Nakaharoside B (36) 化學結構的決定

本化合物為黃色固體,對氯化鐵試劑反應為正反應,顯示具有 phenolic hydroxyl group 的存在, negative FABMS(Chart 99)顯示[M-H]⁻ 在 m/z 473,而 HRFABMS 顯示[M+H]⁺為 475.1236 (for C₂₃H₂₃O₁₁ required 475.1241).因此推測本化合物之分子式為 C₂₃H₂₂O₁₁。

IR 光譜(Chart 100)在 3381 cm⁻¹為 broad phenolic hydroxyls 的吸收, 1719為 ester 的 carbonyl 的吸收, 1655為 conjugated carbonyl (C=O) 的吸收, 1624、1607 和 1576為 benzene ring 的吸收。UV-visible 光譜 (Chart 101)在 272 和 335 nm (log : 4.39 和 4.19)有吸收峰, 位於黃酮 類之 band I 304 至 350 nm, band II 220 至 280 nm 的典型吸收範圍內 ⁽¹⁷⁰⁾, 故推定化合物為黃酮類。進一步的化合物加入 shift reagent, 其 變化如下:

- (1)加入甲氧鈉(NaOMe): band I 由 335 (4.19)向紅位移移 60 nm 至 395 (4.30), 且強度不降, 表示化合物 B 環在第 4′位上有羥基(4′-OH)。
- (2)加入醋酸鈉(NaOAc):醋酸鈉為弱鹼性,只能與黃酮類母核上酸性 較強的羥基解離,而引起紅位移。此化合物加入醋酸鈉後,band I 由 335 (4.19) nm 向紅位移移 53 nm 至 388 (4.06) nm,且強度不降, 表示化合物 B 環在第 4′位上有羥基(4′-OH), band II 由 272 (4.39) 向紅位移移 7 nm 至 279 (4.41) nm,表示化合物 A 環上具有 7 號位 置的羥基(7-OH)。
- (3)加入醋酸鈉/硼酸(NaOAc/H3BO3): UV-visible 圖譜並無明顯的改 變,表示化合物不具鄰二酚羥基結構。
- (4)加入三氯化鋁(AlCl3):三氯化鋁可與黃酮的 5-羥基-4-酮基、3-羥 基-4-酮基或鄰二酚羥基結構系統螯合,並引起相應的吸收帶向紅 位移移。此化合物在加入三氯化鋁後,band I由 335 (4.19)向紅位 移移 51 nm 至 386 (4.05) nm,而後在加鹽酸(HCl)時,UV-visible 圖譜並無明顯的改變,表示化合物不具有鄰二酚羥基,此化合物 具有 5-羥基-4-酮基的結構。

綜合上述 UV-visible 圖譜的資料(Table 25), 推定此化合物為 5,7,4⁻-三羥基黃酮類(5,7,4⁻-trihydroxyflavones)。

Reagents	UV spectral data (ë _{max} , nm)
MeOH	272 (4.39), 335 (4.19)
MeOH+NaOMe	277 (4.46), 328 (4.19), 395 (4.30)
MeOH+AlCl ₃	278 (4.33), 305 (4.22), 346 (4.19), 386 (4.05)
MeOH+AlCl ₃ /HCl	279 (4.31), 303 (4.22), 346 (4.17), 384 (3.99)
MeOH+NaOAc	279 (4.41), 307 (4.17), 388 (4.17)
MeOH+NaOAc/H ₃ BO ₃	272 (4.37), 323 (4.15), 343 (4.30)

 Table 25. UV-visible absorption of nakaharoside B (36) shifted by shift reagents

NMR 光譜顯示此化合物為類似 apigenin 6-*C*-β-glucopyranoside (isovitexin) ⁽¹⁷⁴⁾。氫譜(Chart 102)顯示在 6.91 和 7.82 (each 2H, *d*, *J*=8.7 Hz)為 isovitexin C 環之 A_2X_2 type 的 4 個質子吸收, 定為 H-3'、 H-5'和 H-2'、H-6', COSY 實驗(Chart 103)也證明如此; 2 個單峰吸收

6.49 和 6.58, 為 A 環之 H-8 和 H-3 的吸收訊號; 在 3.4-4.9 為糖 的吸收訊號,其中 4.68 (與溶媒的水形成 *br s*)為 H-1"的吸收訊號, 是β-linked 糖的質子⁽¹⁷³⁾, 4.21 (*dd*, *J*=5.9, 12.1 Hz)和 4.43 (*d*, *J*=11.9 Hz)為 H-6"的 2 個質子吸收訊號,此外在 2.04 (*s*)為 1 個 acetyl group 的吸收訊號,這是 isovitexin 所沒有的。

碳譜與 DEPT 實驗(Chart 105)顯示有 1 個 acetyl (20.7), 1 個 methylene (65.3), 11 個 methines (71.8, 72.4, 75.3, 79.7, 79.9, 95.1, 103.9, 117.1, 117.1, 129.4 和 129.4)和 10 個四級碳(105.2, 108.9, 123.1, 158.8, 162.2, 162.8, 165.0, 166.2, 173.0 和 184.0), 其中 184.0 為 flavone 之 carbonyl (C-4)的吸收訊號, 173.0 為 acetyl 之 carbonyl (C-7")的吸收訊號。HMQC 光譜(Chart 106)決定了 1 個 methylene (65.3)為 C-6", 11 個 methines (71.8, 72.4, 75.3, 79.7, 79.9, 95.1, 103.9, 117.1, 117.1, 129.4 和 129.4)為 C-4", C-2", C-1", C-3", C-5", C-8, C-3, C-5', C-2'和 C-6', 在 HMBC 光譜(Chart 107)中糖上面 H-6"質子與 acetyl (H-8")的質子和 acetyl的碳(C-7")有長 距離的關係,而決定 173.0 為 C-7",其它 9 個四級碳(105.2, 108.9, 123.1, 158.8, 162.2, 162.8, 165.0, 166.2 和 184.0)的位置,也由 HMBC (Chart 107)來決定,分別為為 C-10, C-6, C-1', C-9, C-5, C-4', C-7, C-2 和 C-4。

综合上述資料,整理如 Table 26,確定此化合物結構為 apigenin 6-*C*-(6"-*O*-acetyl)-β-glucopyranoside,為一新的化合物,命名為 nakaharoside B。結構如下:

Table 26. NMR spectral data of nakaharoside B (36)

		$^{1}\mathrm{H}$	¹³ C	COSY	NOESY	HMBC
Aglycone						
moiety						
2	С		166.2			
3	CH	6.58(s)	103.9		H-6'	$C-2(J_2), C-4(J_2), C-10(J_3), C-1'(J_3)$
4	С		184.0			
5	С		162.2			
6	С		108.9			
7	С		165.0			
8	СН	6.49(s)	95.1			$C-4(J_4), C-6(J_3), C-7(J_2), C-9(J_2), C-10(J_3)$
9	С		158.8			
10	С		105.2			
1'	С		123.1			
2'	CH	7.82(d, 8.7)	129.4	H-3'	H-3'	$C-2(J_3), C-3'(J_2), C-4'(J_3), C-6'(J_3)$
3'	CH	6.91(d, 8.7)	117.1	H-2'	H-2'	C-1' (J_3) , C-2' (J_2) ,C-4' (J_2) , C-5' (J_3)
4'	С		162.8			
5'	CH	6.91(d, 8.7)	117.1	H-6'	H-6'	C-1' (J_3) , C-3' (J_3) , C-4' (J_2) , C-6' (J_2) ,
6'	CH	7.82(d, 8.7)	129.4	H-5'	H-3, H-5'	$C-2(J_3), C-2'(J_3), C-4'(J_3), C-5'(J_2)$
Sugar moiety						
1"	CH	4.87(br s)	75.3	H-2"		C-2" (J_2) , C-3" (J_3) , C-5" (J_3) , C-5 (J_3) ,
						$C-6(J_2), C-7(J_3)$
2"	CH	4.21(m)	72.4	H-1", H-3"	H-4"	C-3" (J_2) , C-4" (J_3)
3"	CH	3.59(m)	79.7	H-2", H-4"	H-6"	C-2" (J_2) , C-4" (J_2) , C-5" (J_3)
4"	СН	3.46(m)	71.8	H-3", H-5"	H-2"	C-2" (J_2) ,C-3" (J_2) , C-5" (J_2) , C-6" (J_3)
5"	СН	3.46(m)	79.9	H-4", H-6"		C-3" (J_3) , C-4" (J_2) , C-6" (J_2)
6"	CH_2	4.21(<i>dd</i> , 5.8,	65.3	H-5"	H-3"	C-4" (J_3) , C-5" (J_2) , C-7" (J_3)
		12.1)				
		4.43(d, 11.9)				
7"	CO		173.0			
8"	CO <u>CH</u> ₃	2.04(s)	20.7			C-7" (J ₂)

Chart 100 IR spectrum of nakaharoside B (36)

Chart 101 UV-visible spectra of nakaharoside B (36) determined with shift reagents

Chart 102 ¹H-NMR (CD₃OD, 500 MHz) spectrum of nakaharoside B (36)

Chart 103 COSY spectrum of nakaharoside B (36)

Chart 105 ¹³C-NMR (CD₃OD, 125 MHz) spectrum of nakaharoside B (36)

Chart 106 HMQC spectrum of nakaharoside B (36)

Chart 107 HMBC spectrum of nakaharoside B (36)

Vitexin (37) 化學結構的決定

本化合物為黃色固體,對氯化鐵試劑反應為正反應,顯示具有 phenolic hydroxyl group 的存在,經由 FABMS(Chart 108)顯示[M+H]⁺ 在 m/z 433。

IR 光譜(Chart 109)在 3237 cm⁻¹為 broad phenolic hydroxyls 的吸收, 1657 為 conjugated carbonyl (C=O)的吸收, 1611、1547 和 1512 為 benzene ring 的吸收。UV-visible 光譜(Chart 110)在 271、305sh 和 333 nm (log : 4.07、3.95 和 4.03)有吸收峰, 位於黃酮類之 band I 304 至 350 nm, band II 220 至 280 nm 的吸收範圍內⁽¹⁷⁰⁾, 故推定化合物為 黃酮類。進一步的化合物加入 shift reagent, 其變化如下:

- (1)加入甲氧鈉(NaOMe): band I 由 333 (4.03)向紅位移移 57 nm 至 390 (4.15), 且強度不降, 表示化合物 B 環在第 4'位上有羥基(4'-OH)。
- (2)加入醋酸鈉(NaOAc):醋酸鈉為弱鹼性,只能與黃酮類母核上酸性 較強的羥基解離,而引起紅位移。此化合物加入醋酸鈉後,band I 由 333 (4.03) nm 向紅位移移 55 nm 至 385 (4.06) nm,且強度不降, 表示化合物 B 環在第 4′位上有羥基(4′-OH), band II 由 271 (4.07) 向紅位移移 9 nm 至 280 (4.18) nm,表示化合物 A 環上具有 7 號位 置的羥基(7-OH)。
- (3)加入醋酸鈉/硼酸(NaOAc/H₃BO₃): UV-visible 圖譜並無明顯的改 變, 表示化合物不具鄰二酚羥基結構。
- (4)加入三氯化鋁(AICl₃):三氯化鋁可與黃酮的 5-羥基-4-酮基、3-羥 基-4-酮基或鄰二酚羥基結構系統螯合,並引起相應的吸收帶向紅 位移移。此化合物在加入三氯化鋁後,band I由 333 (4.03)向紅位 移移 53 nm 至 386 (3.95) nm,而後在加鹽酸(HCl)時,UV-visible 圖譜並無明顯的改變,表示化合物不具有鄰二酚羥基,此化合物 具有 5-羥基-4-酮基的結構。

綜合上述 UV-visible 圖譜的資料(Table 27), 推定此化合物為 5,7,4⁻-三羥基黃酮類(5,7,4⁻-trihydroxyflavones)。

reagents	UV spectral data (ë _{max} , nm)
MeOH	271 (4.07), 305sh (3.95), 333 (4.03)
MeOH+NaOMe	279 (4.15), 327 (3.91), 390 (4.15)
MeOH+AlCl ₃	277 (4.01), 305 (3.95), 346 (4.06), 386 (3.95)
MeOH+AlCl ₃ /HCl	278 (3.99), 304 (3.96), 346 (4.05), 382 (3.87)
MeOH+NaOAc	280 (4.18), 300 (3.90), 385 (4.06)
MeOH+NaOAc/H ₃ BO ₃	272 (4.06), 329sh (3.97), 346 (3.98)

 Table 27. UV-visible absorption of vitexin (37) shifted by shift reagents

氫譜(Chart 111)顯示具糖和 flavone 的特徵訊號 在 3.2-4.7 為糖 的吸收訊號,其中 4.68 (*d*, *J*=9.4 Hz)為 H-1"的吸收訊號,是β-linked 糖的質子⁽¹⁷³⁾。而芳香環區域在 6.89 (*d*, *J*=8.2 Hz)和 7.98 (*d*, *J*=8.4 Hz) 為 flavone C 環之 A₂X₂ type 的 4 個質子吸收,定為 H-3'、H-5'和 H-2'、 H-6', COSY 實驗(Chart 112)也證明如此,另外有 2 個單峰吸收 6.25 和 6.73,其中 6.73 (*s*)為 H-3 的吸收訊號,因為 flavone B環之 H-3 的吸收受 conjugated carbonyl group 的影響,所以會比 A 環上質子的 吸收來的較低磁場,而 6.25 (*s*)定為 H-6,此外在低磁場 13.11 (*s*) 為 phenolic hydroxyl proton 的吸收。

碳譜(Chart 113)與 DEPT 實驗(Chart 114)顯示有 1 個 methylene (61.7), 11 個 methines (70.9, 71.3, 73.8, 79.1, 82.1, 98.7, 102.9, 116.4、116.4、129.4和129.4)和9 個四級碳(104.4、105.0、122.0、 156.5、160.7、161.6、163.3、164.4和182.5),其中182.5為flavone 之 carbonyl (C-4)的吸收訊號。HMQC 光譜(Chart 115)決定了 1 個 methylene (61.7)為 C-1",11 個 methines (70.9, 71.3, 73.8, 79.1, 82.1、98.7、102.9、116.4、116.4、129.4和129.4)為 C-4"、C-2"、C-1"、 C-3"、C-5"、C-6、C-3、C-3'、C-5'、C-2'和C-6'。而HMBC 光譜(Chart 116)決定了 9 個四級碳(104.4、105.0、122.0、156.5、160.7、161.6、 163.3、164.4和182.5)的位置,為 C-10、C-8、C-1'、C-9、C-5、C-4'、 C-7、C-2和C-4。

綜合上述資料,整理如 Table 28,並與文獻^(171,172)比對,確定此 化合物結構為 apigenin $\&C-\beta$ -glucopyranoside,分子式為 $C_{21}H_{20}O_{10}$, 又名為 vitexin。結構如下:

Table	28.	NMR	spectral	data	of y	vitexin	(37)
Ian	40.	TATAT	socuar	uaia	U 1		1.21

		$^{1}\mathrm{H}$	¹³ C	COSY	HMBC
Aglycone moiety					
2	С		164.4		
3	CH	6.73(s)	102.9		$C-2(J_2), C-4(J_2), C-10(J_3), C-1'(J_3)$
4	С		182.5		
5	С		160.7		
6	CH	6.25(s)	98.7		$C-5(J_2), C-7(J_2), C-8(J_3), C-10(J_3)$
7	С		163.3		
8	С		105.0		
9	С		156.5		
10	С		104.4		
5-OH	OH	13.11(s)			$C-5(J_2), C-6(J_3), C-10(J_3)$
1'	С		122.0		
2'	CH	7.98(d, 8.4)	129.4	H-3'	$C-2(J_3), C-4'(J_3), C-6'(J_3)$
3'	CH	6.89(<i>d</i> , 8.2)	116.4	H-2'	C-1' (<i>J</i> ₃), C-4' (<i>J</i> ₂), C-5' (<i>J</i> ₃)
4'	С		161.6		
5'	CH	6.89(<i>d</i> , 8.2)	116.4	H-6'	C-1' (<i>J</i> ₃), C-3' (<i>J</i> ₃), C-4' (<i>J</i> ₂)
6'	CH	7.98(d, 8.4)	129.4	H-5'	C-2(<i>J</i> ₃), C-2' (<i>J</i> ₃), C-4' (<i>J</i> ₃)
Sugar moiety					
1"	CH	4.68(d, 9.4)	73.8		$C-8(J_2), C-9(J_3)$
2"	CH	3.62(<i>m</i>)*	71.3		
3"	CH	3.62(<i>m</i>)*	79.1		
4"	CH	3.62(<i>m</i>)*	70.9		
5"	CH	3.62(<i>m</i>)*	82.1		
6"	CH_2	3.62(<i>m</i>)*	61.7		
OH	OH	5.00(s)			

* overlapped with other proton signals of suger moiety.

Chart 109 IR spectrum of vitexin (37)

Chart 110 UV-visible spectra of vitexin (37) determined with shift reagents

Chart 111 ¹H-NMR (DMSO- d_6 , 200 MHz) spectrum of vitexin (**37**)

Chart 112 COSY spectrum of vitexin (37)

Chart 114 DEPT135 spectrum of vitexin (37)

Chart 116 HMBC spectrum of vitexin (37)

七、Benzene 和 Phenol 類化合物

苯環芳香族的醇、醛、酮、酸、醚和酯類的衍生物,普遍存在於 天然界中,而其酯類衍生物通常以混合一系列烷基的形式出現,在石 斛中分離到 6 個此類化合物, alkyl 4´-hydroxy-cis-cinnamates (7), alkyl 4´-hydroxy-trans-cinnamates (8)、alkyl trans-ferulates (5)、p-anisaldehyde (4), moniliformol (hydroxyethyl 3-methoxy-6-hydroxybenzoate) (19) 和 vanillin (4-hydroxy-3-methoxybenzaldehyde) (38);在連株石斛分離 得到 4 個此類化合物 alkyl 4´-hydroxy-cis-cinnamates (7)、alkyl 4´hydroxy-trans-cinnamates (8)、alkyl trans-ferulates (5)和 protocatechuic acid (3,4-dihydroxybenzoic acid) (33);而在金線連中分離得到 3 個此 類化合物 2-methoxy-4-vinylphenol (38)、protocatechuic acid (33)和 4-vinylphenol (39)。

Alkyl 4'-hydroxy-cis-cinnamates (7) 化學結構的決定

本化合物為白色固體,經由 EIMS 顯示具有 *p*-coumaric acid (m/z 164)和 *p*-coumaroyl (m/z 147)的離子裂片。

IR 光譜(Chart 117)顯示在 3368 cm⁻¹為 phenolic hydroxy proton (OH)的吸收, 2917 和 2851 cm⁻¹為飽和的碳氫(C-H)的吸收, 1713 cm⁻¹ 為 ester carbonyl C=O 的吸收訊號, 1628 cm⁻¹ 為 C=C 的吸收, 1605、 1515 和 1467 為 benzene ring 的吸收。UV 光譜(Chart 118), 在 298 nm 為共軛系統的吸收。

氫譜(Chart 119)顯示有具有 aliphatic alcohol 的訊號特徵: 0.86 (t, J=6.5 Hz)為末端之甲基吸收訊號, 1.23 (br s)為(CH₂)_n 之質子的 吸收訊號, 1.67 (m)為 OCH₂CH₂ 兩個質子的吸收訊號, 4.11 (t, J=6.7 Hz)為 OCH₂上兩個質子的吸收訊號; p-coumaroyl 的訊號特徵: 2 個 olefinic protons 5.81 和 6.83, 耦合常數 12.7 Hz, 為 *cis* double bond 的吸收訊號, 4 個為 A₂B₂ type 芳香環質子 6.77 (2H, d, J= 8.7 Hz, H-3'和 H-5')和 7.59 (d, J= 8.7 Hz, H-2'和 H-6'), 另外在 5.89 (br s) 為 hydroxyl 的吸收訊號。

碳譜(Chart 120)及 DEPT (Chart 121)顯示,有1個 methyl (14.1),6個 methines (115.0、115.0、117.1、132.3、132.3和143.6) 和3個四級碳(127.3、156.9和167.0),其中167.0為 ester carbonyl 之碳的吸收訊號。在由 COSY (Chart 122)和 HMQC 實驗(Chart 123), 得知碳氫的相關位置。 綜合上述資料,整理如 Table 29,與文獻^(175,176)比對,確認為 alkyl 4'-hydroxy-*cis*-cinnamates,此類化合物通常以混合物的形態被分離。 其結構如下:

Table 29 NMR	spectral data	of alkyl 4'-hyd	łroxy- <i>cis</i> -cinnama	tes (7)
I ADIC 47. INIVIN	SUCCUAL UALA	01 a K V 4 - 11 V C	11 UA V-C <i>I</i> S-CHIIIaiiia	

		$^{1}\mathrm{H}$	¹³ C	COSY
1'	С		127.3	
2'	СН	7.59(d, 8.7)	132.3	H-3'
3'	СН	6.77(d, 8.7)	115.0	H-2'
4'	С		156.9	
5'	СН	6.77(d, 8.7)	115.0	H-6'
6'	СН	7.59(d, 8.7)	132.3	H-5'
1	С		167.0	
2	СН	5.81(<i>d</i> , 12.7)	117.1	H-3
3	СН	6.83(d, 12.7)	143.6	H-2
OR	OCH ₂	4.11(<i>t</i> , 6.7)	64.6	
	OCH ₂ CH ₂	1.67(<i>m</i>)	28.6	
	$(CH_2)_n$	1.23(br s)	22.7-31.9	
	CH ₃	0.86(t, 6.5)	14.1	
4'-OH	OH	5.89(br s)		

Chart 117 IR spectrum of alkyl 4'-hydroxy-*cis*-cinnamates (7)

hydroxy-*cis*-cinnamates (7)

Chart 121 DEPT spectrum of alkyl 4'-hydroxy-*cis*-cinnamates (7)

Chart 122 COSY spectrum of alkyl 4'-hydroxy-*cis*-cinnamates (7)

Chart 123 HMQC spectrum of alkyl 4'-hydroxy-*cis*-cinnamates (7)

Alkyl 4'-hydroxy-trans-cinnamates (8) 化學結構的決定

本化合物為白色固體,經由 EIMS 顯示具有 *p*-coumaric acid (m/z 164)和 *p*-coumaroyl (m/z 147)的離子裂片。

IR 光譜(Chart 124)顯示在 3375 cm⁻¹為 phenolic hydroxy proton (OH)的吸收, 2912 和 2849 cm⁻¹為飽和的碳氫(C-H)的吸收, 1719 cm⁻¹ 為 ester carbonyl C=O 的吸收, 1630 cm⁻¹為 C=C 的吸收, 1607、1516 和 1467 為 benzene ring 的吸收。UV 光譜(Chart 125), 在 299 nm 為 共軛系統的吸收。

氫譜(Chart 126)顯示有具有 aliphatic alcohol 的訊號特徵: 0.83 (t, J=6.6 Hz)為末端之甲基吸收訊號, 1.23 (*br s*)為(CH₂)_n 之質子的 吸收訊號, 1.67 (*t*, *J*=6.3 Hz)為 OCH₂CH₂ 兩個質子的吸收訊號, 4.17 (*t*, *J*=6.8 Hz)為 OCH₂上兩個質子的吸收訊號; *p*-coumaroyl 的訊 號特徵: 2 個 olefinic protons 6.28 和 7.61, 耦合常數 15.9 Hz, 為 *trans* double bond 的吸收訊號, 4個為 A_2B_2 type芳香環質子 6.82 (2H, *d*, *J*= 8.4 Hz, H-3'和H-5')和 7.41 (*d*, *J*= 8.4 Hz, H-2'和H-6'), 另外在 5.80 (*br s*)為 hydroxyl 的吸收訊號。

碳譜(Chart 127)及 DEPT (Chart 128)顯示,有1個 methyl (14.1),6個 methines (115.6、115.9、115.9、129.9、129.9和144.4) 和3個四級碳(127.2、157.8和167.7),其中167.7為 ester carbonyl 之碳的吸收訊號。在由¹H-¹H (Chart 129)、¹³C-¹H COSY (Chart 130) 實驗,得知碳氫的相關位置。

綜合上述資料,整理如 Table 30,與文獻^(176,177)比對,確認為 alkyl 4'-hydroxy-*trans*-cinnamates,此類化合物通常以混合物的形態被分離。其結構如下:

	· · · · · · · · · · · · · · · · · · ·	J	J	(-)
		$^{1}\mathrm{H}$	¹³ C	COSY
1'	С		127.2	
2'	СН	7.41(d, 8.4)	129.9	H-3'
3'	СН	6.82(d, 8.4)	115.9	H-2'
4'	С		157.8	
5'	СН	6.82(d, 8.4)	115.9	H-6'
6'	СН	7.41(d, 8.4)	129.9	H-5'
1	С		167.7	
2	СН	6.28(<i>d</i> , 15.9)	115.6	H-3
3	СН	7.61(<i>d</i> , 15.9)	144.4	H-2
OR	OCH ₂	4.17(t, 6.8)	64.7	
	$OCH_2 \underline{CH}_2$	1.67(t, 6.3)	28.7	
	$(CH_2)_n$	1.23(br s)	22.7-31.9	
	CH ₃	0.83(t, 6.6)	14.1	
4'-OH	OH	5.80(br s)		

 Table 30. NMR spectral data of alkyl 4'-hydroxy-trans-cinnamates (8)

Chart 124 IR spectrum of alkyl 4'-hydroxy-*trans*-cinnamates (8)

Chart 125 UV spectrum of alkyl 4'-hydroxy-*trans*-cinnamates

Chart 126 ¹H-NMR (CDCl₃, 200 MHz) spectrum of alkyl 4'-hydroxy*trans*-cinnamates (**8**)

Chart 128 DEPT spectrum of alkyl 4'-hydroxy-*trans*-cinnamates (8)

Chart 129 ¹H-¹H COSY spectrum of alkyl 4'-hydroxy-*trans*-cinnamates (8)

Chart 130 ¹³C-¹H COSY spectrum of alkyl 4'-hydroxy-*trans*-cinnamates (8)

Alkyl trans-ferulates (5) 化學結構的決定

本化合物為白色固體,經由 EIMS 顯示具有 ferulic acid (*m/z* 194) 和 feruloyl (*m/z* 177)的離子裂片。

IR 光譜(Chart 131)顯示在 3454 cm⁻¹為 phenolic hydroxy proton (OH)的吸收, 2921,2852 cm⁻¹為飽和的碳氫(C-H)吸收, 1706 cm⁻¹為 ester carbonyl C=O 基的吸收, 1627 cm⁻¹為 C=C 的吸收, 1599, 1512 和 1467 為 benzene ring 的吸收, 1276 為醚(C-O-C)的吸收。UV 光譜(Chart 132), 在 243、298 和 320 nm 為共軛系統的吸收。

氫譜(Chart 133)顯示有具有 aliphatic alcohol 的訊號特徵: 0.83 (t, J=6.1 Hz)為末端之甲基吸收訊號, 1.23 (br s)為(CH₂)_n 之質子的 吸收訊號, 1.67 (t, J=6.6 Hz)為 OCH₂CH₂ 兩個質子的吸收訊號, 4.17 (t, J=6.6 Hz)為 OCH₂上兩個質子的吸收訊號; feruloyl 的訊號特 徵:1 個芳香環的甲氧基訊號 3.91, 2 個 olefinic protons 6.27 和 7.59, 耦合常數 J=15.9 Hz, 為反式雙鍵(trans double bond)的吸收訊 號, 3 個為 ABX type 芳香環質子 6.89 (d, J= 8.0 Hz, H-5'), 7.02 (d, J= 2.6 Hz, H-2')和 7.05 (dd, J= 8.0, 2.6 Hz, H-6'), 另外在 5.86 (br s) 為 hydroxyl 的吸收訊號。

碳譜(Chart 134)及 DEPT (Chart 135)顯示,有1個 methoxyl (55.9),1個 methyl (14.1),5個 methines (109.3、114.7、115.7、 123.0和144.6)和4個四級碳(127.1、146.8、147.9和167.4),其中 167.4為 ester carbonyl之碳的吸收訊號在由¹H-¹H (Chart 136),¹³C-¹H (Chart 137) COSY 實驗,得知碳氫的相關位置。

綜合上述資料(整理如 Table 31)與文獻⁽¹⁷⁸⁻¹⁸⁰⁾, 確認為 alkyl *trans*-ferulates,此類化合物通常以混合物的型態被分離。其結構如下:

		$^{1}\mathrm{H}$	¹³ C	COSY
1'	С		127.1	
2'	СН	7.02(d, 2.6)	109.3	H-6'
3'	С		147.9	
4'	С		146.8	
5'	СН	6.89(<i>d</i> , 8.0)	114.7	H-6'
6'	СН	7.05(<i>dd</i> , 8.0, 2.6)	123.0	H-2', H-5'
1	С		167.4	
2	СН	6.27(<i>d</i> , 15.9)	115.7	H-3
3	СН	7.59(<i>d</i> , 15.9)	144.6	H-2
OR	OCH ₂	4.17(<i>t</i> , 6.6)	64.6	
	OCH ₂ CH ₂	1.67(<i>t</i> , 6.6)	28.8	
	$(CH_2)_n$	1.23(br s)	22.7-31.9	
	CH ₃	0.83 (<i>t</i> , 6.1)	14.1	
3'-OCH ₃	OCH ₃	3.91(br s)	55.9	
4'-OH	OH	5.86(br s)		

 Table 31. NMR spectral data of alkyl trans-ferulates (5)

Chart 131 IR spectrum of alkyl ferulates (5)

.6272 5477 5477 5477 .0696 .0381 .0088 .0088 5.9121 5.9121 5.9121 5.9121 5.9121 5.9121 5.2105 6.3101 14.1990 4.1557 4.1322 1322 7065 6733 6395 6042 8880 8880 8880 8238 8238 ۳dd --5.862 -(CH2)n-H₃CO F HO -CH3 -OCH2--OH -OCH2CH2 2.199 3.427 1.090 1.194 3.996 1.000 4.440 E ß Ţ Ţ Ţ ч Ţ

Chart 133 ¹H-NMR (CDCl₃, 200 MHz) spectrum of alkyl ferulates (5)

Chart 137 ¹³C-¹H COSY spectrum of alkyl ferulates (5)

4-Methoxybenzaldehyde(4) 化學結構的決定

本化合物為淡黃色油狀物,具有特殊香味,經由 EIMS 光譜 (Chart 138)顯示分子量為 m/z 136。

IR 光譜(Chart 139)顯示在 2842 和 1269 cm⁻¹ 為芳香環上甲氧基的 特性吸收, 1690 cm⁻¹為 aldehyde 的 carbonyl C=O 的吸收, 1604, 1578, 1512、1462 和 1430 cm⁻¹為 benzene ring 的吸收, 1269 為醚(C-O-C) 的吸收。UV 光譜(Chart 140), 在 277 nm (log : 4.14)為共軛系統的 吸收。

氫譜(Chart 141)顯示有具有 A_2B_2 type 芳香環質子的吸收訊號: 6.99 (2H, d, J= 8.8 Hz, H-3 和 H-5)和 7.82 (2H, d, J= 8.8 Hz, H-2 和 H-6);1 個芳香環上甲氧基的吸收訊號 3.88 (s, 4-OCH₃);另外低磁 場 9.87 為醛基的吸收訊號。

綜合上述資料並與標準品(p-anisaldehyde)比對,確認此化合物之 結構為 4-methoxybenzaldehyde, 分子式為 C₈H₈O₂, 又名為 p-anisaldehyde。其結構如下:

U HO

Chart 138 EIMS (70 eV) spectrum of 4-methoxybenzaldehyde (4)

Chart 139 IR spectrum of 4-methoxybenzaldehyde(4)

Chart 140 UV spectrum of 4-methoxybenzaldehyde (4)

2-Methoxy-4-vinylphenol (38) 化學結構的決定

本化合物為無色油狀物,經由 EIMS(Chart 142)顯示分子量為 m/z 150。

IR 光譜(Chart 143)在 3513 cm⁻¹為 broad phenolic hydroxyls (OH) 吸收, 2944 和 1271 cm⁻¹為芳香環上甲氧基的特性吸收, 1600, 1514、 1463 和 1430 為 styrene 的吸收。UV 光譜(Chart 144)在 213 和 264 nm (log : 4.30 和 4.09)為共軛系統的吸收。

氫譜(Chart 145)顯示芳香族區域內有 3 個質子(ABX type)吸收訊號, 6.85 (*d*, *J*=7.8 Hz, H-6), 6.90 (*dd*, *J*=1.8, 8.7 Hz, H-5)和 6.92 (*d*, *J*=1.8 Hz, H-3); olefinic region 有 3 個質子, 為 vinylic protons:包括

5.10 (*dd*, *J*=0.9, 10.8 Hz)為末端 methylene 之 *cis*-H-8 的吸收訊號, 5.53 (*dd*, *J*=0.9, 17.5 Hz)為末端 methylene 之 *trans*-H-8 的吸收訊號, 6.62 (*q*, *J*=10.8, 17.4 Hz)為 H-7 的吸收訊號; 此外還有 1 個 phenolic methoxyl 質子 3.90 (*s*, 2-OCH₃)的吸收訊號和 1 個 phenolic hydroxyl

質子 5.59 (s, 1-OH)的吸收訊號。

碳譜(Chart 146)與 DEPT 實驗(Chart 147)顯示有 9 個碳:1 個 phenolic methoxyl 55.9 (2-OCH₃),1 個 methylene 111.4 (C-8)為 vinylic group 末端碳的吸收,4 個 methines, 108.0 (C-3), 114.3 (C-6), 120.1 (C-5)和 136.6 (C-7),為 ABX type 芳香環上3 個碳和 vinylic group 前端碳的吸收訊號,和 3 個四級碳 130.2 (C-4)、145.6 (C-2)和 146.6 (C-1)的吸收訊號。

綜合上述資料,並與文獻值⁽¹⁸¹⁾比對,確定此化合物為 2-methoxy-4-vinylphenol,分子式為 $C_9H_{10}O_2$ 。結構如下:

Chart 142 EIMS (70 eV) spectrum of 2-methoxy-4-vinylphenol (38)

Chart 143 IR spectrum of 2-methoxy-4-vinylphenol (38)

Chart 144 UV spectrum of 2-methoxy-4-vinylphenol (38)

Moniliformol (19) 化學結構的決定

本化合物為無色固體,對氯化鐵試劑反應為正反應,顯示具有 phenolic hydroxyl group 的存在,UV 光譜(Chart 149)在 212、253 和 286 nm (log : 4.29、4.06 和 3.76)有最大的吸收。

氫譜(Chart 150)顯示芳香族區域內有 3 個質子(ABX system)吸收 訊號, 6.83 (*d*, *J*=8.4 Hz, H-3)、7.55 (*dd*, *J*=8.4 Hz, H-4)和7.56 (*d*, *J*=1.8 Hz, H-6);此外還有 1 個 methoxyl 質子的吸收訊號, 3.89 (*s*, H-7), 2 個 methylene protons 的吸收訊號, 3.56 (*t*, *J*=4.8 Hz, H-9)和 3.68 (*t*, *J*=4.8 Hz, H-10)。COSY (Chart 151)顯示 7.55 (*dd*, *J*=8.4 Hz, H-4)和6.83 (*d*, *J*=8.4 Hz, H-3), 3.56 (*t*, *J*=4.8 Hz, H-9)和 3.68 (*t*, *J*=4.8 Hz, H-10)有相關, NOE 實驗(Chart 152)顯示,照射 3.56 (*t*, *J*=4.8 Hz, H-9), 會使 3.68 (*t*, *J*=4.8 Hz, H-10)增強,而照射 3.89 (*s*, H-7), 會 使 7.56 (*d*, *J*=1.8 Hz, H-6)和 7.55 (*dd*, *J*=8.4 Hz, H-4)增強,因而確立 化合物中氫原子的關係。

碳譜(Chart 153)與 DEPT 實驗(Chart 154)顯示有 1 個 methoxyl (56.4), 2 個 methylenes (62.3 和 73.5), 3 個 methines (113.8, 115.8 和 125.3)和 4 個四級碳(123.3, 148.7, 152.6 和 170.2),其中 170.2 為 carbonyl 的吸收訊號。HMQC 光譜(Chart 155)決定了 3 個 methines (113.8, 115.8和 125.3)為芳香環上的碳C-4, C-3和C-6,1個 methoxyl (56.4)為 5-OCH₃。進一步的由 HMBC 光譜(Chart 156)顯示, 3.56 (H-9), 3.68 (H-10)和 3.89 (H-7)分別與 C-10 (62.3), C-9 (73.5)和 C-5 (148.7)有長距離的關係,而 3 個 aromatic protons 6.83 (H-3)與 C-1 (123.3), C-5 (148.7), C-4 (113.8)和 C-3 (115.8), 7.55 (H-4)與 C-6 (125.3), C-5 (148.7)和 C-2 (152.6), 7.56 (H-6)與 C-1 (123.3), C-5 (148.7)、C-4 (113.8)、C-2 (152.6)和 C-8 (170.2)有長距離的關係,因此 決定所有碳的位置。

另由質譜(Chart 148)的基峰 *m/z* 168,也印證了此化合物的骨架, 分子斷裂方式如下圖所示:

綜合上述資料,整理如 Table 32,決定此化合物結構為 hydroxyethyl 2-hydroxy-5-methoxybenzoate,分子式為 C₁₀H₁₂O₅ (分子量 212), 是一個新化合物,命名為 moniliformol。其結構如下:

 Table 32. NMR spectral data of moniliformol (19)

		$^{1}\mathrm{H}$	¹³ C	COSY	NOE	HMBC
1	С		123.3			
2	С		152.6			
3	СН	6.83(<i>d</i> , 8.4)	115.8	H-4	H-4	$C-1(J_3)$, $C-3(J_3)$, $C-4(J_2)$, $C-6(J_2)$
4	СН	7.55(<i>dd</i> , 1.8, 8.4)	113.8	H-5	H-5, H-7	$C-2(J_3), C-3(J_2), C-6(J_3)$
5	С		148.7			
6	СН	7.56(d, 1.8)	125.3		H-7	$C-1(J_2), C-3(J_2), C-4(J_3), C-6(J_3), C-8(J_3)$
7	OCH ₃	3.89(<i>s</i>)	56.4		H-2, H-4	$C-3(J_3)$
8	С=О		170.2			
9	CH_2	3.56 (<i>t</i> , 4.8)	73.5	H-10	H-10	C-10(<i>J</i> ₂)
10	CH_2	3.68 (<i>t</i> , 4.8)	62.3	H-9	H-9	$C-9(J_2)$

Chart 148 EIMS (70 eV) spectrum of moniliformol (19)

Chart 149 UV spectrum of moniliformol (19)

Chart 150 ¹H-NMR (CDCl₃, 600 MHz) spectrum of moniliformol (19)

Chart 151 COSY spectrum of moniliformol (19)

Chart 152 NOE spectra of moniliformol (19)

Chart 153 ¹³C-NMR (CDCl₃, 150 MHz) spectrum of moniliformol (19)

Chart 154 DEPT 135 spectrum of moniliformol (19)

Chart 156 HMBC spectrum of moniliformol (19)

Protocatechuic acid (33) 化學結構的決定

本化合物為無色針狀,經由 EIMS (Chart 157)顯示分子量為 m/z 154。

IR 光譜(Chart 158)在 3263 cm⁻¹為 broad phenolic hydroxyls (OH) 吸收, 1677 為 carboxyl 的 C=O 吸收, 1604、1520 和 1407 為 benzene ring 的吸收。UV 光譜(Chart 159)在 208、255 和 291 nm (log : 4.19、 3.80 和 3.54)有最大吸收波長。

氫譜(Chart 160)顯示芳香族區域內有3個ABX type質子的吸收訊號, 6.78 (*d*, *J*=8.0 Hz, H-5), 7.41 (*dd*, *J*=8.0, 1.9 Hz, H-6)和 7.43 (*d*, *J*=1.9 Hz, H-2), COSY(Chart 161)也顯示 H-5 和 H-6 有鄰位耦合的關係。

碳譜(Chart 162)與 DEPT 實驗(Chart 163)顯示有 3 個 methines (115.6, 117.8 和 123.7)和 4 個四級碳(124.8, 145.8, 150.9 和 171.7), 其中 171.7 為 carboxyl carbone (COOH)的吸收訊號。而 HMQC 實驗 (Chart 164)決定了 3 個 methines (115.6, 117.8 和 123.7)為 C-5、C-2 和 C-6。進一步由 HMBC 實驗(Chart 165)說明了四級碳的位置:芳香 環上質子 H-2 (7.43)與 C-3 (145.8), C-4 (150.9), C-6 (123.7)和 C=O (171.7)有長距離的關係, H-5 (6.78)與 C-1 (124.8), C-3 (145.8)和 C-4 (150.9)有相關, H-6 (7.41)與 C-2 (117.8), C-4 (150.9)和 C=O (171.7)有相關。

綜合上述資料,整理如 Table 33,並與文獻值⁽¹⁸²⁾比對相符,確定 此化合物結構為 3,4-dihydroxybenzoic acid,分子式為 C₇H₆O₄,又名 為 protocatechuic acid,在石斛屬植物中為首次發現。其結構如下:

Chart 157 EIMS (70 eV) spectrum of protocatechuic acid (33)

Chart 158 IR spectrum of protocatechuic acid (33)

Chart 164 HMQC spectrum of protocatechuic acid (33)

Chart 165 HMBC spectrum of protocatechuic acid (33)

 Table 33. NMR spectral data of protocatechuic acid (33)

		$^{1}\mathrm{H}$	¹³ C	COSY	HMBC
1	С		124.8		
2	CH	7.43(<i>d</i> , 1.9)	117.8	H-6	C-3(<i>J</i> ₂), C-4(<i>J</i> ₃), C-6(<i>J</i> ₃), CO(<i>J</i> ₃)
3	С		145.8		
4	С		150.9		
5	CH	6.78(<i>d</i> , 8.0)	115.6	H-6	C-1(<i>J</i> ₃), C-3(<i>J</i> ₃), C-4(<i>J</i> ₂)
6	CH	7.41(<i>dd</i> , 8.0, 1.9)	123.7	H-2, H-5	C-2(<i>J</i> ₃), C-4(<i>J</i> ₃), CO(<i>J</i> ₃)
COOH	С		171.7		

Vanillin (38) 化學結構的決定

本化合物為白色固體, 有特殊香味, 經由 EIMS (Chart 166)顯示 分子量為 m/z 152。

IR 光譜(Chart 167)在 3171 cm⁻¹為 broad phenolic hydroxyls (OH) 吸收, 1664 為 aldehyde 之 C=O 的吸收, 1585、1512、1466 和 1427 為 benzene ring 的吸收, 1263 為醚基(C-O-C)的吸收。UV 光譜(Chart 168)在 208、231、278、306 和 350 nm (log : 4.08、4.14、3.99、4.00 和 3.65)有最大吸收波長。

氫譜(Chart 169)顯示芳香族區域內有3個ABX type質子的吸收訊號, 7.02 (*d*, *J*=8.4 Hz, H-5), 7.40 (*d*, *J*=1.7 Hz, H-2)和7.41 (*dd*, *J*=8.5, 1.8 Hz, H-6), 1個 methoxyl質子 3.95 (*s*), 1個 hydroxyl質子 6.20 (*br s*)和1個 aldehyde 質子 9.81 (*s*)。COSY(Chart 170)顯示 ABX type 之3個質子中 H-5和H-6有鄰位耦合關係, 另由耦合常數 1.7 推定 H-2與H-6為苯環質子閒位關係。

碳譜(Chart 171)與 DEPT 實驗(Chart 172)顯示有7個碳,包括1 個 methoxyl (56.1),3個 methines (108.8、114.4和127.5)和4個 四級碳(129.9、147.1、151.7和190.8),其中190.8為 aldehyde (CHO) 之碳的吸收訊號。HMQC 實驗(Chart 173)決定了3個 methines (108.8、114.4和127.5)為 C-2、C-5和C-6。而HMBC 實驗(Chart 174) 說明了四級碳的位置:芳香環上質子H-2 (7.40)與C-1 (129.9)、 C-3 (147.2)、C-4 (151.8)、C-6 (127.5)和CHO (190.8)有長距離的關係, H-5 (7.02)與C-1 (129.9)、C-3 (147.2)、C-4 (151.8)和C-6 (127.5) 有相關,H-6 (7.41)與C-1 (129.9)、C-2 (108.8)、C-4 (151.8)、C-5 (114.4)和CHO (190.8)有相關,1個 methoxyl質子3-OCH₃ (3.95)與 C-3 (147.2)、C-4 (151.8)和C-5 (114.4)有相關,1個 aldehyde 質子與C-1 (129.9)、C-2 (108.8)和C-6 (127.5)有相關。

綜合上述資料,整理如 Table 34,並與文獻值⁽¹⁸³⁾比對,確定此化 合物結構為 4-hydroxy-3-methoxybenzaldehyde,分子式為 C₈H₈O₃,又 名為 vanillin。結構如下:

		$^{1}\mathrm{H}$	¹³ C	COSY	HMBC
1	С		129.9		
2	CH	7.40(<i>d</i> , 1.7)	108.8	H-6	C-1(<i>J</i> ₂), C-3(<i>J</i> ₂), C-4(<i>J</i> ₃), C-6(<i>J</i> ₃), CHO(<i>J</i> ₃)
3	С		147.2		
4	С		151.8		
5	CH	7.02(<i>d</i> , 8.4)	114.4	H-6	C-1(<i>J</i> ₃), C-3(<i>J</i> ₃), C-4(<i>J</i> ₂), C-6(<i>J</i> ₂)
6	CH	7.41(<i>dd</i> , 8.5, 1.8)	127.5	H-2, H-5	C-1(<i>J</i> ₂), C-2(<i>J</i> ₃), C-4(<i>J</i> ₃), C-5(<i>J</i> ₂), CHO(<i>J</i> ₃)
3-OCH ₃	OCH ₃	3.95 (s)	56.1		C-3(<i>J</i> ₃)
4-OH	OH	6.20 (<i>br s</i>)			$C-3(J_3), C-4(J_2), C-5(J_3)$
СНО	CHO	9.81 (s)	190.8		C-1(<i>J</i> ₂), C-2(<i>J</i> ₃), C-6(<i>J</i> ₃)

Table 34. NMR spectral data of vanillin (38)

Chart 166 EIMS (70 eV) spectrum of vanillin (38)

IR spectrum of vanillin (38) Chart 167

Chart 168 UV spectrum of vanillin (38)

Chart 174 HMBC spectrum of vanillin (38)

4-Vinylphenol (39) 化學結構的決定

本化合物為無色油狀物,經由 EIMS (Chart 175)顯示分子量為 m/z 120。

IR 光譜(Chart 176)在 3283 cm⁻¹為 broad phenolic hydroxyls (OH) 吸收, 1610, 1512 和 1454 為 benzene ring 的吸收。UV 光譜(Chart 177) 在 208、259 和 293 nm (log : 4.19、3.80 和 3.54)有最大吸收波長。

氫譜(Chart 178)顯示芳香族區域內有 4個 A_2B_2 type 質子的吸收訊號, 6.77 (*t*, *J*=2.0, 2.8 和 8.7 Hz, H-2 和 H-6), 7.28 (*t*, *J*=1.9, 2.8 和 8.7 Hz, H-3 和 H-5); olefinic region 有 3 個質子,為 vinylic protons: 包括 5.10 (*dd*, *J*=0.9, 10.9 Hz)為末端 methylene 之 *cis*-H-8 的吸收訊號, 5.58 (*dd*, *J*=0.9, 17.6 Hz)為末端 methylene 之 *trans*-H-8 的吸收訊號, 6.63 (*q*, *J*=10.9, 17.6 Hz)為 H-7 的吸收訊號; 此外還有 1 個 phenolic hydroxyl 質子 4.94 (*br s*, 1-OH)的吸收訊號。

碳譜(Chart 179)顯示有 8 個碳: 115.3 (C-2 和 C-6)、111.6 (C-8) 和 127.6 (C-3 和 C-5)、129.9 (C-4)、136.1 (C-7)和 155.3 (C-1)。

綜合上述資料,並與文獻值⁽¹⁸⁴⁾比對,確定此化合物為 4-vinylphenol,分子式為 C₈H₈O。結構如下:

Chart 175 EIMS (70 eV) spectrum of 4-vinylphenol (39)

Chart 176 IR spectrum of 4-vinylphenol (39)

UV spectrum of 4-vinylphenol (39) Chart 177

Chart 178 ¹H-NMR (CDCl₃, 300 MHz) spectrum of 4-vinylphenol (39)

Chart 179 ¹³C-NMR (CDCl₃, 75 MHz) spectrum of 4-vinylphenol(39)

八、Carotenoid 類化合物

Carotenoid 類化合物通常以黃色、橘色或紅色的形態廣佈於植物和動物界,高等植物的葉子中常伴隨著 chlorophyll 類的化合物出現, 在臺灣金線連中分離得到2個此類的化合物 lutein (40)和 *trans*-β-carotene (23),在石斛中也有發現 *trans*-β-carotene (23)的蹤跡。

Lutein (40) 化學結構的決定

本化合物為黃色固體, EIMS (Chart 180)顯示分子量為 m/z 568。

氫譜(Chart 181)顯示主要在兩個區域 0.5-2.5 和 6.0-7.0, 在高磁 場區域 0.5-2.5 有許多甲基(methyl protons)的訊號存在,較低磁場 6.0-7.0 則為 olefinic 質子的訊號;碳譜也顯示較高磁場(12-66)為環 烴和甲基碳(methyl cartons)的吸收訊號,較低磁場(124-139)為 olefinic carbons 的吸收訊號,由這些訊息可知此化合物可能為 carotenoid 類。

此化合物分子量比 *trans*- -caroten 大 32,可能多 2 個氧,碳譜 (Chart 182)和 DEPT(Chart 183)顯示在 65.1和 65.9為含氧的 methines (CH)的吸收訊息,由此認定此化合物確實帶有 2 個 hydroxyl groups,進一步與文獻值⁽¹⁸⁵⁾比對碳譜(Table 35),確定此化合物為 lutein,分子 式為 $C_{40}H_{56}O_{2}$ 。結構如下:

β-end

 α -end

 β -end

 α -end

no. of C	$\delta^{13}C$ $\delta^{13}C$		no. of C	$\delta^{13}C$	$\delta^{13}C$	
	literature data	experimental data		literature data	experimental data	
	β-enc	1		α-end		
1	37.1	37.1	1'	34.0	34.0	
2	48.4	48.4	2'	44.7	44.6	
3	65.1	65.1	3'	65.9	65.9	
4	42.5	42.6	4'	125.6	125.6	
5	126.2	126.2	5'	137.8	137.7	
6	137.6	137.6	6'	55.0	55.0	
7	125.6	125.6	7'	128.6	128.7	
8	138.5	138.5	8'	137.8	137.7	
9	135.6	135.7	9'	135.0	135.1	
10	131.3	131.3	10'	130.8	130.8	
11	124.9	124.9	11'	124.5	124.5	
12	137.6	137.6	12'	137.6	137.6	
13	136.5	136.5	13'	136.5	136.5	
14	132.6	132.6	14'	132.6	132.6	
15	130.0	130.1	15'	130.0	130.1	
1-Me's	28.7	28.7	1'-Me's	24.3	24.3	
	30.2	30.3		29.5	29.5	
5- Me	21.6	21.6	5'- Me	22.8	22.9	
9-Me	12.7	12.8	9'-Me	13.2	13.1	
13-Me	12.7	12.8	13'-Me	12.7	12.8	

Table 35. ¹³C-NMR Data of lutein (40)

spectrum was run in CDCI3 (δ 7.24), 50MHz NMR.

Trans- -carotene (23) 化學結構的決定

本化合物為深黃色固體, EIMS (Chart 184)顯示分子量為 m/z 536

IR 光譜(Chart 185)在 2821 cm⁻¹為 C=C-H 的吸收, 2950、2920、 2859 和 2821 cm⁻¹ 為飽和的碳氫甲基的吸收, 1728-1616 cm⁻¹ 區域為 共軛雙鍵的吸收。UV-visible 光譜(Chart 186)在 281、465 和 492 nm 有最大吸收波長,為共軛雙鍵的吸收。

氫譜(Chart 187)顯示出現在兩個區域 0.8-2.0 和 6.0-7.0, 在高磁 場區域 0.5-2.0 有許多甲基的訊號存在, 而較低磁場 6.0-7.0 則為 olefinic 質子的訊號;碳譜(Chart 188)也是顯示兩個區域,較高磁場(12-40) 為環烴和甲基碳(methyl carbons) 的吸收訊號,較低磁場(125-138)為 olefinic carbons 的吸收訊號,由這些訊息可知此化合物可能為 carotenoid 類。

此化合物進一步整理(如 Table 36)與文獻值⁽¹⁸⁶⁾和標準品(trans--carotene)比對,確定此化合物為 trans- -carotene,分子式為 C40H560 結構如下:

 α -end

Chart 184 EIMS (70 eV) spectrum of *trans*- -carotene (23)

no. of C	$\delta^{13}C$	$\delta^{13}C$	no. of C	$\delta^{13}C$	$\delta^{13}C$	
	literature data	experimental data		literature data	experimental data	
	β-end			α-end		
1	34.3	34.3	1'	34.3	34.3	
2	39.7	39.6	2'	39.7	39.6	
3	19.3	19.3	3'	19.3	19.3	
4	33.2	33.1	4'	33.2	33.1	
5	129.3	129.4	5'	129.3	129.4	
6	138.0	137.9	6'	138.0	137.9	
7	126.7	126.6	7'	126.7	126.6	
8	137.8	137.8	8'	137.8	137.8	
9	136.0	136.0	9'	136.0	136.0	
10	130.8	130.8	10'	130.8	130.8	
11	125.0	125.0	11'	125.0	125.0	
12	137.3	137.2	12'	137.3	137.2	
13	136.4	136.5	13'	136.4	136.5	
14	132.4	132.4	14'	132.4	132.4	
15	130.0	130.0	15'	130.0	130.0	
1-Me's	29.0	29.0	1'-Me's	29.0	29.0	
5- Me	21.7	21.8	5'- Me	21.7	21.8	
9-Me	12.7	12.8	9'-Me	12.7	12.8	
13-Me	12.7	12.8	13'-Me	12.7	12.8	

Table 36.	¹³ C-NMR Data of <i>trans</i> -	-carotene (2	(23))
-----------	--	--------------	------	---

spectrum was run in $CDCl_3(\delta 7.24)$, 50MHz NMR.

Chart 185 IR spectrum of *trans*- -carotene (23)

Chart 186 UV-visible spectrum of *trans*- -carotene (23)

Chart 188 ¹³C-NMR (CDCl₃, 50 MHz) spectrum of *trans*- -carotene (23)

九、Chlorophyll 類化合物

Chlorophyll 類化合物為綠色植物主要綠色之來源,尤其葉子的分布最多,在金線連中分離得到2個此類化合物 pheophytin a (6)和 pheophytin b (41)。

Pheophytin a (6) 化學結構的決定

本化合物為墨綠色固體,經由 FABMS (Chart 189)顯示[M+H]⁺在 *m/z* 871。

IR 光譜(Chart 190)在 3448 cm⁻¹為 NH 的吸收, 173& 1697 和 1619 為 2 個酯類及 1 個α,β-unsaturated ketone 的吸收 UV-visible 光譜(Chart 191)在 20& 229、272、329、372 (sh)、408、506、536、608 和 665 nm (log : 4.24、4.23、4.04、4.28、4.64、4.84、3.88、3.85、3.82 和 4.51) 為 chlorphyll 類化合物的吸收。

氫譜(Chart 192)顯示具有 pheophorbide a⁽¹⁸⁶⁾和 phytol moiety⁽¹⁸⁷⁾的 吸收特徵。在 pheophorbide a moiety 方面: 0.46 (s)和-1.72 (s)為 NH 的吸收訊號, 1.83 (3H, t, J=7.4 Hz)為甲基質子 H-18¹ 的吸收訊號, 由 COSY(Chart 193) 顯示與 H-18[4.47 (1H, m)] 耦合,在 2.21 (1H, m)、2.35 (1H, m)、2.50 (1H, m)、2.64 (1H, m)顯示為 2 組亞甲基質子 相耦合,分別為 2 組 methylenes $H-17^1$ 和 $H-17^2$ 的吸收訊號,是 COCH₂CH₂的支鏈, 3.07 (3H, s)、3.35 (3H, s)和 3.65 (3H, s)分別為 H-7¹、H-2¹和 H-12¹三個甲基質子的吸收訊號, 而 H-13²、H-20、H-5 和 H-10 四個烯基質子,由於位在環電流的去遮蔽區域內,其化學位 移分別為 6.29 (s)、8.54 (s)、9.19 (s)和 9.37 (s)。此外 3.91 (3H, s) 為甲氧基 H-13⁴ 的吸收訊號,另外在 7.85 (1H, dd, J=17.8, 11.6 Hz)、 6.20 (1H, dd, J=17.9, 1.1 Hz)和 6.10 (1H, dd, J=11.5, 1.2 Hz)顯示含有 一個乙烯基質子(vinyl group)H-3¹和 H-3²的吸收訊號, 4.22 (1H, d, J=8.5 Hz)為 H-17 的吸收訊號,以上經由 COSY(Chart 193)、 NOESY(Chart 194)實驗印證無誤。在 phytol moiety 方面: 0.80 (3H, d, J=6.6 Hz, H-39), 0.81 (3H, d, J=6.7 Hz, H-38), 0.86 (6H, d, J=6.7 Hz, H-36 和 H-37)和 1.60 (3H, s, H-40)為 5 個甲基質子的吸收訊號, 4.52 (2H, m)為含氧的亞甲基 H-21 的吸收訊號,與 5.16 (1H, t, J=7.1 Hz) 烯氫 H-22 耦合,其它質子的訊號則出現在高磁場 1.00-1.50。

		1 _H	¹³ C	COSV	NOFSY	HMBC
DL	h	П а	U	CUSI	NUED I	
Pheop 1	norbide C	a molety	142.0			
2	č		131.7			
2^{1}	CH ₃	3.35(s)	12.0		H-3 ¹ , H-3 ² , H-20	$C-1(J_3), C-2(J_2), C-3(J_3)$
$\frac{3}{2^{1}}$	C	7 95(11 17 9 11 6)	136.4	11.2^{2}	$112^{1}112^{2}115$	$C_{2}(I) C_{2}(I) C_{2}^{2}(I) C_{4}(I)$
3^{2}	CH CH	$(F)_{6} = 20(dd + 17.8, 11.6)$	128.9	H-3 ⁻ H-3 ¹	H-2 ⁻ , H-3 ⁻ , H-5	$C-2(J_3), C-3(J_2), C-3^{-}(J_2), C-4(J_3)$ $C-3(J_2), C-3^{1}(J_2)$
5		(Z)6.10(dd, 11.5, 1.2)	122.0	11-5		$C^{-5}(J_3), C^{-5}(J_2)$
4	С		136.1			
5	CH	9.19(<i>s</i>)	97.4		$H-3^{1}, H-3^{2}, H-7^{1}$	$C-3(J_3), C-4(J_2), C-7(J_3)$
6	C		155.5			
7^{1}	CH ₂	3.07(s)	1111		H-5 H- 8^2	$C-6(I_2)$ $C-7(I_2)$ $C-8(I_2)$
8	C	5.07(5)	145.1		11 5, 11 6	
81	CH_2	3.51(q, 7.6)	19.3	$H-8^{2}_{1}$	$H-7^{1}, H-8^{2}, H-10$	C-7(J_3), C-8(J_2), C-8 ² (J_2), C-9(J_3)
8 ²	CH ₃	1.63(<i>t</i> , 7.6)	17.3	$H-8^{1}$	$H-7^{1}, H-8^{1}, H-10$	$C-8(J_3), C-8^1(J_2)$
9	CU	0.27(z)	150.9		110^{1} 110^{2} 1110^{1}	$C_{2}(I) = C_{2}(I) = C_{1}(I) = C_{1}(I)$
10	C	9.57(5)	137.9		11-8, 11-8, 11-12	$C^{-0}(J_3), C^{-0}(J_2), C^{-11}(J_2), C^{-12}(J_3)$
12	C		128.9			
12^{1}	CH ₃	3.65(s)	12.0		H-10	$C-11(J_3), C-12(J_2), C-13(J_3)$
13	С		128.9			
13^{1}	C	6.00()	189.6			
13-	СН	6.29(s)	64./		H-1/, H-1/	$C = 13(J_3), C = 13^{\circ}(J_2), C = 13^{\circ}(J_2), C = 14(J_3), C = 15(J_2)$
13 ³	CO		169.6			$C^{-13}(J_2)$
13^{4}	OCH ₃	3.91(s)	52.8		H-13 ²	$C-13^{3}(J_{3})$
14	С	. ,	149.6			
15	С		105.2			
16	CU	1 22(1 8 5)	161.2	II 17^{1}	$II 12^2 II 17^1 II 17^2 II 18$	$C_{16}(I) = C_{17}^{1}(I) = C_{18}^{1}(I)$
1/	Сп	4.22(a, 6.5)	51.1	п-1/	H-18 ¹	$C-10(J_2), C-17(J_2), C-18(J_2)$
17^{1}	CH_2	2.64(m), 2.35(m)	29.8	H-17, H-17 ²	H-13 ² , H-17, H-17 ² , H-18	C-18(J_3), C-17 ² (J_2), C-17 ³ (J_3)
17^{2}	CH ₂	2.50(m), 2.21(m)	31.2	H-17 ¹	H-17 ¹ , H-18	C-17(J_3), C-17 ¹ (J_2), C-17 ³ (J_2)
17^{3}	CO		172.9	TT tol		
18	СН	4.47(m)	50.1	H-18.	H-17, H-17 [*] , H-17 [*] , H-18 [*] ,	$C-16(J_3), C-17(J_2), C-17(J_3), C-18(J_2)$
18^{1}	CH ₃	1.83(d, 7.4)	22.6	H-18	H-17, H-18, H-20	$C-17(J_3)$, $C-19(J_3)$
19	C		172.2			
20	CH	8.54(<i>s</i>)	93.1		$H-2^{1}$, $H-18$, $H-18^{1}$	$C-1(J_2), C-2(J_3), C-18(J_3)$
	NH	0.46(s)				
Dhytol	moiaty	-1.72(s)				
21	OCH ₂	4.52(m)	61 5	н-22	H-22 H-40	$C-17^{3}(I_{2})$ $C-22(I_{2})$ $C-23(I_{2})$
22	CH	5.16(t, 7.1)	117.7	H-21	H-21, H-24, H-25	$C-24(J_3), C-40(J_3)$
23	С		142.8		, ,	
24	CH_2	1.88(<i>m</i>)	39.8	H-25	H-22, H-25, H-26, H-40	$C-22(J_3), C-23(J_2), C-25(J_2), C-26(J_3),$
25	ĊIJ	1.22(m)	25.0	11.24		$C-40(J_3)$
23 26	CH ₂ CH ₂	1.22(m) 1.21(m)	25.0	п-24	H-39	$C-23(J_3), C-24(J_2)$
27	CH	1.30(m)	32.7	H-39	H-39	
28	CH_2	1.00(m)	37.3		H-39	
29	CH ₂	1.00(<i>m</i>)	24.4			
30	CH_2	1.00(m) 1.20(m)	37.4	11.29	H-38	
31	СН	1.50(m) 1.00(m)	32.0	H-38 H-33	п-38 H-33 H-38	
33	CH ₂ CH ₂	1.20(m)	24.7	H-32, H-34	H-32, H-36, H-37	
34	CH ₂	1.11(<i>m</i>)	39.3	Н-33, Н-35	H-36, H-37	$C-32(J_3)$, $C-33(J_2)$, $C-35(J_2)$, $C-36(J_3)$,
	~~~					$C-37(J_3)$
35	СН	1.49( <i>m</i> )	27.9	H-34, H-36,	H-36, H-37	$C-33(J_3), C-34(J_2), C-36(J_2), C-37(J_2)$
36	$CH_2$	0.86(d.6.7)	22.7	н- <i>31</i> Н-35	Н-34 Н-33 Н-35	$C-34(I_2)$ $C-35(I_2)$ $C-37(I_2)$
37	CH ₃	0.86(d, 6.7)	23.1	H-35	H-33, H-34, H-35	$C-34(J_3), C-35(J_2), C-36(J_3)$
38	CH ₃	0.81(d, 6.7)	19.7	H-31	H-30, H-31, H-32	$C-30(J_3), C-31(J_2), C-32(J_3)$
39	CH ₃	0.80( <i>d</i> , 6.6)	19.6	H-27	H-26, H-27, H-28	$C-26(J_3), C-27(J_2), C-28(J_3)$
40	CH ₃	1.60(s)	16.3		H-24	$C-22(J_3), C-23(J_2), C-24(J_3)$

# Table 37. NMR spectral data of pheophytin a (6)



Chart 189 positive FABMS spectrum of pheophytin a (6)



Chart 190 IR spectrum of pheophytin a (6)





Chart 192 ¹H-NMR (CDCl₃, 500 MHz) spectrum of pheophytin a (6)


Chart 193 COSY spectrum of pheophytin a (6)





碳譜與 DEPT 實驗(Chart 195)顯示具有 55 個碳的吸收訊號,包括 1 個 methoxyl,10 個 methyls,14 個 methylenes,11 個 methines 和 19 個四級碳。而經由 HMQC(Chart 196)和 HMBC(Chart 197)的光譜決定 碳的相關位置。綜合上述資料,整理如 Table 37,並與文獻⁽¹⁸⁸⁾比對,確定此化合物為 pheophytin a,分子式為  $C_{55}H_{74}N_4O_5$ ,本研究為第一 次以 1D 和 2D NMR 技術來研判此結構。pheophytin a 結構如下:



**Chart 197** HMBC spectrum of pheophytin a (6)

## Pheophytin b (41) 化學結構的決定

本化合物為綠色固體,經由 FABMS (Chart 198)顯示[M]⁺在 m/z 884。

IR 光譜(Chart 199)在 3448 cm⁻¹為 NH 的吸收, 1737、1702、1663 和 1616 為 2 個酯類及 1 個醛和 1 個α,β-unsaturated ketone 的吸收。 UV-visible 光譜(Chart 200)在 207、233、281、328、373 (sh)、417、 435、525、600 和 655 nm (log : 4.13、4.11、4.03、4.16、4.25、4.56、 4.74、3.71、3.61 和 4.14)為 chlorphyll 類化合物的吸收。

氫譜(Chart 201)顯示具有 pheophorbide b⁽¹⁸⁹⁾和 phytol moiety⁽¹⁸⁷⁾的 吸收特徵。在 pheophorbide b moiety 方面: 0.31 (s)和-1.75 (s)為 NH 的吸收訊號, 1.84 (3H, d, J=7.4 Hz)為甲基質子 H-18¹ 的吸收訊號, 由 COSY(Chart 202) 顯示與 H-18[ 4.45 (1H, q, J=7.3 Hz)] 耦合,在 2.26 (1H, m)、2.33 (1H, m)、2.50 (1H, m)、2.65 (1H, m)顯示為2組亞 甲基質子互相耦合,分別為2組 methylenes  $H-17^1$ 和  $H-17^2$ 的吸收訊 號,是 COCH₂CH₂的支鏈, 3.34 (3H, s)和 3.59 (3H, s)分別為 H-2¹ 和 H-12¹ 兩個甲基質子的吸收訊號, 10.90 (1H, s)為 1 醛基質子 H-7¹ 的吸收訊號,而 H-13²、H-20、H-5 和 H-10 四個烯基質子,由於位在 環電流的去遮蔽區域內,其化學位移分別為 6.23 (s) 8.51 (s) 10.09 (s)和 9.33 (s),此外 3.92 (3H, s)為甲氧基的吸收訊號,另外在 7.90 (1H, dd, J=17.8, 11.6 Hz)、 6.31 (1H, d, J=17.9 Hz)和 6.17 (1H, dd, J= 11.6, 0.9 Hz)顯示含有一個乙烯基質子(vinyl group)H-3¹和H-3²的吸收 訊號, 4.20 (1H, m)為 H-17 的吸收訊號, 以上經由 COSY(Chart 202) NOESY (Chart 203) 實驗證實無誤 在 phytol moiety 方面: 0.77 (3H. d. J=6.4 Hz, H-39), 0.78 (3H, d, J=6.1 Hz, H-38), 0.83 (6H, d, J=6.6 Hz, H-36 和 H-37)和 1.58 (3H, s, H-40)為 5 個甲基質子的吸收訊號, 4.51 (2H, d, J=7.1 Hz)為含氧的亞甲基 H-21 的吸收訊號,與 5.15

4.51 (2H, *a*, *J*=7.1 HZ)為含氧的显甲基 H-21 的吸收訊號,與 5.15 (1H, *t*, *J*=7.1 Hz)烯氫 H-22 耦合,其它質子的訊號則出現在高磁場 0.70-1.50。

碳譜與 DEPT 實驗(Chart 204)顯示具有 55 個碳的吸收訊號,包括 1 個 methoxyl,9 個 methyls,14 個 methylenes,12 個 methines 和 19 個四級碳 而經由 HMBC (Chart 205)和 HMQC (Chart 206-208)的光譜 決定碳氫的相關位置。綜合上述資料,整理如 Table 38,並與文獻⁽¹⁹⁰⁾比對,確定此化合物為 pheophytin b,分子式為  $C_{55}H_{72}N_4O_6$ ,本研究 為第一次以 1D 和 2D NMR 技術來研判此結構。pheophytin b 結構如下:



		¹ H	¹³ C	COSY	NOESY	HMBC
Pheop	horbide-b	moiety				
1	C	·	143.4			
$\frac{2}{2^{1}}$	C CH ₃	3.34( <i>s</i> )	132.1 12.0 137.5		H-3 ¹ , H-3 ² , H-20	$C-1(J_3), C-2(J_2), C-3(J_3)$
$3^{1}$ $3^{2}$	CH CH ₂	7.90( <i>dd</i> , 17.8, 11.6) (E)6.31( <i>d</i> , 17.9) (Z)6.17( <i>dd</i> , 11.6, 0.9)	128.6 123.4	H-3 ² H-3 ¹	H-2 ¹ , H-3 ² , H-5 H-2 ¹ , H-3 ¹ , H-5	C-2( $J_3$ ), C-3 ² ( $J_2$ ), C-4( $J_3$ ) C-2( $J_4$ ),C-3( $J_3$ ), C-3 ¹ ( $J_2$ )
4 5 6 7	C CH C	10.09( <i>s</i> )	137.0 101.3 150.9		H-3 ¹ , H-3 ² , H-7 ¹	$C-3(J_3), C-7(J_3)$
7 7 ¹ 8	CHO CHO	10.90( <i>s</i> )	132.3 187.4 159.1		H-5, H-8 ¹ , H-8 ²	C-6( $J_3$ ), C-7( $J_2$ ), C-8( $J_3$ )
	CH ₂ CH ₃	3.74( <i>m</i> ) 1.69( <i>t</i> , 8.0)	18.8 19.3	H-8 ² H-8 ¹	H-7 ¹ , H-8 ² , H-10 H-7 ¹ , H-8 ¹ , H-10	C-7( $J_3$ ), C-8( $J_2$ ), C-8 ² ( $J_2$ ), C-9( $J_3$ ) C-8( $J_3$ ), C-8 ¹ ( $J_2$ )
9 10	СН	9.33( <i>s</i> )	146.8 106.7		H-8 ¹ , H-8 ² , H-12 ¹	C-8( $J_3$ ), C-9( $J_2$ ), C-11( $J_2$ ), C-12( $J_3$ ), C-13( $J_4$ )
11 12 12 ¹	C C CH ₃	3.59(s)	132.3 137.8 12.1		H-10	C-11( $J_3$ ), C-12( $J_2$ ), C-13( $J_3$ ), C-13 ¹ ( $L_2$ ), C-14( $L_2$ )
13 13 ¹	C C		150.6 189.5			$C-13(J_4), C-14(J_4)$
13 ²	СН	6.23( <i>s</i> )	64.5		H-17, H-17 ¹ , H-13 ⁴	C-13( $J_3$ ), C-13 ¹ ( $J_2$ ), C-13 ³ ( $J_2$ ), C-15( $J_2$ ), C-16( $J_3$ )
$13^{4}$ $13^{4}$ 14 15	OCH ₃ C C	3.92( <i>s</i> )	169.3 53.0 129.6 104.9		H-13 ²	C-13 ³ ( <i>J</i> ₃ )
16 17	C CH	4.20( <i>m</i> )	164.0 51.3	H-17 ¹	H-17 ¹ , H-18 ¹	C-16( $J_2$ ), C-17 ¹ ( $J_2$ ), C-17 ² ( $J_3$ ), C-18 ¹ ( $J_3$ )
17 ¹	CH ₂	2.65(m), 2.33(m)	29.6	H-17, H-17 ²	¹ H-17, H-17 ¹ , H-13 ²	C-18( $J_3$ ), C-17 ² ( $J_2$ )
$17^{2}$ $17^{3}$	CH ₂ CO	2.50(m), 2.26(m)	31.3 172.8	H-17 ¹	H-17 ¹ , H-18	C-17( $J_3$ ), C-17 ¹ ( $J_2$ ), C-17 ³ ( $J_2$ )
18	СН	4.45(q, 7.3)	50.1	H-18 ¹	H-17 ² , H-18 ¹ , H-20	C-16( $J_3$ ),C-17( $J_2$ ), C-17 ¹ ( $J_3$ ), C-18 ¹ ( $J_2$ ), C-19( $J_2$ )
18 ¹ 19	CH ₃ C	1.84( <i>d</i> , 7.4)	23.1 173.9	H-18	H-17, H-18	C-17( $J_3$ ), C-18( $J_2$ ), C-19( $J_3$ )
20	CH NH	8.51( <i>s</i> ) 0.31( <i>s</i> ) -1.75( <i>s</i> )	93.3		H-2 ⁺ , H-18, H-18 ⁺	$C-1(J_2), C-2(J_3), C-18(J_3), C-19(J_2)$
Phytol	moiety					
21 22	OCH ₂ CH	$\begin{array}{l} 4.51(d,7.1)\\ 5.15(t,7.1) \end{array}$	61.5 117.7	H-22 H-21	H-22, H-40 H-21, H-24, H-25	$C-17^{3}(J_{3}), C-22(J_{2}), C-23(J_{2})$ $C-21(J_{2}), C-24(J_{3}), C-40(J_{3})$
23 24	C CH ₂	1.88( <i>m</i> )	143.0 39.8	H-25	H-22, H-25, H-26,	$C-22(J_3), C-23(J_2), C-25(J_2), C-25(J_2)$
25	$CH_2$	1.30( <i>m</i> )	25.0	H-24	H-40 H-22, H-24	$C-26(J_3), C-40(J_3)$ $C-23(J_3), C-24(J_2)$
26	$CH_2$	1.18( <i>m</i> )	36.6		H-24, H-39	
27	CH	1.30( <i>m</i> )	32.7	H-28, H-39	H-39	
28	CH ₂	0.99(m)	37.3	H-27, H-29	H-39	
29	CH ₂	1.18(m) 0.99(m)	24.4	H-28, H-30 H 20 H 31	Н 38	
31	CH ₂ CH	1.30(m)	32.6	H-30, H-32, H-38	H-38 H-38	
32	$CH_2$	0.99(m)	37.2	H-31, H-33	H-33, H-38	
33	CH ₂	1.18( <i>m</i> )	24.7	H-32, H-34	H-32, H-36, H-37	
34	CH ₂	1.09( <i>m</i> )	39.3	Н-33, Н-35	H-36, H-37	C-32( $J_3$ ), C-33( $J_2$ ), C-35( $J_2$ ), C-36( $J_3$ ), C-37( $J_3$ )
35	СН	1.48( <i>m</i> )	27.9	H-34, H-36, H-37	H-36, H-37	C-33( $J_3$ ), C-34( $J_2$ ), C-36( $J_2$ ), C-37( $J_2$ )
36	CH ₃	0.83(d, 6.6)	22.6	H-35	H-34, H-33, H-35	$C-34(J_3), C-35(J_2), C-37(J_3)$
37	CH ₃	0.83( <i>d</i> , 6.6)	22.7	H-35	H-33, H-34, H-35	$C-34(J_3), C-35(J_2), C-36(J_3)$
38	CH ₃	0.78(d, 6.1)	19.7	H-31	H-30, H-31, H-32	$C-30(J_3), C-31(J_2), C-32(J_3)$
39 40	CH ₃ CH ₃	1.58(s)	19.0	11-27	H-20, H-27, H-28 H-21, H-24	$C-20(J_3), C-27(J_2), C-28(J_3)$ $C-22(J_3), C-23(J_2), C-24(J_3)$

	Table 38.	NMR	spectral	data c	of pheor	ohvtin	b (41	
--	-----------	-----	----------	--------	----------	--------	-------	--



Chart 199 IR spectrum of pheophytin b (41)



Chart 201 ¹H-NMR (CDCl₃, 500 MHz) spectrum of pheophytin b (41)



Chart 203 COSY spectrum of pheophytin b (41)



Chart 205 HMBC spectrum of pheophytin b (41)



Chart 208 HMQC spectrum of pheophytin b (C) (41)

## 十、Sterol 類化合物

Sterol 類化合物母核為 cyclopentano-perhydrophenantrene,種類繁 多,其中植物固醇類廣存於植物體中,而麥角固醇類則常見於蕈類或 菌類。在石斛中分離得到 ergosterol (21)、ergosterol peroxide (22)、 phytosterol (campesterol, stigmasterol, -sitosterol) (10)和 stigmast-4en-3-one (9),連珠石斛和臺灣金線連均有分離到 phytosterol (campesterol, stigmasterol, -sitosterol) (10)。

## Ergosterol (21) 化學結構的決定

本化合物為白色固體,TLC 以苯/乙酸乙酯(4/1)為展開溶媒,以 10% 硫酸為呈色劑,加熱後,在 R_f=0.41 處呈藍色點。熔點測定為 155-157 。對 Liebermann-Bürchard 試劑呈陽性反應(藍紫色),可 知為固醇類化合物。

EIMS 光譜(Chart 209)顯示分子離子峰為 m/z 396。

氫譜(Chart 210)顯示高磁場區域具有 6 個甲基質子的吸收訊號,為固醇類化合物的特徵,分別為 0.63 (3H, *s*, H-18)、0.83 (3H, *d*, *J*=6.7 Hz, H-26)、0.84 (3H, *d*, *J*=6.8 Hz, H-27)、0.92 (3H, *d*, *J*=6.8 Hz, H-28)、0.95 (3H, *s*, H-19)和 1.04 (3H, *d*, *J*=6.6 Hz, H-21),在 olefinic region 出現 4 個質子的吸收訊號, 5.20 (2H, *m*)、5.39 (1H, *m*)和 5.58 (1H, *m*),分別為 H-22、H-23、H-6 和 H-7 的吸收訊號,而 3.65 (1H, *m*)為 H-3 的吸收訊號。

進一步與文獻值⁽¹⁹¹⁾比較(Table 39),確認此化合物結構為 ergosta- 5,7-22E-trien-3 -ol,分子式為 C₂₈H₄₄O,又名 ergosterol, 為 vitamin D₂的前驅物。其結構如下:



1 _H , $J$ (Hz) a	${}^{1}_{\text{H}}, J (\text{Hz}) {}^{\text{b}}$
0.63 (s)	0.63 (3H, s, H-18)
0.83 (d, J=6.7)	0.82 (3H, d, J=6.4Hz, H-26)
0.84 (d, J=6.8)	0.83 (3H, d, J=6.4Hz, H-27)
0.92 (d, J=6.8)	0.92 (3H, d, J=6.0Hz, H-28)
0.95 (s)	0.95 (3H, s, H-19)
1.04 (d, J=6.6)	1.04 (3H, d, J=6.4Hz, H-21)
3.65 (m)	3.64 (1H, m, H-3β)
5.20 (m)	5.20 (2H, m, H-22,23)
5.39 (m)	5.39 (1H, m, H-6)
5.58 (m)	5.57 (1H, m, H-7)

 Table 39.
 ¹H-NMR Data of ergosterol (21)

a.為本研究數據 (200 MHz, CDCl₃); b.為文獻值 (400 MHz, CDCl₃).



Chart 209 EIMS (70 eV) spectrum of ergosterol (21)



Chart 210 ¹H-NMR (CDCl₃, 200 MHz) spectrum of ergosterol (21)

## Ergosterol peroxide (22) 化學結構的決定

本化合物為白色固體,TLC 以苯/乙酸乙酯(4/1)為展開溶媒,以 10% 硫酸為呈色劑,加熱後,在 R_f=0.41 處呈藍色點。熔點測定為 177-179 。對 Liebermann-Bürchard 試劑呈陽性反應(藍紫色),可 知為固醇類化合物。

EIMS 光譜(Chart 211)顯示分子離子峰在 *m*/z 428,而其它離子 斷裂類似麥角固醇(ergosterol),分子量恰好比麥角固醇多 32,可能 是結構上多了 2 個氧原子。

氫譜(Chart 212)顯示高磁場區域具有 6 個甲氧基質子的吸收訊號,為固醇類的特徵,分別為 0.78 (3H, *d*, *J*=6.7 Hz)、0.79 (H, *s*)、0.84 (3H, *d*, *J*=6.9 Hz), 0.86 (3H, *s*), 0.88 (3H, *d*, *J*=6.8 Hz)和 0.97 (3H, *d*, *J*=6.6 Hz),而 5.16 (2H, *m*)為固醇類之 olefinic proton H-22 和 H-23 的吸收訊號, 6.21 和 6.48 呈現雙裂峰型,耦合常數 8.5 Hz

242

為 H-6 和 H-7 互相耦合的吸收訊號,另外 3.94 (1H, *m*)為 H-3 的吸 收訊號。

碳譜(Chart 213)顯示有 28 個碳,其中 3 個 66.4、79.4 和 82.1 為帶氧之碳的吸收,定為 C-3、C-5 和 C-8,而在 olefinic region 出現 4 個 peak, 130.7、132.3、135.2 和 135.4,分別為 C-7、C-23、C-22 和 C-6 的吸收訊號,剩下 21 個碳出現在較高磁場 12.8-56.2,則為 此固醇的其它吸收訊號。

進一步將此化合物之光譜數據與文獻值⁽¹⁹²⁾相比較(Table 40, 41), 其值相吻合,因此確認此化合物為 ergosterol peroxide,分子式 為  $C_{28}H_{44}O_{3}$ 。其結構如下:



 Table 40.
 ¹³C-NMR Data of ergosterol peroxide (22)

No. of C	¹³ C ^a	13 b C	No. of C	¹³ C ^a	¹³ _C ^b
1	34.7	34.6	15	23.4	23.3
2	30.0	30.0	16	28.6	28.6
3	66.4	66.4	17	56.2	56.1
4	36.9	36.9	18	12.8	12.8
5	79.4	79.4	19	18.1	18.1
6	135.4	135.5	20	39.7	39.7
7	130.7	130.7	21	20.8	20.8
8	82.1	82.1	22	135.2	135.1
9	51.6	51.6	23	132.3	132.2
10	36.9	36.6	24	42.7	42.7
11	20.6	20.6	25	33.0	33.0
12	39.3	39.3	26	19.6	19.6
13	44.5	44.5	27	19.9	19.9
14	51.1	50.8	28	17.5	17.5

a.為本研究數據 (50 MHz, CDCl₃); b.為文獻值 (75 MHz, CDCl₃).

<u>0</u>	1 1
${}^{1}_{H}$ , <i>J</i> (Hz) a	$^{1}_{\rm H}, J ({\rm Hz})^{\rm b}$
0.78 ( <i>d</i> , 6.7)	0.80(3H, <i>d</i> , 7)
0.79(s)	0.81(3H, <i>s</i> )
0.84 ( <i>d</i> , 6.9)	0.82(3H, <i>d</i> , 7)
(0.86,s)	0.85(3H, <i>s</i> )
(0.88, d, 6.8)	0.88(3H, <i>d</i> , 7)
(0.97, d, 6.6)	0.98(3H, <i>d</i> , 7)
(2.11-1.06, m)	2.10-1.07(21H, <i>m</i> )
(3.94, <i>m</i> )	3.95(1H, <i>m</i> , H-3)
(5.16, <i>m</i> )	5.17(2H, <i>m</i> , H-22,23)
(6.21, <i>d</i> , 8.5)	6.23(1H, <i>d</i> , 9, H-6)
(6.48, d, 8.5)	6.48(1H, <i>d</i> , 9, H-7)

 Table 41. ¹H-NMR Data of ergosterol peroxide (22)

a.為本研究數據 (200 MHz, CDCb); b.為文獻值 (300 MHz, CDCb).



Chart 211 EIMS (70 eV) spectrum of ergosterol peroxide (22)





Chart 213 ¹³C-NMR (CDCl₃, 50 MHz) spectrum of ergosterol peroxide (22)

# Phytosterol (campesterol, stigmasterol, -sitosterol) (10) 化學結構的決定

本化合物經正己烷再結晶後,為白色針狀結晶,可溶於氯仿。 TLC 以苯/乙酸乙酯(4/1)為展開溶媒,以 10%硫酸為呈色劑,加熱 後,在 R_f=0.41 處呈紅色點。熔點測定為 138.3-140.2 。對 Liebermann-Bürchard 試劑呈陽性反應(藍紫色),可知為固醇類化合 物。

EIMS 光譜(Chart 214)顯示分子離子峰出現在 m/z 414 (33.5)、 412 (16.5)、 400 (6.7)。

IR 光譜(Chart 215)顯示在 3417 cm⁻¹ 為氫氧基的吸收,其它吸收 有 2940、2863、1460、1375 和 1053 cm⁻¹。

氫譜(Chart 216)顯示具有 6 個甲氧基質子,為固醇類的特徵, 分別為 0.65 (3H, *s*, H-18), 0.80 (3H, *t*, *J*=6.7 Hz, H-29), 0.81 (3H, *d*, *J*=6.8 Hz, H-26)、 0.81 (3H, *d*, *J*=6.8 Hz, H-27)、 0.89 (3H, *d*, *J*=6.4 Hz, H-21)和 0.98 (3H, *s*, H-19), 而 5.32 (1H, *d*, *J*=5.1 Hz)為固醇類之 olefinic proton H-6 的吸收訊號, 4.98 (1H, *dd*, *J*=15.2, 8.1 Hz), 5.13 (1H, *dd*, *J*=15.2, 8.1 Hz)為固醇類中 stigmasterol ^{22,23} 的 olefinic proton 吸收訊號, S49 (1H, *m*)為 H-3 的吸收訊號。

碳譜(Chart 217)顯示不只 29 個碳,可知此化合物並非單一化合物,在 140.7 和 121.7 為固醇類烯碳雙鍵之 C-5 和 C-6 的吸收訊號, 而 138.3 和 129.2 則為固醇中 stigmasterol 之 C-22 和 C-23 的吸收 訊號。

綜合上述資料(Table 42)並與文獻值⁽¹⁹³⁾及標準品比對,得知此 化合物為 -sitosterol stigmasterol和 campesterol 三種植物固醇的混 合物,分子式為 $C_{29}H_{50}O$ 、 $C_{29}H_{48}O$ 和  $C_{28}H_{48}O$ 。其結構如下:



		¹ H	¹³ C			¹ H	¹³ C
1	$CH_2$		37.2	16	CH ₂		28.9
2	$CH_2$		31.6	17	СН		56.0
3	CH	3. 49 ( <i>m</i> )	71.8	18	CH ₃	0.65 (s)	11.8
4	$CH_2$		42.3	19	CH ₃	0.98 (s)	19.4
5	С		140.7	20	СН		36.1
6	CH	5.32 ( <i>d</i> , 5.1)	) 121.7	21	CH ₃	0.89 ( <i>d</i> , 6.4)	18.8
7	$CH_2$		31.9	22	CH ₂ ; CH	4.98 ( <i>dd</i> , 15.2, 8.1)	33.9; 138.3
8	CH		31.9	23	CH ₂ ; CH	5.13 ( <i>dd</i> , 15.2, 8.1)	26.0; 129.2
9	CH		50.1	24	СН		45.8
10	С		36.5	25	СН		29.1
11	$CH_2$		21.1	26	CH ₃	0.81 ( <i>d</i> , 6.8)	19.0
12	$CH_2$		39.7	27	CH ₃	0.81 ( <i>d</i> , 6.8)	19.8
13	С		40.5	28	CH ₂		23.0
14	CH		56.7	29	CH ₃	0.80 ( <i>t</i> , 6.7)	12.0
15	$CH_2$		24.3				

 Table 42. NMR spectral data of phytosterol (10)



Chart 214 EIMS (70 eV) spectrum of phytosterol(10)



Chart 215 IR spectrum of phytosterol(10)



Chart 216 ¹H-NMR (CDCl₃, 200 MHz) spectrum of phytosterol (10)



Chart 217 ¹³C-NMR (CDCl₃, 50 MHz) spectrum of phytosterol (10)

#### Stigmast-4-en-3-one (9) 化學結構的決定

本化合物經正己烷再結晶後,為白色針狀結晶,可溶於氯仿。 TLC 以苯/乙酸乙酯(4/1)為展開溶媒,以 10%硫酸為呈色劑,加熱 後,在 R_f=0.41 處呈紅色。熔點測定為 87-89 。對 Liebermann-Bürchard 試劑呈陽性反應(藍紫色),可知為固醇類之骨架。

EIMS 圖譜(Chart 218)中,顯示分子量為 412,由主要斷裂片為 m/z 412 (M⁺)、397 (M⁺-CH₃)、289、229 和 124 來看,可知此化合物 可能為¹-或⁴-3-keto-steroids⁽¹⁹¹⁾。

IR 光譜(Chart 219)顯示在 2926, 2856 cm⁻¹ 為飽和的碳氫的吸收, 1677 cm⁻¹ 為共軛酮基的吸收, 1621 cm⁻¹ 為 C=C 的吸收 UV 光譜(Chart 220), 在波長 246 nm (log 4.20)為 , -unsaturated carbonyl 的吸收訊 號。

氫譜(Chart 221)顯示有 6 個甲基之吸收訊號, 0.68 (*s*, H-18)、 0.78 (*d*, *J*=6.8 Hz, H-27)、 0.80 (*d*, *J*=6.8 Hz, H-26)、 0.81 (*t*, *J*=6.8 Hz, H-29)、 0.88 (*d*, *J*= 6.5 Hz, H-21)和 1.15 (*s*, H-19), 屬於 steroid 的 6 個 甲基吸收訊號,與 -sitosterol 之骨架類似; 2.34 (*m*)為 H-2 之吸收 訊號, 5.70 (*s*)為不飽和雙鍵(unsaturated double bond)的質子(H-4)之吸 收訊號,屬於 ⁴-3-keto- steroids⁽¹⁹⁴⁾。

碳譜(Chart 222)及 DEPT(Chart 223)顯示,共有 29 個碳,其中包含 6 個 methyls (11.9, 12.0, 17.3, 18.6, 18.9 和 19.8),11 個 methylenes (21.0, 23.0, 24.1, 26.0, 28.1, 32.0, 32.9, 33.8, 33.9, 35.6 和 39.5),8 個 methines (29.0, 35.5, 36.0, 45.7, 53.7, 55.8, 55.9 和 123.6)和 4 個四級碳(38.5, 42.3, 171.7 和 199.6)。

經由上述資料(整理如 Table 43)與文獻值⁽¹⁹⁵⁾,確定為 stigmast-4en-3-one,分子式為 C₂₉H₄₈O。其結構如下:



Lan	c 45. I think Spec	cual Data of Sug	Sindst		
	¹³ C-NMR(DEPT)	¹ H-NMR(mult, $J$ )		¹³ C-NMR(DEPT)	¹ H-NMR(mult, <i>J</i> )
C- 1	35.6(CH ₂ )		C-16	28.1(CH ₂ )	
C- 2	32.0(CH ₂ )	2.34( <i>m</i> )	C-17	55.8(CH)	
C- 3	199.6(C)		C-18	11.9(CH ₃ )	0.68(s)
C- 4	123.6(CH)	5.70( <i>s</i> )	C-19	17.3(CH ₃ )	1.15( <i>s</i> )
C- 5	171.7(C)		C-20	36.0(CH)	
C- 6	33.8(CH ₂ )		C-21	18.6(CH ₃ )	0.88( <i>d</i> , 6.5 Hz)
C- 7	32.9(CH ₂ )		C-22	33.9(CH ₂ )	
C- 8	35.5(CH)		C-23	26.0(CH ₂ )	
C- 9	53.7(CH)		C-24	45.7(CH)	
C-10	38.5(C)		C-25	29.0(CH)	
C-11	21.0(CH ₂ )		C-26	19.8(CH ₃ )	0.80( <i>d</i> , 6.8 Hz)
C-12	39.5(CH ₂ )		C-27	18.9(CH ₃ )	0.78( <i>d</i> , 6.8 Hz)
C-13	42.3(C)		C-28	23.0(CH ₂ )	
C-14	55.9(CH)		C-29	12.0(CH ₃ )	0.81( <i>t</i> , 6.8 Hz)
C-15	24.1(CH ₂ )				

 Table 43. NMR Spectral Data of stigmast-4-en-3-one (9)



Chart 219 IR spectrum of stigmast-4-en-3-one (9)







DEPT spectrum of stigmast-4-en-3-one (9) Chart 223

