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PhEC R
Pir51 is a protein of previously unknown function that exists in a complex with Rad51. We showed that
Pir51 and Rad51 expression are almost identically regulated during the cell cycle. Pir51, however, has
surprisingly little effect on homologous recombination repair, a process for which Rad51 is essential.
Taken together, it raises the possibility that over-expression of Pir51 may promote cancer, as is the case
for its pairing partner, Rad51. My proposal provides essential new insights for the Pir51 protein in the
control of DNA damage and repair. SPECIFIC AIM 1: Make a Pir51 knockout RNA. cell line. |
used two approaches to characterize functions of the Pir51 protein.  One is the loss of function strategy,
and the other is the gain of function strategy. In the loss of function method, an siPir51 expression
plasmid has been constructed and tested for down-regulating the protein level of Pir51. The other
approach is using the gain of function strategy to make a constitutive or/ and an inducible cell line
expressing the FLAG-tagged Pir51 protein. It provides invaluable insights into the molecular
mechanisms of the Pir51 protein in DNA repair pathways. SPECIFIC AIM 2: Identification of
proteins that interact with Pir51. Rad51 has been reported to biochemically interact with a large
number of proteins including RPA, BRCA2, and ATM. Since Pir51 binds to Rad51, we will
Immunoprecipitate and identify the Pir51 complex. We obtain a lot of information from Pir51
interacting proteins and explore different roles of Pir51. SPECIFIC AIM 3: Characterize the protein
stability of Pir51 and determine the defects of Pir51 in the DNA damage response. We examine the
protein stability of Pir51 by ubigitination. These studies ultimately provide essential new insight for a
thorough understanding of the intricate mechanisms in the control of DNA damage and repair.

Keywords: DNA repair, cell cycle, and ubigitination
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% ~ The understanding of the biological functions of Pir51 in cell cycle, homologous recombination,
DNA replication, and DNA repair pathways.

o~ iE 2 4e pirdl &7 AL F17 4E T 42 (genome instability)s-4p B #%4& - The Fanconi anemia (FA)
proteins are parsed into more than 11 complementation groups that control genome integrity, with
numerous papers focusing on this group of proteins and the biological processes they control. The FA
proteins include some of the most intensively studied DNA repair and cancer causing genes in biology.
Our studies will place Pir51 into its appropriate context as a regulator of DNA repair and genome
stability.

% -~ The establishment of connections between biochemical defects of Pir51 and clinical diseases

B~ 7 f2 DNArepair s #& » 23t p (575K 4 & (therapeutic intervention ) - Essentially, Pir51
is a newly identified regulator of DNA crosslink repair and a controller of genome integrity. Since
cancer is a disease of genome instability, Pir51 has a central role in controlling malignant transformation.
By defining how Pir51 performs surveillance of the genome to inhibit malignancy when it is expressed at
appropriate levels, a new understanding of DNA repair and possibly novel target proteins and pathways
for therapeutic intervention will be revealed.
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Figure 1: PIR51 ¥ it & DNA repair pathways #r$>i# ¢4 ¢ . There are two major DSB repair
pathways, non-homologous end joining (NHEJ) and homologous recombination (HR). DSBs induced
by radiation and UV light are preferentially repaired by NHEJ in mammalian cells. On the other hand,
DSBs resulting from blocked replication are repaired primarily by HR.  The five Rad51 paralogs, which
include XRCC3, appear to act as a functional unit to promote Rad51 assembly at DSB sites. Pir51 £2
Rad51 7 4p 3 &% & i % » F]p* PirS1 # st 7 Rad51-dependent pathway and Rad51-independent pathway.
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Pir51-deficiency causes chromosome breaks in MMC-treated cells

Treatment of HeLa cells with MMC alone, or with siRNA directed against Pir51 alone, did not increase
the frequency of chromosome breaks in metaphase chromosome spreads over untreated cells. MMC 7
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To make a constitutive cell line expressing the FLAG-tagged Pir51 protein and characterize the
Pir51 protein complex:

To understand the roles of Pir51, we made a stable cell line expressing. Meanwhile, we made a peptide
antibody specific for the amino terminus of Pir51. We performed one dimensional (figure 2) and two
dimensional (figure 3) gels to characterize the pir51 protein complex.

Determine whether Pir51 interacts with BRCA2 and other proteins.

To examine whether Pir51 interacts with BRCAZ2, we used the immunostaining assays to check if Pir51
and BRCAZ colocalize (figure 4). Meanwhile, we also examined whether Pir51 interacts with RPA
(replication protein A) (figure 5). In addition, we did co-IP (immunoprecipitation). We used anti-Pir51
antibody to immunoprecipitate the Pir51 protein complex and analyzed the protein interaction with
western blotting (figure 6).

Identifying proteins that interact with Pir51

We performed two approaches to isolate and identify Pir51 associated proteins. One of experimental
designs is using Matrix Assisted Laser Desorption lonisation (MALDI)-Time of Flight (TOF) mass
spectrometry. The other method is analyzing by screening HeLa cDNA library via the bacteriomatch
system. This screen system is similar to the yeast two-hybrid system, but is a fast and reliable system.
After the fourth round screen, the positive clones were sequenced. DNA sequences were blasted via
NCBI. Positive clones were categorized on the basis of protein functions.

Characterizing the interacting proteins of the Pir51 protein:

We performed the immunoprecipitation method to demonstrate interactions between endogenous
interacting proteins and Pir51. In addition, we did immunostaining to show endogenous interacting
proteins and Pir51 co-localized together.  After double-confirmation, we characterize the biological
functions of interacting proteins and Pir51.

Determine if the Pir51 protein co-localizes with other DNA repair proteins:
We performed the immunoprecipitation method to demonstrate interactions between endogenous
interacting proteins (PCNA , ATR, and RPA70).

Characterize gene expression profiling in the absence or presence of Pir51 by the cDNA
microarray hybridization

We applied the microarray to characterize genes regulated by Pir51. RNA samples were extracted
from Pir51 knockdown cells and control cells. We analyzed three major categories of genes
associated with Pir51 specifically in DNA repair pathways, DNA replication, and cell cycle.



To determine the defects of Pir51 in the DNA damage response
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To make a constitutive cell line expressing the FLAG-tagged Pir51 protein: We obtain a stably
expressing Flag-pir51 cell line and also make a peptide antibody against Pir51. We performed
immunoprecipitation and then ran the SDS-PAGE to analyze the Pir51 protein complex (figure 2).
Associated proteins are analyzing by mass spectrometry.

Ab No Ab
= Rl |

170kd
130kd

95kd

72kd

55kd

43kd

# By

| W sk
S—

Pir51 —»

26kd

Figure 2 the pir51 protein
complex. We extracted proteins
from HelLa cells. Nuclear
extract fraction was incubated
with or without Pir51 antibody for
2 h. After washed, samples were
applied into the SDS-PAGE. Gel
was stained with a silver staining
kit (Bio-Rad). Compared with the
no antibody control lane, the
specific bands are shown as
arrows indicate. Specific bands is
analyzing with mass
spectrometry.

In addition, we did two dimensional gels to further characterize the Pir51 protein complex (figure 3).
So far, as shown in figure 3, the specific spots were isolated and separated. We analyzed what proteins

they are.



Figure 3 characterization of the pir51 protein complex using two dimensional gel. We chose wide pH
range (pH 3-10) stripes from Bio-Rad biocompany to analyze the difference. Red circles indicate the
specific spots were detected only in the pir51 protein complex.

Immunoprecipated with Pir51Ab no Ab

Determine whether Pir51 interacts with BRCA2 and other proteins.
Indeed, we found pir51 co-localizes with BRCA2.  As we showed previously in preliminary data,
Pir51 interacts with endogenous BRCAZ2 (figure 4).

Figure 4 Pir51 co-localizes
with BRCA2. We performed
the immunostaining assay and
found Pir51 co-localizes with
BRCAZ2. Red: Pir51, Green:
BRCAZ2, Blue: DAPI.

Pir51 can be detected in the higher expression level in the S phase during cell cycle. Therefore, we
examine whether pir51 interacts with replication protein A (RPA).  Surprisingly, RPA32 interacts with
and co-localizes with Pir51 (figure 5 and 6).  Since there are three members (RPA70, RPA32, and
RPA14) in the RPA family, we are detecting whether pir51 interacts with and co-localizes with RPA70
and RPA14.



Figure 5 Pir51 co-localizes with
RPA32. We performed the
immunostaining assay and found Pir51
co-localizes with RPA32. Red: Pir51,
Green: RPA32, Blue: DAPI

anti-RPA32 Ab

Figure 6 Pir51 interacts with RPA32. We performed the co-IP assay and found RPA32 in the Pir51
protein complex. Lane 1: no antibody, Lane 2: IP with anti-pir51 antibody, Lane 3: 2% HelLa lysate imput.

Determine whether Pir51 interacts with PCNA and other proteins
Indeed, we found pir51 co-localizes with PCNA (figure 6). Meanwhile, we examined whether pir51
co-localizes with ATR.  Surprisingly, we did find pir51 co-localizes with ATR (figure 7).

Figure 6. Pir51 co-localizes with
PCNA. We performed the
immunostaining assay and found Pir51
co-localizes with PCNA. Red: Pir51,
Green: BRCA2, Blue: DAPI.




Figure 7. Pir51 co-localizes with
ATR. We performed the
immunostaining assay and found Pir51
co-localizes with ATR. Red: Pir51,
Green: ATR, Blue: DAPI.

Pir51 can be detected in the higher expression level in the S phase during cell cycle. Therefore, we
examine whether pir51 interacts with replication protein A (RPA).  Surprisingly, RPA32 interacts with
and co-localizes with Pir51.  Since there are three members (RPA70, RPA32, and RPA14) in the RPA
family, we detected whether pir51 interacts with and co-localizes with RPA70 and RPA14. Indeed, we
found Pir51 co-localized with RPA70 (figure 8).

Figure 8. Pir51 co-localizes
with RPA70. We performed the
immunostaining assay and
found Pir51 co-localizes with
RPA70. Red: Pir51, Green:
RPA70.

Characterize gene expression profiling in the absence or presence of Pir51 by the cDNA
microarray hybridization

We checked the protein expression level of the Pir51 knockdown cells (figure 9) and chose clone 2
to further gene expression microarray assays. We are analyzing the data.

1

2 3 4
woovsvs |

Figure 9. The protein expression level of the Pir51 knockdown cells.  Proteins were separated and
analyzed using western blotting. Lane 1: HeLa lysate, lane 2, 3, and 4: the Pir51 knockdown cells.



Identifying proteins that interact with Pir51:

We performed the bacteriomatch system by screening a HeLa cDNA library. Total 57,371clones were

screened, and there are initially 345 positive clones.

After the forth round screening, we obtained

147 positive clones (Table 1). There are two promising positive clones: CDC20 (cell cycle division
20 homolog) and NDRG1 (N-myc downstream regulated gene 1). CDC20 functions as a regulator of
the M phase of the cell cycle, while NDRG1 plays a role in hypoxyia. We then performed the
GeneGo program to analyze the network among the interacting proteins and Pir51 (figure 10).

Table 1 positive clones interact with Pir51

Screening total
7% 6 iE Sl 57371 i
BoAe IR A 3-AT & iE 5 & A R ik 345
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Figure 10. The pir51 protein complex network. Positive Pir51 associated proteins are analyzed via the

GeneGo software program.
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Characterizing the interacting proteins of the Pir51 protein:

We examined two positive clones: CDC20 and NDRG1 by using the immunostaining method. Indeed,
we found pir51 co-localizes with CDC20 (figure 11) and NDRGL1 (figure 12). In addition, Pir51
interacts with endogenous CDC20 (figure 13).

Figure 11. Pir51 co-localizes with
CDC20. We performed the
immunostaining assay and found Pir51
co-localizes with CDC20. Red: Pir51,
Green: CDC20.

Figure 12. Pir51 co-localizes with
NDRGL1. We performed the
immunostaining assay and found Pir51
co-localizes with NDRG1. Red: Pir51,
Green: NDRG1.

anti-CDC20 Ab -

Figure 13. Pir51 interacts with CDC20. We performed the co-IP assay and found CDC20 in the Pir51
protein complex. Lane 1: 2% HelLa lysate imput, lane 2: no antibody, lane 3: IP with anti-pir51 antibody.
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To determine the defects of Pir51 in the DNA damage response
® LE2ATFERLEY

| Symbol | Logf# lﬁ:?ﬁ(sipixﬁlfﬂela) Definition
IFI27 5691895026 |  51.69292833  Homo sapiens interferon, alpha-inducible protein 27 (IFI27), transcript variant 2, mRNA.
IFI35 1296153073 | 2455731912  Homo sapiens interferon-induced protein 35 (IFI35), mRNA.
IFI44 22988058 | 4.920502991 Homo sapiens interferon-induced protein 44 (IFI44), mRNA.
IFl44L 3.615098232 | 12.25329827  Homo sapiens interferon-induced protein 44-like (IFI44L), mRNA.
IFI6 | 4644364808 | 25.00881524  Homo sapiens interferon, alpha-inducible protein 6 IFIB), transcript variant 2, mRNA.
IFI6 | 2513261148 | 5709091356 Homo sapiens interferon, alpha-inducible protein 6 (IFIG), transcript variant 3, mRNA.
IFIH1 2.038065739 | 4.10694532  Homo sapiens interferon induced with helicase C domain 1 {IFIH1), mRNA.
IFITL 1197754017 | 2.293822913  |Homo sapiens interferon-induced protein with tetratricopeptide repeats 1 (IFIT1), transcript variant 2, mRNA.
IFIT2 | 1507935622 |  2.844027909  Homo sapiens interferon-induced protein with tetratricopeptide repeats 2 (IFIT2), mRNA.
IFIT3 19663796 | 3.907862213 Homo sapiens interferon-induced protein with tetratricopeptide repeats 3 (IFIT3), mRNA.
IFIT3 2.188388835 |  4.557961803  Homo sapiens interferon-induced protein with tetratricopeptide repeats 3 (IFIT3), mRNA.
IFIT3 15045173 | 2.837297244 Homo sapiens interferon-induced protein with tetratricopeptide repeats 3 (IFIT3), mRNA.
IFITM1 | 1338021762 |  2.528044331  Homo sapiens interferon induced transmembrane protein 1 (9-27) (IFTM1), mRNA.
IFITM3 1006413319 | 2.008910539  Homo sapiens interferon induced transmembrane protein 3 (1-8U) (IFITM3), mRNA.
IRF1 1598669835 | 3.028639439  Homo sapiens interferon regulatory factor 1 (IRF1), mRNA.
IRF7 | 1370884723 | 2.5862912 |Homo sapiens interferon regulatory factor 7 (IRF7), transcript variant b, mRNA.
IRF7 | 2.265306548 = 4.807565616 Homo sapiens interferon regulatory factor 7 (IRF7), transcript variant b, mRNA.
IRF9 1759111053 3.384894931 Homo sapiens interferon regulatory factor 9 (IRF9), mRNA.
CDKNIA | 1.003625669 | 2.005032566 |Homo sapiens cyclin-dependent kinase inhibitor 1A (p21, Cipl) (CDKN1A), transcript variant 1, mRNA.
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