圖目錄

Fig 2-1	L
	MDA formation in the liver, uterus and heart in rats for 4 or 24 weeks
	postovariectomy.
Fig 2-2	223
	SOD, Catalase and GSH-PX activities in the liver in rats for 4 or 24
	weeks postovariectomy.
Fig 2-3	324
	MDA formation in the cortex, striatum and hippcampus in rats for 4 or
	24 weeks postovariectomy.
Fig 2-4	1 25
	SOD, Catalase and GSH-Px activities in the cerebral cortex in rats for 4
	or 24 weeks postovariectomy.
Fig 2-5	526
	SOD, Catalase and GSH-Px activities in the striatum in rats for 4 or 24
	weeks postovariectomy.
Fig 2-6	5
	SOD, Catalase and GSH-PX activities in the hippocampus in rats for 4
	or 24weeks postovariectomy.
Fig 3-1	141
	Effect of GPT on the Fe ⁺² -independent, Fe ⁺² -dependent LPO and the
	difference between the Fe ⁺² stimulated level of LPO and the basal in the
	cerebral cortex of ovariectomized rats.
Fig 3-2	242
	Effect of GPT on the Fe ⁺² -independent , Fe ⁺² -dependent LPO and the
	difference between the Fe ⁺² stimulated level of LPO and the basal in the
	striatum of ovariectomized rats.
Fig 3-3	3
8	Effect of GPT on the Fe ⁺² -independent , Fe ⁺² -dependent LPO and the
	difference between the Fe ⁺² stimulated level of LPO and the basal in the
	hippocampus of ovariectomized rats.

Fig 3-4	I 44
	Effect of GPT on activities of SOD, Catalase and GSH-Px in the
	cerebral cortex of ovariectomized rats.
Fig 3-5	545
	Effect of GPT on the activities of SOD, catalase and GSH-PX in
	striatum of ovariectomized rats.
Fig 3-6	5 46
	Effect of GPT on the activities of SOD, catalase and GSH-Px in the
	hippocampus of ovariectomized rats.
Fig 3-7	<i>1</i> 47
	Effect of GPT on lipofuscin level in brain stem of ovariectomized rats.
Fig 3-8	348
	Effect of 12 weeks adminstration GPT on the Fe ⁺² -independent ,Fe ⁺² -
	dependent lipid peroxidation and their difference in Liver in
	ovariectomized rats.
Fig 3-9	49
	Effect of GPT on activities of SOD, catalase and GSH-Px in the liver of
	ovariectomized rats.
Fig 4-1	160
	Inhibition of deoxyribose degradation by GPT or mannitol.
Fig 5-1	173
	Effect of GPT on the bone density and bone calcium content of 4th
	lumbar vertebra in the ovariectomized rats.