⁽⁵³⁾的對照,決定了2個 CH₂(63.1、64.9)為 C-3、C-1,1個 CH(70.0)為 C-2。

表 7. 化合物 X 之 NMR 光譜數據

ID	^{13}C	$^{1}\mathrm{H}$	COSY
1	64.9	4.19 (m, 2H)	H-2
---	------	--------------	----------
2	70.0	3.94 (m, H)	H-1, H-3
3	63.1	3.63 (m, 2H)	H-2

綜合上述資料,並與文獻^(54,55)比對後,推定此化合物應為 1,2-dihydroxypropyl hexadecanoate,其結構如下:

$$\begin{array}{c}
 1 CH_2 - OH \\
 2 CH - OH \\
 3 CH_2 - O - C - CH_2 - (CH_2)_{13}CH_3 \\
 0 \\
 0
\end{array}$$

第三章 白鳳菜粗抽物與成分之活性

第一節 抗過敏、抗發炎之活性

一、白鳳菜各抽取物之抗過敏、抗發炎活性

將白鳳菜各粗抽物分別以 compound 48/80 和 fMLP 為引發劑 (inducing agent),測試甲醇抽取物及各分劃層對大白鼠的肥大細胞 (mast cell)釋放 β -glucuronidase、histamine 之抗過敏活性試驗和大 白鼠的嗜中性白血球(neutrophil)釋放 β -glucuronidase、lysozyme 之 抗發炎活性試驗,其結果分別如表 8、9。

表 8、白鳳菜之甲醇抽取物及各分劃層對肥大細胞釋放 β -glucuronidase histamine 之抑制活性

Drug (µg/ml)			I	Percent Release	
		-glucuron	idase (% inh)	Histamine	(% inh)
Comtrol		11.2±0.6		69.7±2.4	
Fr. Me	(10)	7.5±1.3*	29.6±8.1	64.6±3.5	2.7±3.7
	(30)	6.2±0.1*	39.6±3.9	62.8±3.6	8.7±4.8
Fr. Hex	(10)	7.9±1.0*	24.5±5.7	66.1±3.2	4.3±6.1
	(30)	6.3±0.2*	41.4±6.4	59.1±1.2	12.6±3.8
Fr. Chlore	o (10)	9.6±0.8	8.3±1.3	57.9±4.6*	13.1±2.1
	(30)	5.5±0.2*	47.2±2.1	53.9±3.0**	26.9±0.9
Fr.Ea	(10)	13.6±0.9	-8.5±3.1	88.0±6.5*	-17.9±6.6
	(30)	12.3±0.7	-3.2±3.1	86.4±6.5	-15.7±7.1
Fr.Wa	(10)	11.8±0.1	-3.8±0.9	65.9±2.7	10.0±1.6
	(30)	5.2±0.1*	43.6±0.3	56.7±3.7*	9.1±6.5
Mepacrin	e				
	(10 µM)	8.9±1.0	13.4±5.2	56.8±5.6*	17.4±3.1
	(30 µM)	4.6±0.8**	51.2±5.1	34.7±2.0**	51.1±1.9
	(100 µM)	2.0±0.1**	80.9±2.3	14.4±1.4**	79.9±1.0
IC ₅₀			29.5±4.6		31.9±1.8

1.*p<0.05; **p<0.01; N = 3

2.Fr.Me:甲醇抽取物。Fr.Hex:正己烷抽取物。Fr.Chloro:氯仿抽取物。Fr.Ea:乙酸乙酯抽取物。Fr.Wa:水層抽取物。 3.Mepacrine:positive control

4.Inducer: compound 48/80 (10µg/ml)

表 9、白鳳菜之甲醇抽取物及各分劃層對嗜中性白血球釋放 β -glucuronidase、 lysozyme 之抑制活性

Drug (µ	g/ml)		Percen	t Release	
		-glucuronidase	(% inh)	Lysozyme	(% inh)
Comtro	1	28.5±0.5		27.8±1.2	
Fr. Me	(3)	15.2±0.4**	43.3±2.8	14.7±0.9	44.3±4.5
	(10)	11.5±1.2**	59.2±5.7	11.4±2.6*	57.0±10.1
	(30)	6.0±0.6**	79.4±2.3	7.6±1.8**	72.3±7.0
IC ₅₀		4.3±0.3		1.9±0.5	
Fr. Hex	(1)	17.9±0.8**	33.0±4.6	14.8±1.1	44.0±4.2
	(3)	14.2±0.7**	46.9±4.0	12.2±2.3*	53.4±10.1
	(10)	6.1±1.0**	77.8±4.3	12.0±2.9**	56.9±10.7
IC ₅₀		3.2±0.8		1.9±0.2	
Fr. Chlo	oro(1)	16.6±0.8**	37.9±4.9	15.0±1.5	43.3±5.5
	(3)	11.5±1.2**	56.8±4.9	13.1±1.8*	49.9±8.1
	(10)	9.9±3.0**	62.5±12.2	10.8±1.3**	60.6±5.1
IC ₅₀		3.6±1.2		5.4±2.5	
Fr.Ea	(3)	15.8±0.2**	41.1±1.2	16.8±2.4	35.6±10.9
	(10)	11.4±1.3**	57.2±5.9	14.7±2.0**	47.5±5.9
	(30)	2.8±0.5**	88.5±1.6	11.7±1.7**	59.9±3.6
IC ₅₀		6.0±1.4		10.0±2.8	
Fr.Wa	(3)	19.2±0.4**	28.2±3.2		
	(10)	17.1±0.7**	41.5±6.2	18.5±2.9	34.7±8.7
	(30)	10.1±0.6**	64.1±1.3	15.2±0.3	47.1±3.3
IC ₅₀		11.9±1.2			
TFP	(3 µM)	29.6±0.9	-4.0±2.0	23.4±1.4	15.5±3.7
	(10 µM)	11.7±2.2**	57.3±8.6	12.6±0.9**	54.5±2.7
	(30 µM)	5.5±0.6**	80.9±2.0	5.2±1.1**	81.0±4.0
IC ₅₀		10.9±1.6		9.3±1.1	

1.*p<0.05 ; **p<0.01 ; N = 3 ; ---- : not determined

2.Fr.Me:甲醇抽取物。Fr.Hex:正己烷抽取物。Fr.Chloro:氯仿抽取物。Fr.Ea:乙酸乙酯抽取物。Fr.Wa:水層抽取物。 3.Trifluoperazine (TFP): positive control

4.Inducer : fMLP $(1\mu M)$ / cytochalasin B (5µg/ml)

表 8 顯示 Fr.Hex 和 Fr.Chloro 在 30 µg/ml 對 compound 48/80 所引

發肥大細胞釋放 β -glucuronidase 和 histamine 有稍微的抑制活性,而 其餘分劃層並無明顯的抑制活性。

表9顯示 Fr.Hex (10 µg/ml), Fr.Chloro (10 µg/ml), Fr.Ea (30 µg/ml) 對fMLP所引發嗜中性白血球釋放 β -glucuronidase和lysozyme有明顯 的抑制活性,顯示具有抗發炎之成分活性存在。Fr.Hex、Fr.Chloro、 Fr.Ea 抑制fMLP所引發嗜中性白血球釋放 β -glucuronidase和lysozyme 的 IC₅₀分別為 3.2 £0.8 µg/ml及 1.9 £0.2 µg/ml 3.6 ± .2 µg/ml及 5.4 £ .5 µg/ml 6.0 ± .4 µg/ml及 10.0 £ .8 µg/ml。以上各分劃都與 TFP 一樣有 不錯的抑制活性,而且結果顯示抗發炎的有效成分主要在正己烷及氯 仿抽取物中。

一、白鳳菜各抽取物之抗細胞增殖活性

利用 MTT 活性測試甲醇抽取物及各分劃層對 HL-60 癌細胞的增殖影響,其結果如表 10。

Compound	Conc.	MTT-assay
	(µg/ml)	(%)
Cont.	0.0	100.0 ± 1.0
RA 0.03 µg/ml		$35.7 \pm 1.9 ***$
Fr. He x	1	$78.8 \pm 0.9 ***$
	10	6.4 ± 2.3 ***
	25	$1.9 \pm 0.3 ***$
		$IC_{50} = 4.8 \; (\mu g/ \; ml)$
Fr. Chloro	10	86.9 ± 4.6 ***
	25	32.8 ± 7.9 ***
	50	$1.6 \pm 1.9 ***$
		$IC_{50} = 23.9 (\mu g/ml)$
Fr.Ea	10	109.7 ± 12.6
	25	$47.2 \pm 10.0 ***$
	50	$2.1 \pm 0.9 ***$
		$IC_{50} = 29.5 (\mu g/\ ml)$
Fr.Me		ND
Fr.Wa		ND

表 10、 E	白鳳菜之	甲醇抽取物	及各分劃層	罾對 HL-6	0 細胞的扣	印制活性
---------	------	-------	-------	----------------	--------	------

1. HL-60 cells (2×10^4) were incubated with different concentration in 72 hrs. Data was presented as mean \pm SD from three separate experiments.

2.Fr.Me:甲醇抽取物。Fr.Hex:正己烷抽取物。Fr.Chloro:氯仿抽取物。Fr.Ea:乙酸乙酯抽取物。Fr.Wa:水層抽取物。

3. *p < 0.05 compared with control. **p < 0.01 compared with control. *** p < 0.001 compared with control. ND : none do 4. RA (retinoic acid) : positive control

表 10 顯示 Fr.Hex (10 µg/ml), Fr.Chloro (25 µg/ml), Fr.Ea (50 µg/ml) 對於 HL-60 細胞有顯著的抑制活性,顯示其具有抗細胞增殖的作用。 其抑制 HL-60 細胞之 IC₅₀分別為 4.8 µg/ml、23.9 µg/ml、29.5 µg/ml。 由結果顯示抑制 HL-60 增殖的活性成分為脂溶性分子有機成分,分 布在正己烷、氯仿及乙酸乙酯抽取物中。

二、單離後化合物之活性

由氯仿抽取物中,單離得到九個化合物和一個混合物,部分化合物之 抗細胞增殖試驗活性結果如表 11,其餘化合物之抗細胞增殖藥理活 性試驗因溶解度不足而失敗須重測試。

Compound	Conc.	MTT-assay
	(µg/ml)	(%)
Cont.	0.0	100.0 ± 1.0
RA 0.03 µg/ml		35.7 ± 1.9***
化合物 III	10	101.5 ± 7.6
	25	102.3 ± 7.1
	50	50.4 ± 4.4 ***
	100	6.3 ± 1.4 ***
		$IC_{50} = 60.8 (\mu g/ml)$
化合物 IV	5	90.2 ± 4.3
	10	77.1 ± 1.0 ***
	25	37.7 ± 9.2 ***
	50	3.8 ± 3.7 ***
		$IC_{50} = 23.6 (\mu g/ml)$
化合物 IX	1	85.4 ± 2.8 **
	10	58.1 ± 12.0 ***
	50	4.7 ± 2.9 ***
		$IC_{50} = 21.3 (\mu g/ml)$

表 11、白鳳菜單離後所得化合物對 HL-60 細胞的抑制活性

1. HL-60 cells (2×10^4) were incubated with different concentration in 72 hrs. Data was presented as mean \pm SD from three separate experiments.

2. *p < 0.05 compared with control. **p < 0.01 compared with control. **p < 0.001 compared with control. ND : none do 3. RA (retinoic acid) : positive control

表 11 顯示白鳳菜分離之化合物 III (100 μ g/ml)、化合物 IV (50 μ g/ml)、化合物 IX (50 μ g/ml)對於 HL-60 細胞有顯著的抑制活性,顯示其具有抗細胞增殖的作用。其抑制 HL-60 細胞之 IC₅₀分別為 60.8 μ g/ml、23.6 μ g/ml、21.3 μ g/ml。所顯示的活性均比 RA 弱。

第四章 結論

自鳳菜甲醇粗抽物以氯仿抽取的分劃層中進行分離及純化,共單 離得到九個化合物及一個混合物:docosane (I)、methyl hexadecanoate (II)、methyl oleate (III)、methyl linoleate (IV)、friedelin (V)、 β -sitosterol 及 stigmasterol 混合物 (VI)、methyl 13²-hydroxy- (13²-S)-pheophorbide b (VII)、methyl 13²-hydroxy-(13²-S)- pheophorbide a (VIII)、7,11,15 -trimethyl-3-methylene-1,2-hexadecanediol (IX)、1,2-dihydroxypropyl hexadecanoate (X)。以上九個化合物及一個混合物均為已知的,但其 中除了 friedelin (V)、 β -sitosterol 及 stigmasterol 混合物 (VI)外,其餘 都是第一次於白鳳菜中分離得到。

在白鳳菜各層抽取物之藥理實驗結果發現 Fr.Hex、Fr.Chloro、 Fr.Ea 對 fMLP 所引發嗜中性白血球釋放 β -glucuronidase 和 lysozyme 有明顯的抗發炎活性,且對 HL-60 細胞也有明顯的抗細胞增殖活性。 但對 compound 48/80 所引發肥大細胞釋放 β -glucuronidase 和 histamine 的抗過敏活性卻很微弱。

白鳳菜分離所得化合物中, methyl oleate (III)、methyl linoleate (IV), 7,11,15 -trimethyl-3-methylene-1,2-hexadecanediol (IX)對於 HL-60 細胞有明顯的抑制活性, 顯示其具有抗細胞增殖的作用。其餘化合物 因實驗失敗須重測。其餘各分劃,尚待盡一步研究,因實際上還有許 多活性成份尚未分離出來。

白鳳菜分離所得之化合物抗過敏、抗發炎活性試驗送測中。

參、實驗材料與方法

第一章 試藥與儀器

第一節 試藥

- 一、成分抽取、薄層層析及管柱層析用溶媒
 n-hexane, benzene, chloroform, ethyl Acetate, *n*-butanol, acetone, methanol 等購自 TEDIA (ACS 級)。
- 二、測紫外光光譜用溶媒 methanol 購自默克公司(Merck Taiwan, LTD, 台北)之高效液相層 析級用溶媒(HPLC grade)。

三、核磁共振光譜用

chloroform- d_1 (deuteration degree 99.5%)、 dimethylsulfoxide- d_6 (deuteration degree 99.8%)、 methanol- d_4 (deuteration degree 99.5%)、 pyridine- d_6 (deuteration degree 99.5%)等購自默克公司 (Merck Taiwan, LTD, 台北)。

四、管柱色層分析(column chromatography)填充劑

 silica gel Merck Kieselgel 60 (70-230 mesh, Art. 7734) ; Merck Kieselgel 60 (230-400 mesh, Art. 9385).
 cellulose microcristalline (Merck , Art. 2331).

五、薄層色層分析 (thin-layer Chromatography)

- 1. TLC aluminium sheets (silica gel 60 F_{254} , 20 × 20 cm, 0.2 mm layer, Art. 5554, E. Merck)_o
- DC-Alufolien cellulose F (20 × 20 cm, 0.1 mm, Art. 5574, E. Merck).
- 六、製備色層分析 (preparative TLC)

採用 PLC plates Silica gel 60 F_{254} concentrating zone (20 × 20 cm, 1 mm, E. Merck)。

第二節 儀器

- 一、熔點測定儀 (melting point apparatus)
 本實驗熔點測定儀採用 Yanaco MP-500D 熔點測定儀,測定範 圍在 40-500 ,溫度未經校正。
- 二、紫外光-可見光光譜儀 (UV-visible spectrometer) 紫外光-可見光光譜分析採用 Shimadzu UV-160A UV-visible recording spectrophotometer。
- 三、紅外光光譜儀 (infrared spectrometer, IR) 紅外光光譜分析採用 Nicolet Impact 400 FT-IR spectrophotometer,以溴化鉀粉末作為打錠稀釋劑;單位為波數 (cm⁻¹)。
- 四、質譜儀 (mass spectrometer, MS) EIMS:使用 VG PLATFORM II 測定,離子化電壓為 70 ev,單 位為 *m/z*。 FABMS:使用 JEOL JMS-SX/SX 102A tandem mass spectrometer。(中興大學)

五、核磁共振光譜儀 (nuclear magnetic resonance spectrometer)

採用 DPX-200 及 DPX-400 FT-NMR spectrometer。以 表示化 學位移(chemical shift),單位為 ppm,以 TMS (tetramethylsilane; = 0 ppm)為內部標準品。偶合常數(J)以 Hz 為單位,並以 s 表 單峰(single), d 表二重峰(doublet), t 表三重峰(triplet), q 表四重 峰(quartet), sept 表七重峰(septet), m 表多重峰(multiplet), br 表 寬峰。

六、紫外光燈(UV lamp) CAMAG UV-Cabinet II , wavelength 254 nm 及 366 nm。

第二章 成分抽取與分離方法

白鳳菜為民國 89年 10月購置於台中青草店,經由本校中國藥學研究所<u>邱年永</u>技正鑑定基原,確定為菊科(Compositae)三七草屬(Gynura)植物白鳳菜(Gynura divaricata (L.) DC. subsp. formosana (Kitam.) F. G. Davies)。

第一節 預試驗粗抽物之製備

取白鳳菜生品一部份約 150g,陰乾後進行研究。將白鳳菜以果 汁機打碎後,用甲醇浸漬抽取至近無色,合併抽取液,經減壓濃縮得 甲醇粗抽取物 Fr. Me(6.26g)。將甲醇抽取物懸浮於水中,再以正己 烷抽取數次至近無色,合併抽取液,經減壓濃縮得正己烷抽取物 Fr. Hex(1.25g)、剩餘的水層再以氯仿抽取數次至近無色,合併抽取液, 經減壓濃縮得氯仿抽取物 Fr. Chloro(0.4g)、剩餘的水層再以乙酸乙 酯抽取數次至近無色,合併抽取液,經減壓濃縮得乙酸乙酯抽取物 Fr. Ea(0.2g)。最後剩餘的水層經冷凍乾燥後得水層抽取物 Fr. Wa (2.51g)。

將此五個分劃層送往台中榮總醫院醫研部進行抗發炎、抗過敏試 驗及本所進行抗細胞增殖活性試驗。

第二節 成分的單離

上述五種分劃層,經由抗發炎及抗細胞增殖活性藥理測試,結果 發現低極性的正己烷抽取物與氯仿抽取物有較佳的藥理活性。於是此 次實驗決定用氯仿抽取,以一併抽出中低極性的有效成分。 取白鳳菜生品 60 公斤,陰乾後,以果汁機打碎用甲醇浸漬抽取約 20 次,合併抽取液,經減壓濃縮得甲醇粗抽取物 795 克。將甲醇抽取物 懸浮於水中,再以氯仿抽取數次至近無色,合併抽取液,經減壓濃縮 得氯仿抽取物 79 克。剩餘的水層經冷凍乾燥後得水層抽取物。 取氯仿抽取物,經矽膠管柱色層分析法(70-230 mesh),以氯仿、乙 酸乙酯、甲醇為梯度沖提液,依極性大小不同將收集液粗分成 Fr.A~Fr.F,分別進行 Fr.A~Fr.F 的成分單離,抽取及分劃流程依圖 61。

一、Fr.A之成分單離

取 Fr.A (11.61 g) 依圖 62, 經矽膠管柱色層分析法 (70-230 mesh), 以正己烷、氯仿、乙酸乙酯為梯度沖提液, 依極性大小不同 將收集液分成 Fr.A1~Fr.A6。

將 Fr.A1 經矽膠管柱色層分析法 (70-230 mesh), 以正己烷、氯 仿為梯度沖提液, 依極性大小不同將收集液粗分成 Fr.A11~Fr.A13。

Fr.A11 經矽膠管柱色層分析法(70-230 mesh),以正己烷為沖提液,分離得到化合物 IV (56.5 mg)。

取 Fr.A12 經矽膠管柱色層分析法(70-230 mesh),以正己烷、氯 仿為梯度沖提液,依極性大小不同將收集液粗分成 Fr.A121~Fr.A124。Fr.A122 經矽膠管柱色層分析法(70-230 mesh), 以正己烷:氯仿(9:1)為沖提液,分離得到化合物 II(0.7 g)。

Fr.A123 經矽膠管柱色層分析法(230-400 mesh),以正己烷:苯 (4:1)為沖提液,分別得到化合物I(63 mg)化合物III(55.7 mg)。 其他分劃層則予以保留。

二、Fr.B之成分單離

取 Fr.B(14g) 依圖 63, 經矽膠管柱色層分析法(70-230 mesh), 以氯仿、乙酸乙酯為梯度沖提液,依極性大小不同將收集液分成 Fr.B1~Fr.B4。

Fr.B2 經矽膠管柱色層分析法 (70-230 mesh), 以正己烷: 氯仿 (5:1) 為沖提液, 將收集液分成 Fr.B21~Fr.B23。

將 Fr.B23 的白色沉澱物,以正己烷和氯仿再結晶後得白色針狀結晶為化合物 VI (1.56 g)。

Fr.B22 經矽膠管柱色層分析法(70-230 mesh),以正己烷:氯仿(5:2)為沖提液,將收集液分成 Fr.B221~Fr.B224。

Fr.B223 經矽膠管柱色層分析法(70-230 mesh),以正己烷:氯 仿(1:1)為沖提液,將收集液分成 Fr.B2231~Fr.B2235。將 Fr.B2232 的白色沉澱物,以氯仿和甲醇再結晶後得到白色柱狀結晶為化合物 V (26 mg)。

圖 62、Fr.A 之分劃流程圖

C : Chloroform EA : Ethyl acetate

圖 63、Fr.B 之分劃流程圖

取 Fr.B3(5.9g)依圖 64, 經矽膠管柱色層分析法(70-230 mesh),

以氯仿:乙酸乙酯(10:1) 為沖提液,將收集液分成 Fr.B31~Fr.B35。

Fr.B33 經矽膠管柱色層分析法(70-230 mesh),以氯仿:乙酸乙 酯(5:1)為沖提液,將收集液分成 Fr.B331~Fr.B333。Fr.B332 經矽膠 管柱色層分析法(70-230 mesh),以氯仿:乙酸乙酯(8:1)為沖提液, 收集液經濃縮至乾後,以氯仿和甲醇再結晶後得到墨綠色固體為化合物 VIII (26.9 mg)。

Fr.B34 經矽膠管柱色層分析法(70-230 mesh),以氯仿:乙酸乙 酯(4:1)為沖提液,將收集液分成 Fr.B341~Fr.B34。 Fr.B332 經矽膠 管柱色層分析法(70-230 mesh),以氯仿:乙酸乙酯(5:1)為沖提液, 收集液經濃縮至乾後,以氯仿和甲醇再結晶後得到綠色固體為化合物 VII(9.7 mg)。

C : Chloroform

EA : Ethyl acetate

三、Fr.C 之成分單離

取 Fr.C(5.77 g)依圖 65, 經矽膠管柱色層分析法(70-230 mesh), 以氯仿、乙酸乙酯為梯度沖提液,依極性大小不同將收集液分成 Fr.C1~ Fr.C4。

Fr.C4 經矽膠管柱色層分析法 (70-230 mesh), 以二氯甲烷、乙酸乙酯為梯度沖提液, 依極性大小不同將收集液分成 Fr.C41~Fr.C45。

Fr.C43 經矽膠管柱色層分析法(70-230 mesh),以二氯甲烷、乙酸乙酯為梯度沖提液,依極性大小不同將收集液分成 Fr.C431~ Fr.C434。

Fr.C431 經矽膠管柱色層分析法(70-230 mesh), 以苯:乙酸乙酯(8:1) 為沖提液, 分離得到化合物 IX(20 mg)。

Fr.C433 經矽膠管柱色層分析法(70-230 mesh),以氯仿:乙酸乙酯(5:1)為沖提液,分離得到一個混合物,以正己烷和氯仿再結晶後得到白色針狀結晶為化合物 X(17 mg)。

D : Dichloromethane

C : Chloroform

EA : Ethyl acetate

圖 65、Fr.C 之分劃流程圖

第三章 藥理試驗方法

一、肥大細胞(mast cell)的去顆粒作用⁽⁵⁶⁾

肥大細胞之製備:大鼠 (Sprague-Dawley, 250-300g) 頸部放血後,將 10ml 含肝素之 Tyrode's 溶液注入鼠腹腔內,按摩 1-2 分鐘並取出腹腔液,經 38% 牛血清蛋白之 glucose-free Tyrode's solution 離心,沉澱細胞經清洗後,懸浮成 $1-1.5 \times 10^6$ cells/ml,並測定細胞存活率。

(1) 組織胺 (histamine) 釋放反應之測 $c^{(57)}$

將肥大細胞懸浮液方別與 DMSO 或檢品溶液於 37 培養三分鐘 後,各別加入 compound 48/80(10 µg/ml)與之作用,經十五分鐘後, 加入冰浴過之 Tyrode's solution 終止反應,混合液經離心(1000 xg) 十分鐘後,將上清液取出,測其所含之組織胺。利用 *o*-phthaldehyde 聚合後,以螢光分光光度計在 350/450 nm 處來測量所含之組織胺的 量。

(2) β -glucuronidase 釋放反應之測定⁽⁵⁷⁾

同 histamine 釋放反應之處理後,將所得含 β -glucuronidase 之上 清液,利用 phenolphthalein- β -D-glucuronide 作為受質,以分光光度計 在 550 nm 測量所含之 β -glucuronidase 之活性。

二、嗜中性白血球(Neutrophils)的去顆粒作用⁽⁵⁸⁾ 嗜中性白血球之製備:大鼠(Sprague-Dawley, 250-300g)經 pentobarbital (60 mg/kg, i.p.) 麻醉後,由腹腔動脈抽血,與dextran 混合靜置,經 Ficoll-hypaque 離心後,使 neutrophil 與其他血液細胞 分離,並在低張溶液(0.05%)除去紅血球,將細胞以包含 0.25% bovine serum albumin 之 saline (1.75%)清洗,並懸浮於 Hank' balanced salt solution (HBSS)成 2×10⁶ cells/ml 其中包含 90-95%之 neutrophils。

(1) β-glucuronidase 釋放反應之測定⁽⁵⁹⁾

將嗜中性白血球懸浮液分別與 DMSO 或檢品溶液於 37 培養三 分鐘後,各別加入 fMLP(1 μ M)與之作用,經四十五分鐘後,加入 冰浴冷卻過之 Tyrode's solution 終止反應,混合液經離心(1000 xg) 十分鐘後,將上清液取出,利用上清液中之 β -glucuronidase 與 phenolphthalein- β -D-glucuronide 反應後以分光光度計在 550 nm 測量 所含之 β -glucuronidase 之活性。

(2) lysozyme 釋放反應之測定⁽⁶⁰⁾

同 β-glucuronidase 釋放反應之處理後,將所得含 lysozyme 之上 清液,利用 Micrococcus lysodeikticus 作為受質,經由分光光度計在 450 nm 測量 lysozyme 之活性。

第二節 抗細胞增殖作用

一、癌細胞的培養

本實驗用的 HL-60 血癌細胞,這些癌細胞平常均培養於含有 10 ~ 20% 胎牛血清的 RPMI 1640 培養基,並加入 kanamycin (100 µg/ml), penicillin (50 µg/ml),及 streptomycin (50 µg/ml) 以防細菌污染。

培養於含 5%二氧化碳的細胞培養箱,當培養前及實驗時,會取

出少量癌細胞,再加色素錐藍 (trypan blue),並於顯微鏡下觀察,確 定細胞之死亡或存活,計算癌細胞總數。取定數的 HL-60 細胞,要 先以 phosphate buffered saline (PBS) 清洗 2~3次,才可完全取出, 以做進一步的實驗。

 \Box , MTT proliferation assay^(28,29)

將 HL-60 cells (2×10^4) 培養於 24-wells 培養皿使最後體積為 1ml/ well;每 well 中加入各種檢體於溫度 37 、溼度 95%、5% CO₂ 的培 養箱中培養固定時間之後,分別取出作 MTT-proliferation assay 實驗。

首先自每 well 取出已去除培養基之 50 μl細胞液置入 96-well plate 中,加入 10 μl MTT solution 於 37 培養箱中放置 4 小時。接著用 DMSO (150 μl/well)溶解細胞中之紫黑色顆粒,最後以 ELISA Reader 於波長 570 nm 的條件下測得 OD₅₇₀ 值,其值與 control OD₅₇₀ 求百分 比值為 proliferation (%)。

第四章 白鳳菜成分之性質及光譜數據

- 【一】化合物 :docosane
- 1. 白色臘狀
- 2. TLC : $R_f = 0.91$ (benzene)
- 3. EIMS m/z (%):(圖 5)
 310 (M⁺, 0.3), 203 (2.6), 189 (3.1), 175 (3.2), 155 (3.6), 141 (4.39), 111 (20.4), 97 (31.5), 85 (35.5), 71 (54.4)
- 4. IR (KBr) cm⁻¹ (圖 6) 2955、2920、2851、1462、1377、1265
- 5. ¹H-NMR (CDCl₃, 200 MHz) (\blacksquare 3) 0.89 (t, J = 5.9 Hz, 3H), 1.26 (CH₂), 1.56 (CH₂)
- 6. ¹³C-NMR (CDCl₃, 50 MHz) (圖 4)
 - 13.9、19.5、29.5、31.7
- 【二】化合物 : methyl hexadecanoate
- 1. 油狀物
- 2. TLC : $R_f = 0.64$ (benzene)
- 3. EIMS *m*/*z* (%):(圖 8) 270 (M⁺, 12.5), 239 (4.3), 227 (7.2), 199 (3.8), 185 (3.9), 171 (3.6), 157 (1.2), 143 (13.4), 87 (67.5), 74 (100)
- 4. IR (KBr) cm⁻¹ (圖 7)
 - 2925、2856、1744、1242、1173
- 5. ¹H-NMR (CDCl₃, 200 MHz): (圖 9) 0.87 (*m*, 3H, H-16)、1.25 (13 × CH₂)、1.5~1.7 (*m*, 2H, H-3)、2.30 (*t*, J = 7.62 Hz, 2H, H-2)、3.66 (*s*, -OC<u>H</u>₃)
- 6. ¹³C-NMR (CDCl₃, 50 MHz):(圖 10) 13.9 (C-16)、22.4~31.7 (13×CH₂)、33.9 (C-2)、51.2 (-O<u>C</u>H₃)、174.1 (C=O)
- 【三】化合物 : methyl oleate

1. 黃色油狀物

- 2. TLC : $R_f = 0.75$ (benzene)
- 3.EIMS *m/z* (%):(圖 11) 296 (M⁺, 3.7), 264 (12.2), 222 (6.9), 180 (8.0), 110 (12.9), 97 (27.0), 83 (27.3)、69 (50.5)、55 (100)
- 4. IR (KBr) cm⁻¹ (圖 12) 2924、2859、1740、1462、1246、1173
- 5. ¹H-NMR (CDCl₃, 200 MHz): (圖 13)
 0.89 (*t*, *J* = 6.3 Hz, 3H, H-8)、 1.28~1.30 (11 × CH₂)、 1.56 (*m*, 2H, H-3)、 2.01 (*m*, 4H, H-8 and H-11)、 2.30 (*t*, *J* = 7.6 Hz, 2H, H-2)、 3.67 (*s*, -OC<u>H₃</u>)、 5.35 (*t*, *J* = 5.3 Hz, 2H, H-9 and H-10)
- 6. ¹³C-NMR (CDCl₃, 50 MHz):(圖 14) 13.9 (C-18)、22.4~31.7 (13×CH₂)、33.9 (C-2)、51.2 (-O<u>C</u>H₃)、129.8 (C-9, C-10)、174.2 (C = O)
- 【四】化合物 : methyl linoleate
- 1. 淡黃色油狀物
- 2. TLC : $R_f = 0.70$ (benzene)
- 3. EIMS m/z (%): (圖 15)
 294 (M⁺, 13.2)、263 (7.6)、135 (11.5)、123 (24.2)、109 (34.9)、95 (60.3)、81 (85.2)、67 (100)、55 (76.2)
- 4. IR (KBr) cm⁻¹ (圖 16) 2925、2856、1737、1459、1366、1250、1173
- 5. ¹H-NMR (CDCl₃, 200 MHz): (圖 17)
 0.89 (t, J = 6.5 Hz, 3H, H-18), 1.31 (7 × CH₂), 1.62 (m, 2H, H-3), 2.05 (m, 4H, H-8 and H-14), 2.30 (t, J = 7.6 Hz, 2H, H-2), 2.77 (m, 2H, H-11), 3.67 (s, -OCH₃), 5.35 (m, 4H, H-9, 10, 12, 13)
- 6. ¹³C-NMR (CDCl₃, 50 MHz): (圖 18)
 13.8 (C-18), 22.3~31.3 (11 × CH₂), 33.9 (C-2), 51.2 (-O<u>C</u>H₃), 127.7, 127.8, 129.8, 130.0 (olefinic carbon), 174.2 (C = O)
 【五】化合物 : friedelin

- 1. 白色柱狀結晶 (chloroform/methanol)
- 2. m.p. : 261-263
- 3. TLC : $R_f = 0.38$ (benzene)
- 4. EIMS *m*/*z* (%):(圖 20) 426 (M⁺, 16.1)、411 (5.8)、341 (4.1)、302 (11.5)、273 (21.9)、246 (15.2)、205 (18.2)、163 (25.1)、123 (60.9)、109 (61.3)、95 (87.2)、 69 (100)
- 5. IR (KBr) cm^{-1} (**B** 19)
 - 2925、2871、1713、1459、1389、1266、1096、1019
- 6. ¹H-NMR (CDCl₃, 200 MHz): (圖 21)
 0.73 (s, 3H, H-24)、 0.87 (s, 3H, H-25)、 0.89 (d, J = 5.1 Hz, 3H, H-23)、 0.96 (s, 3H, H-29)、 1.01 (s, 6H, H-30,26)、 1.05 (s, 3H, H-27)、 1.18 (s, 3H, H-28)、 1.22~1.79 (m)、 2.23~2.38 (m)
- 7. ¹³C-NMR (CDCl₃, 50 MHz): (圖 22)
 6.6 (C-23)、14.4 (C-24)、17.7(C-25)、18.0 (C-7)、18.4 (C-26)、20.0 (C-27)、22.0 (C-1)、27.9 (C-20)、29.7 (C-17)、30.3 (C-12)、31.6 (C-29)、31.9 (C-28)、32.2 (C-15)、32.5 (C-21)、34.8 (C-30)、35.1 (C-11)、35.4 (C-19)、35.8 (C-16)、37.2 (C-9)、38.0 (C-13)、39.0 (C-22)、39.4 (C-14)、41.0(C-6)、41.3 (C-2)、41.9 (C-5)、42.6 (C-18)、52.9 (C-8)、58.0 (C-4)、59.2 (C-10)、212.9 (C-3)

【六】化合物 : β -sitosterol and stigmasterol (2:1)

- 1. 白色針狀結晶 (chloroform/methanol)
- 2. m.p. : 138.5-140
- 3. TLC : $R_f = 0.37$ (chloroform)
- 4. EIMS *m*/*z* (%):(圖 25) 414 (M⁺, 5.4)、412 (M⁺, 3.6)、271 (2.7)、255 (4.0)、213 (4.9)、159 (7.9)、145 (2.4)、119 (10.3)、105 (16.9)、91 (22.3)、81 (33.8)、69 (49.0)、55 (100)
- 5. IR (KBr) cm^{-1} (**B** 24)
 - 3211、2940、2871、1466、1374、1050
- 6. ¹H-NMR (CDCl₃, 200 MHz): (圖 26)
 0.68 (s, 3H, H-18), 0.76~0.94 (m), 0.97 (s, 3H, H-19), 1.01~2.29 (m),
 3.52 (m, 1H, H-3), 5.05 (dd, 1H, J = 15.1, 8.1 Hz, H-22), 5.12 (dd, 1H, J = 15.1, 8.1 Hz, H-23), 5.35 (d, 1H, J = 4.8 Hz, H-6)
- 7. ¹³C-NMR (CDCl₃, 50 MHz): (圖 27)
 11.6, 11.7 (C-18), 12.0 (C-29), 18.5 (C-21), 18.8 (C-26), 19.2, 19.6, 20.8 (C-19, 27, 11), 22.8 (C-28), 24.1 (C-15), 25.2 (C-28), 25.8 (C-23), 28.0, 28.7 (C-16), 28.9 (C-25), 31.4 (C-2), 31.7 (C-7, 8), 33.7 (C-22), 35.9 (C-20), 36.3 (C-10), 37.0 (C-1), 39.5 (C-12), 42.1 (C-4, 13), 45.6 (C-24), 49.9 (C-9), 55.8 (C-17), 56.5 (C-14), 71.6 (C-3), 121.5 (C-6), 129.0 (C-23), 138.1 (C-22), 140.5 (C-5)

【七】化合物 : methyl 13^2 -hydroxy- (13^2-S) -pheophorbide b

1. 綠色固體

- 2. TLC : $R_f = 0.56$ (chloroform : ethyl acetate = 5 : 1)
- 3. FABMS m/z (rel. int.): (圖 29) 637 $[M+H]^+$
- 4. IR (KBr) cm^{-1} (圖 30)

3195、2925、2856、1744、1713、1667、1297、1165

5. UV (CHCl₃) max:(圖 31)

226、294、369、434、526、598、653

- 6. ¹H-NMR (CDCl₃, 200 MHz):(圖 32)
 - -1.68 (*s*, -NH) 、 0.38 (*s*, -NH) 1.62 (*m*, 3H, H-18¹) 1.82 (*t*, 3H, J = 7.6 Hz)、 2.31 (m, 2H, H-17¹a、 H-17²a)、 2.62 (m, H, H-17²b)、 2.98 (m, H, H-17¹b)、 3.40 (*s*, 3H, H-2¹)、 3.64 (*s*, 3H, H-13⁴)、 3.69 (*s*, 3H, H-17⁴)、 3.73 (*s*, 3H, H-12¹)、 4.03 (*q*, 2H, J = 7.6, H-8¹)、 4.14 (*m*, H, H-17)、 4.49 (m, H, H-18)、 5.58 (*s*, H, C-13²-O<u>H</u>)、 6.24 (dd, 2H, J = 11.6, 1.3 Hz, H-3²b)、 6.38 (dd, 2H, J = 17.8, 1.3 Hz, H-3²a)、 8.01 (*dd*, 2H, J = 17.8, 11.6 Hz, H-3¹)、 8.62 (*s*, H, H-20)、 9.69 (*s*, H, H-10)、 10.41 (*s*, H, H-5)、 11.12 (*s*, H, H-7¹)
- 7. ¹³C-NMR (CDC_b, 50 MHz):(圖 34)

11.8 (C-2¹), 12.2 (C-12¹), 18.8 (C-8¹), 19.1 (C-8²), 22.5 (C-18¹), 30.9 (C-17¹), 31.3 (C-17²), 50.1 (C-18), 51.6 (C-17), 51.8 (C-17⁴), 53.3 (C-13⁴), 88.6 (C-13²), 93.7 (C-20), 101.9 (C-5), 106.4 (C-10), 107.2 (C-15), 123.4 (C-3²), 127.5 (C-14), 128.3 (C-3¹), 131.9 (C-2), 132.5 (C-11), 132.7 (C-7), 136.6 (C-4), 137.6 (C-12), 137.7 (C-3), 143.4 (C-1), 146.9 (C-9), 150.7 (C-6), 150.7 (C-13), 159.0 (C-8), 165.0 (C-16), 172.3 (C-19), 173.6 (C-13³), 174.0 (C-17³), 187.4 (C-7¹), 191.8 (C-13¹)

【八】化合物 : methyl 13^2 -hydroxy- (13^2-S) -pheophorbide a

1. 墨綠色固體

- 2. TLC : $R_f = 0.52$ (chloroform : ethyl acetate = 5 : 1)
- 3. FABMS m/z (rel. int.) : (圖 38) 623 $[M+H]^+$
- 4. IR (KBr) cm⁻¹ (圖 39)

3434、2917、2848、1737、1706、1621、1158、1050

- 5. UV (CHCl₃) max:(圖 40)
 - 210, 279, 407, 504, 532, 610, 665
- 6. ¹H-NMR (CDCl₃, 200 MHz):(圖 41)
 - -1.84 (*s*, -NH) $\$ 0.31 (*s*, -NH) 1.60~1.72 (*m*, 6H, H-8²,18¹) 2.31 (m, 2H, H-17¹a, H-17²a) 2.58 (m, H, H-17²b) 2.8 (m, H, H-17¹b) 3.21 (*s*, 3H, H-7¹) 3.42 (*s*, 3H, H-2¹) 3.64 (*m*, 2H, H-8¹) 3.67 (*s*, 6H, H-13⁴, 17⁴) 3.74 (*s*, 3H, H-12¹) 4.17 (*m*, H, H-17) 4.51 (m, H, H-18) 5.51 (*s*, H, C-13²-O<u>H</u>) 6.18 (dd, 2H, J = 11.5, 1.1 Hz, H-3²b) 6.28 (d, 2H, J = 17.8 Hz, H-3²a) 7.98 (*dd*, 2H, J = 17.8, 11.5 Hz, H-3¹) 8.65 (*s*, H, H-20) 9.41 (*s*, H, H-5) 9.57 (*s*, H, H-10)
- 7. ¹³C-NMR (CDCl₃,50 MHz):(圖 43)
 - 11.0 (C-7¹), 11.9 (C-2¹), 12.1 (C-12¹), 17.2 (C-8²), 19.2 (C-8¹), 22.4 (C-18¹), 29.5, 30.9 (C-17¹), 31.2 (C-17²), 50.1 (C-18), 51.6 (C-17,17⁴), 53.2 (C-13⁴), 88.8 (C-13²), 93.4 (C-20), 97.7 (C-5), 104.0 (C-10), 107.4 (C-15), 122.6 (C-3²), 126.7 (C-13), 128.8 (C-3¹), 129.2 (C-12), 131.5 (C-2), 136.0 (C-4, 7), 136.3 (C-3), 137.6 (C-11), 141.8 (C-1), 144.9 (C-8), 149.6 (C-14), 150.8 (C-9), 155.1 (C-6), 162.2 (C-16), 172.2 (C-19), 172.6 (C-17³), 173.8 (C-13²), 191.8 (C-13¹)

【九】化合物 : 7,11,15-trimethyl-3-methylene-1,2-hexadecanediol

1. 透明油狀物

- 2. TLC : $R_f = 0.61$ (chloroform : ethyl acetate = 1 : 1)
- 3. EIMS m/z (%): (圖 47)
 312 (M⁺, 1.0), 281 (4.2), 263 (3.7), 256 (2.4), 199 (4.4), 137 (14.7), 123 (24.3), 111 (39.4), 97 (50.0), 83 (65.9), 71 (84.7), 57 (100)
 4. IR (KBr) cm⁻¹ (圖 48)

3262、2936、2859、1459、1373、1072、1026、899

- 5. ¹H-NMR (CDCl₃, 200 MHz): (圖 49)
 0.83~0.88 (m)、 1.03~1.59 (m)、 1.96 (m)、 2.33 (br, H, -OH)、 3.53 (dd, H, J = 7.2, 11.2 Hz)、 3.71 (dd, H, J = 3.2, 11.2 Hz)、 4.20 (dd, H, J = 3.2, 7.2 Hz)、 4.97 (s, H)、 5.13 (s, H)
- 6. ¹³C-NMR (CDCl₃, 50 MHz): (圖 51)
 19.5 (C-19,18)、22.4 (C-16)、22.5 (C-17)、24.2 (C-9)、24.6 (C-13)、25.3 (C-5)、27.7 (C-15)、37.2 (C-12)、32.5 (C-11)、32.6 (C-7)、32.8 (C-4)、36.6 (C-6)、37.1 (C-10)、37.2 (C-8)、39.1 (C-14)、65.4 (C-1)、74.8 (C-2)、110.3 (C-3¹)、148.5 (C-3)

【十】化合物 : 1,2-dihydroxypropyl hexadecanoate

- 1. 白色針狀結晶 (*n*-hexane/chloroform)
- 2. TLC : $R_f = 0.43$ (chloroform : ethyl acetat = 1 : 1)
- 3. EIMS *m/z* (%):(圖 56)

331 (M+H⁺, 2.0), 299 (9.9), 270 (5.3), 257 (10.6), 239 (27.6), 134 (38.1), 112 (32.5), 98 (80.2), 74 (50.7), 57 (100)

4. IR (KBr) cm⁻¹ (圖 55)

3160, 2917, 2851, 1732, 1470, 1181, 1046

- 5. ¹H-NMR (CDCl₃, 200 MHz): (圖 57)
 0.88 (*t*, *J* = 6.8 Hz, 3H)、 1.26 (12 × CH₂)、 1.63 (*m*, 2H)、 2.07 (*t*, *br*, C3-OH)、 2.36 (*t*, *J* = 7.4 Hz, 2H)、 2.51 (*d*, *br*, C2-OH)、 3.63 (*m*, 2H, H-3)、 3.94 (*m*, H, H-2)、 4.19 (*m*, 2H, H-1)
- 6. ¹³C-NMR (CDCl₃, 50 MHz):(圖 59)

13.9 (CH₂<u>C</u>H₃), 22.4~33.9 (14 × CH₂), 63.1 (C-3), 64.9 (C-1), 70.0 (C-2), 174.1 (C = O)

7.COSY:(圖 58)

0.88 (t, J = 6.8 Hz, 3H)	1.26 (12×CH ₂)
1.63 (<i>m</i> , 2H)	2.36 (<i>t</i> , <i>J</i> = 7.4 Hz, 2H)
3.63 (<i>m</i> , 2H, H-3)	3.94 (<i>m</i> , H, H-2)
3.94 (<i>m</i> , H, H-2)	4.19 (<i>m</i> , 2H, H-1)

8.HMQC:(圖 60)

0.88 (t, J = 6.8 Hz, 3H)	13.9 (CH ₂ <u>C</u> H ₃)
1.63 (<i>m</i> , 2H)	24.7 (CH ₂)
2.36 (<i>t</i> , <i>J</i> = 7.4 Hz, 2H)	33.9 (CH ₂)
3.63 (<i>m</i> , 2H, H-3)	63.1 (CH ₂ , C-3)
3.94 (<i>m</i> , H, H-2)	70.0 (CH, C-2)
4.19 (<i>m</i> , 2H, H-1)	64.9 (CH ₂ , C-1)

肆、參考文獻

- 1. Huang, T. C. Flore of Taiwan, 2nd ed.. Dept. Botany, National Taiwan Univ, Taipei **1998**, *volume 4*, 984-985.
- 2. 李勉民,常見藥草圖說,讀者文摘遠東有限公司 1994, 337 頁。
- 3. 劉棠瑞,植物分類學卷肆裸子植物與被子植物篇,國立編譯館 1991,300-316頁。
- 4. 魏德文,中國高等植物科屬檢索表,南天書局有限公司 1991, 429-444 頁。
- 5. 周榮漢,藥用植物化學分類學,上海科學技術出版社 1988, 324-329頁。
- 6. 鄭武燦, 台灣植物圖鑑 下冊, 茂昌圖書有限公司 2000, 1236 頁。
- 7. 邱年永;張光雄,原色臺灣藥用植物圖鑑 第四冊,南天書局
 1986,244頁。
- 8. 應紹舜,台灣草本植物彩色圖鑑 第一卷 1980, 179-180 頁。
- 9. Jong, T. T.; Ju-Yueh, C. H. An optically active chromanone from *Gynura formosana*. *Phytochemistry* **1997**, *44*, 553-554.
- 10. 洪儷玲,白鳳菜之成分及其抗血小板凝集、抗發炎活性研究,私 立中國醫藥學院碩士論文 1998。
- 11. 袁珊琴; 顧國明; 魏同泰, 菊葉三七生物鹼成分的研究, Yaoxue Xuebao **1990**, 25, 191-197.
- 12. 劉玉芬;孫鳳英;張爾志,菊三七的化學成分, Zhongcaoyao 1988, 19, 56-58.
- Liang, X. T.; Roeder, E. Senecionine from *Gynura segetum*. *Planta Med*. **1984**, *50*, 362.

- 14. Takahira, M.; Kondo, Y.; Kusano G.; Nozoe S. Four new 3
 -hydroxyspirost-5-ene derivatives from *Gynura japonica* Makino. *Tetrahedron Lett.* 1997, 41, 3647-3650.
- 15. Wiedenfeld, H. Two pyrrolizidine alkaloids from *Gynura scandens*. *Phytochemistry* **1982**, *21*, 2767-2768.
- 16. Roeder, E.; Eckert, A.; Wiedenfeld, H. Pyrrolizidine alkaloids from *Gynura divaricata. Planta Med.* **1996**, *62*, 386.
- 17. Bohlmann, F.; Zdero, C. Gynuron, A new terpene coumarin derivative from *Gynura crepioides*. *Phytochemistry* **1977**, *16*, 494-495.
- 18. Asada, Y.; Shiraishi, M.; Osawa, Y.; Furuya, T. Pyrrolizidine alkaloids from *Crassocephalum crepidioids*. *Planta Med.* **1985**, *6*, 539-540.
- Yoshitama, K.; Kaneshige, M.; Ishikura, N.;Araki, F.; Yahara, S.; Abe, K. A stable reddish purple anthocyanin in the leaf of *Gynura aurantiaca* cv. 'Purple Passion'. *J. Plant. Res.* **1994**, *107*, 209-214.
- Sadikun, A.; Aminah, I.; Ismail, N.; Ibrahim, P. Sterols and sterol glycosides from the leaves of *Gynura procumbens*. *Nat. Prod. Sci.* **1996**, *2*, 19-23.
- 21. Matheson, J. R.; Robins, D. J. Pyrrolizidine alkaloids from *Gynura* sarmentosa. Fitoterapia **1992**, 63, 557.
- Lin, W. Y.; Teng, C. M.; Tsai, I. L.; Chen, I. S. Anti-platelet aggregation constituents from *Gynura elliptica*. *Phytochemistry* 2000, 53, 833-836.
- 23. Ishizaka, T.; Ishizaka, K.; Tomioka, H. Release of histamine and slow reacting substance of anaphylaxis (SRS-A) by IgE-anti-IgE reactions on monkey mast cells. *J. Immunol.* **1972**, *108*, 53-520.

- 24. Austen, K. F. Biologic implications of the structural and functional characteristics of the chemical mediators of immediate type hypersensitivity. *Hatrvey Lect.* **1979**, *73*, 93-161.
- Weissmann, G.; Smolen, J. E.; Korchak H. M. Release of inflammatory mediators from stimulated neutrophils. *N. Engl. J. Med.* 1980, *303*, 27-34.
- 26. Adams, G. K.; Lichtenstein L. M. In vitro studies of antigen-induced ronchospasm : effect of antihistamine and SRS-A antagonist on response to sensititized guinea pig and human airways to antigen. *J. Immunol.* **1979**, *122*, 555-562.
- Schwartz, L. B.; Austen, K. F. Structural and function of the chemical mediators of mast cells. *Prog. Allergy.* 1984, 34, 271-321.
- Berridge, M. V.; Tan, A. S. Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide MTT): subcellular localization, substrate dependence, and involvmento mitochondrial electron transport in MTT reduction. *Aech. Biochem. Biophs* 1993, 303, 474-482.
- Ishiyama, M.; Tominaga, H.; Shiga, M.; Sasamoto, K.; Ohkura, Y.; Ueno, K.; Watanabe, M. Novel cell proliferation and cytotoxicity assays using a tetrazolium salt that produces a soluble formazam dye. *In Vitro Toxicol.* **1995**, *8*, 187-190.
- Kameoka, H.; Cheng, Y. J.; Miyazawa, M. Constituents of the essential oil from of *Canarium album* Raeusch. *Yakugaku Zasshi* 1976, 96, 293-298.
- Luo, Y.; Xiong, W. Chemical constituents of anticancer plant. *Nyssa sinesis* Oliv. *China J. of Chin. Mater. Med.* **1991**, *16*, 424-425.

- Sasaki, S. I. Handbook of Proton-NMR Spectra and Data. Academic Press 1985, *volume 5*, 298-299.
- 33. Yang, S. C.; Fang, J. M.; Cheng, Y. S. Chemical constituents from the root and aerial parts of Rosa taiwanensis. *J. Chin. Chem. Soc.* 1995, 42, 573-577.
- Chang, M. H.; Wang, G. J.; Kuo, Y. H.; Lee, C. K. The low polar constituents from *Bidens pilosa* L. *var. minor*. *J. Chin. Chem. Soc.* 2000, 47, 1131-1136.
- Hirota, H.; Moriyama, Y.; Tauyuki, T. The high resolution mass spectra of shionane and friedelane derivatives. *Bull. Chem. Soc. Japan* 1975, 48, 1884-1888.
- 36. Shannon, J. S.; Macdonald, C. G. Studies in mass spectrometry triterpenoids. *Tetrahedron Letters* **1963**, *4*, 173-179.
- 37. Betancor, C.; Freire, R. Three triterpenes and other terpenoids from *Catha cassinoides. Phytochemistry* **1980**, *19*, 1989-1993.
- Lai, J. S.; Liou, H. S.; Huang, K. F. Constituents of the roots of Melanolepis multiglandulosa. Chin. Pharm. J. 1996, 48, 177-183.
- 39. Klass, J.; Tinto, W.F. Friedelane triterpenoids from *Peritassa compta* : complete ¹H and ¹³C assignments by ²D NMR spectroscopy. *J. Nat. Prod.* **1992**, *55*, 1626-1630.
- 40. Akihisa, T.; Yamamoto, K.; Tamura, T.; Kimura, Y.; Iida, T.; Nambara, T. Triterpenoid ketones from *Lingnania chungii* Mcclure : arborinone, friedelin and glutinone. *Chem. Pharm. Bull.* 1992, 40, 789-791.
- 41. Huang, K. F.; Yen, Y. F. Constituents of *Erythrina variegata*. *Chin. Pharm. J.* **1997**, *49*, 21-29.

- 42. Gan, K. H. Studies on the cytotoxic and antihepatotoxic agents from Formosan Natural resources. Ph. D. Theses; Graduate Institute of Pharmaceutical Sciences, Kaohsiung Medical College 1995.
- 43. Huang, K. F.; Yen, Y. F. Constituents of roots of *Elaeagnus glabre*. *Chin. Pharm. J.* **1995**, *47*, 493-500.
- 44. Risch, N.; Brockmann, H. Totalzuordnung des ¹³C-NMR- spektrums. *Tetrahedron Letters* **1983**, *24*, 173-176.
- 45. Nakatani, Y.; Ourisson, G.; Beck, J. P. Chemistry and Biochemistry of Chinese Drug VII. Cytostatic Pheophytins from Silkworm Excreta, and Derived Photocytotoxic Pheophorbides. *Chem. Pharm. Bull.* **1981**, 29, 2261-2269.
- 46. Buchanane, M. S.; Hashimoto, T.; Asakawa Y. Phytyl esters and pheophytins from the hornwort *Megaceros flagellaris*. *Phytochemistry* **1996**, *41*, 1373-1376.
- 47. Schwikkard, S. L.; Mulholland, D. A.; Hutchings, A. Phaeophytins from *Tapura fischer*. *Phytochemistry* **1998**, *49*, 2391-2394.
- 48. Sakata, R.; Yamamoto, K.; Ishikawa, H.; Yagi, A.; Etoh, H.; Ina, K. Chlorophyllone-a, a new pheophorbide a related compound isolated from *Ruditapes philippinarum* as an antioxidative compound. *Tetrahedron Letters* **1990**, *31*, 1165-1168.
- 49. Boxer, S. G.; Closs, G. L.; Katz, J. J. The Effect of Magnesium Coordination on the 13C and 15N Magnetic Resonance Spectra of Chlorophyll a. The Relative Energies of Nitrogen n_{p*} States as Deduced from a Complete Assignment og Chemical Shifts. *Journal of the American Chemical Society* 1974, 92, 7058-7066.

- 50. Matsuo, A.; Ono, K.; Hamasaki, K.; Nozaki, H. Pheaophytins from a cell suspension culture of the liverwort *Plagiochila ovalifolia*. *Phytochemistry* **1996**, *42*, 427-430.
- Buchanan, M. S.; Hashimoto, T.; Asakawa, Y. Phytyl Ester and Phaeophytins from the Hornwort *Megaceros flagellaris*. *Phytochemistry* **1996**, *41*, 1373-1376.
- 52. Brown, G. D. Phytene-1,2-diol from *Artemisia annua*. *Phytochemistry* **1994**, *36*, 1553-1554.
- 53. Sasaki, S. I. Handbook of Proton-NMR Spectra and Data. Academic Press **1985**, *volume 5*, 271.
- 54. Toru, T.; Yasuhiro, A. Separation of monoacylglycerols by high-performance liguid chromatography on nitrile-bonded phase. *J. Am. Oil Chem. Soc.* 1994, *71*, 459-460.
- 55. Hiroshi, K.; Seiji, T.; Yasutoshi, Y.; Syuji, M.; Yoshie, O. Constituents of *Corchorus olitorius* L.. *Nat. Med.* **1994**, *48*, 213-214.
- 56. Wang, J. P.; Hsu, M. F.; Ouyang, C. H.; Teng, C. M. Edematous response caused by [Thi^{5,8}, D-phe⁷]bradykinin, a β₂ receptor antagonist, is due to mast cell degranulation. *Eur. J. Pharmacol* **1989**, *161*, 143-149.
- Håkanson, R.; Rönnberg, A. L. Improved fluorometric assay of histamine. *Analyt. Biochem.* 1974, 60, 560-567.
- Wang, J. P. ; Raung, S. L. ; Kuo, Y. H. ; Teng, C. M. Daphnoretin-induced respiratory burst in rat neutrophils, probably mainly through protein kinase C activation. *Eur. J. Pharmacol* 1995, 288, 341-348.

- 59. Barrett, A. J. Lysosomes. *In: Dingle JT (Ed.), A Laboratory Handbook, Elsevier, Amsterdam* **1972**, 118-120.
- 60. Absolom, D. R. Basic methods for the study of phagocytosis. *Methods Enzymol* **1986**, *132*, 92-179.