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The autoignition temperature (AIT) is defined as the lowest tem-
perature at which a substance will ignite in the absence of a spark
or flame. Based on the thermal theory of ignition and on classical
reaction-rate theory, the AIT can be regarded as the temperature
to which a combustible mixture must be raised so that the rate
of heat evolution from the exothermic oxidation reactions of the
system will just overbalance the rate at which heat is lost to the
surroundings. The ability of a substance to spontaneously ignite
introduces potential fire hazards for all who must handle, trans-
port, or store combustible materials. Thus, risk assessment methods
such as API-581 usually take the AIT of a substance as an essential
input parameter to define the possible consequences of a leakage
of combustible liquids [1]. Autoignition is also studied in relation to
the performance of combustion engines through the phenomenon
of engine knock [2].

As the AIT is the temperature at which a material will sponta-
neously ignite when exposed to the atmosphere, it depends not
only on the chemical and physical properties of the substance but
also the method and the apparatus employed for its determina-
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ition temperatures (AIT) of organic compounds is proposed based on the
GC) approach. This model has been built up using a 400-compound train-
ese training data is 0.8474, with an average error of 32 K and an average
redictive capability of the proposed model has been demonstrated on an
e predictive capability for these validation data is about 0.5361, with an

erage error percentage of 11.0%. The proposed model is shown to be more
blished works. This improvement is largely attributed to the modifications
imating the AIT instead of the type of empirical model chosen. Through
ting, it was found that the empirical model should be chosen as a polyno-
to the known errors in experimentally determining the AIT, the proposed
imate of the AIT for the organic compounds in the training set, and can
mpounds whose AIT is as yet unknown or not readily available to within
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tion, such as the test pressure, oxygen concentration, and volume
and material of the vessel used. Hence, it is very common that the
AIT of a specific compound is reported differently in different liter-
atures; these differences may be as much as 300 K. For example, as
shown in Table 1, the AIT of acetaldehyde is reported to range from
nition temperatures of organic compounds by the structural group
8.05.137

413 to 758.15 K in five different authoritative sources [3–7]. Table 1
lists some compounds for which the difference in AIT is more than
100 K across separate sources. One of the important reasons that
results in this uncertainty is the value of AIT reported in different
databases may be conducted by different experimental method.
Even in the same database, different compounds may be conducted
in different experimental methods [2]. However, all databases usu-
ally reported the AIT value without the information of experimental
method employed. For example, there is no way to trace back
the data reported in the hazardous chemical database or SAX’S
dangerous properties of industrial materials. Even in the famous
DIPPR® project, the data quality of AIT is still flagged as “uneval-
uated”. Since AIT is usually reported without the experimental
method employed, it is not possible to account this bias by includ-
ing experimental method as an additional explanatory variable
or to group them by different experimental methods. In addition,
because visual inspection is chosen to detect the sudden appear-
ance of a flame inside the autoignition vessel, determining AIT is
greatly limited by human capabilities [8]. Usually, the average error
in experimentally determined AIT values is deemed to be about
±30 K in the literature [9]. Besides this problem, the determination
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f. [4]
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9.26
9
8
9
8.15
3.15
8.15
Table 1
Experimental AITs for selected compounds from different sourcesa

Compound name Ref. [3] Re

2-Butanone 677 78
2,4-Dimethylphenol 753 87
Hexadecanoic acid 513 65
Piperazidine 593 72
1,3-Diisopropylbenzene 722 34
Benzoyl chloride 873 35
Methylhexanone 728 46
2-Methylnitrobenzene 693 57
2,4-Dihydroxy-2-methylpentane 698 57
1-Methyl-2-pyrrolidinone 518 61
2-Heptanone 805 66
Crotonic acid 773 66
1,4-Benzenedicarboxylic acid 951 76
2,4-Dimethylpentane 598 70
1,3-Benzenedicarboxylic acid 973 76
Phenol 878 98
Isobutyl formate 698 59
Acetaldehyde 413 75

aThe AIT values are in K.

of the AIT by experiment is very laborious and is not always feasible
[8]. In this light, the ability to estimate AIT values by mathematical
modeling will be a cost-efficient and critical aid to this discipline.

Multivariate statistical methods such as multiple linear regres-
sion and principal component regression are important approaches
to predict the AITs of organic compounds. Several studies have con-
sidered using the physical properties of compounds, such as the
critical pressure, parachor, and molecular weight, as descriptors
to predict the AIT [2,9,10–13]. Such approaches are usually known
as quantitative structure–property relation (QSPR) approaches in
which the molecular structures are characterized by the various
physical properties of the compound. The underlying assumption in
the QSPR approach is that there is some sort of relationship between
the properties of interest and the molecular descriptors (i.e., the
measurable physical properties). Thus, the QSPR approach involves
multivariate analysis using several measurements (or descriptors)
to deduce the desired property. Although the QSPR approach has
been shown to estimate the properties of compounds with certain
degree of success, it is applicable, however, only if the measure-
ments of the molecular descriptors are available. On the other hand,
the structure group contribution (SGC) method directly uses the
information of the molecular structure instead of the physical prop-
erties to predict the AIT. Thus, the SGC method may be a more
Please cite this article in press as: C.-C. Chen, et al., Prediction of autoig
contribution approach, J. Hazard. Mater. (2008), doi:10.1016/j.jhazmat.200

attractive alternative as it is still applicable when the physical prop-
erties of the target compound are unavailable and even if the target
compound is an unknown compound.

The SGC method has recently found wide commercial applica-
tion in the form of computer programs that estimate the properties
of pure substances from their chemical structures, for example, the
ASTM CHETAH [14]. While the SGC approach has been successfully
applied to predict many of the properties of compounds, very lit-
tle literature is available on predicting the AIT through the SGC
approach. Albahri [15] proposed a SGC method in which a polyno-
mial of degree 4 is suggested as an empirical model for predicting
the AITs of 137 pure hydrocarbons with an average error percentage
of 4.2% and a maximum error percentage of 31%. To consider organic
compounds other than pure hydrocarbons, Albahri and George [16]
developed a predictive model based on a 490-compound database
in which the organic compounds include hetero-atoms such as oxy-
gen, and nitrogen. In their work, they first chose a polynomial of
degree 4 as the empirical model, but found that the average error
percentage and maximum error percentage for such a model were
9.2% and 125%, respectively. Because of the limited success, they
proposed a three-layer artificial neural network (ANN) structure
Ref. [5] Ref. [6] Ref. [7]

– 788.7 778
– – 872
– – –
– – 593
– – –
– – 470.2
– – –
– – 693
– – 579
– – 543
– 805.93 666
– – 669
– – 769
– – –
– – –

988 – 988
593 – –
448 510.93 458

to improve the predictive performance. This ANN-SGC approach
seemed to offer a significant improvement in performance, with
average error percentage of 2.8% and a maximum error percentage
of 20%; however, although this ANN-SGC approach exhibited bet-
ter performance than that of the classical SGC approach, it usually
included too many weighting parameters and was also inconve-
nient for desk calculation. Thus, there is still a demand for a more
accurate method to predict the AIT by the classical SGC approach.

This article is organized as follows: First, the AIT database and
group definitions for this work are discussed in Section 2. In Section
3, the mathematics for developing an empirical model is discussed.
A brief discussion on choosing and evaluating the empirical model
is provided in this section. The results of this work and some discus-
sion are provided in Section 4. Finally, the conclusions are presented
in Section 5.

2. Database and group definitions

In this work, the prediction model was developed and validated
from a 483-compound database in which some of the organic com-
pounds contained hydrogen, carbon, oxygen, nitrogen, or halogen
atoms. In this database, there were 150 pure hydrocarbons, and
the other 333 compounds included hetero-atoms. These 483 com-
nition temperatures of organic compounds by the structural group
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pounds were randomly distributed into a training set with 400
compounds and a validation set with 83 compounds. As mentioned
earlier, different AIT values were reported in different literature
sources, thus the value in AIChE-DIPPR was adopted as the standard
in this work. However, in the case that the AIT of a compound was
not available in DIPPR or the AITs reported in all the other literature
sources were consistent with each other but differed from that of
DIPPR, the non-DIPPR value was adopted. The corresponding AITs
for all 483 compounds in this work are listed in Tables A1 and A2.
In these 483 data, 300 data were taken from AIChE-DIPPR and the
other 183 data were taken from non-DIPPR sources.

To elucidate the classification of group definitions for estimating
the AITs of organic compounds, a brief review of the mechanism of
the autoignition process is provided below. Swarts and Orchin [17]
reported that the autoignition mechanism proceeds by a free radical
reaction and the stability of free-radical intermediates determines
the ease of oxidation. Thus, the AIT of a compound is highly affected
by its molecular structure because the stability of the free radicals
that are formed is related directly to the molecular structure of the
compound. For hydrocarbons, decreasing the chain length, addition
of methyl groups, unsaturation, branching, and cyclic and aromatic

dx.doi.org/10.1016/j.jhazmat.2008.05.137
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Table 2
Group contribution for estimation of the AIT

Group no. Group Remark MLR Degree 2 Degree 3 Degree 4

1 CH3 −22.6813 −29.9804 −22.8857 −23.1736
2 >CH2 −21.3527 −39.6875 −28.5961 −30.5288
3 >CH 4.0509 0.5544 1.3340 0.5424
4 >C< 56.6464 54.9627 49.7423 48.2437
5 CH2 −17.7405 −31.9088 −21.6668 −22.9287
6 CH– −39.7751 −66.2563 −46.3286 −49.5017
7 >C −31.1140 −36.4970 −32.7605 −33.1968
8 ≡CH −71.9616 −117.6474 −81.0169 −85.7134
9 ≡C −55.6234 −94.6821 −64.4957 −68.9986

10 >CH2 −24.6453 −40.1768 −28.4401 −30.1512
11 >CH −4.0091 −8.4713 −6.7179 −7.3545
12 >C< −15.3282 −62.9661 −21.7342 −26.1364
13 CH 20.5679 17.5968 19.5293 20.2876
14 >C −48.4525 −43.7461 −49.0687 −50.6287
15 CH 6.1265 2.5173 6.2350 6.1348
16 >C (Fused) 10.0809 7.8480 5.8332 4.9528
17 >C (Nonfused) 22.0000 24.2898 15.9976 14.9799
18 CH3 (Attached to at least

one halogen atom)
120.6545 82.3095 103.2738 114.6114

19 >CH2 −3.0301 −17.5437 −9.8344 −11.3142
20 >CH −23.3669 −37.6850 −24.2759 −26.4969
21 >C< 242.6675 247.3442 293.5064 287.6001
22 F (Nonring) −42.1638 −65.1907 −45.0477 −48.2274

37.
−26.

49.
27.
54.

−10.
43.

−54.
−27.

10.
46.

−120.
7.

35.
−17.
−0.
22.
−1.

−42.
−35.

33.
4 82.

−46.
23 Cl (Nonring)
24 Br (Nonring)
25 F (Ring)
26 Cl (Ring)
27 Br (Ring)
28 -OH (Alcohol)
29 OH (Phenol)
30 O (Nonring)
31 O (Ring)
32 >C O (Nonring)
33 >C O (Ring)
34 O CH (Aldehyde)
35 COOH (Acid)
36 -COO (Ester)
37 NH2
38 >NH (Nonring)
39 >NH (Ring)
40 >N (Nonring)
41 >N (Ring)
42 N (Nonring)
43 N (Ring)

4 CN
45 NO2

structures will elevate the AIT [18]. The relationship between the
AITs of lower alkanes and their corresponding alcohols and aldehy-
Please cite this article in press as: C.-C. Chen, et al., Prediction of autoig
contribution approach, J. Hazard. Mater. (2008), doi:10.1016/j.jhazmat.200

des is in the following order: alkane > alcohol > aldehyde [17]. It has
also been reported that there is no distinction in the AITs for the cis
and trans structure orientations in olefins and cyclic compounds.
It was found to be unnecessary to account for the location of the
alkyl substitutions on the benzene ring in the para, meta, and ortho
positions in aromatics; the location of the alkyl branches along the
chain for iso-paraffins and iso-olefins; the location of the double
bond along the chain in olefins; and the locations of the alkyl sub-
stitutions and the ring size for naphthenes [15]. Albahri and George
[16] also indicated that using two sets of structural groups, one
for the aromatic ring in aromatics and the other for the cyclic ring
in naphthenes, did not result in a significant improvement in the
prediction performance.

Table 2 summarizes all the group types used for estimating the
AIT in this work. The group definitions in this work basically follow
those in Albahri and George’s work [16]; however, some of them
have been modified as follows. After carefully examining the AITs
of organic compounds in our database, it was found that the condi-
tion of the carbon to which the halogen group is directly attached
affects the AIT of the compound. This effect may be understood
from the type of chemical bonding. A carbon that bears one or
8512 34.3163 33.9332 33.9492
7706 −38.4893 −27.8628 −29.3678
5353 49.8512 88.8289 90.5979
1279 10.1433 79.4122 73.0277
0271 26.6567 53.4870 50.0560
2828 −15.2847 −8.9378 −9.0980
0417 19.8772 134.3524 135.0214
7172 −102.1454 −70.0383 −74.8046
3097 −40.1570 −28.4801 −29.4928
3136 4.4457 8.1173 7.4529
6977 37.5549 57.5044 58.9186
8556 −208.1346 −138.3186 −147.3836
4758 −5.7007 4.0037 3.5463
2785 34.2704 35.2011 35.1839
8076 −33.4276 −17.7579 −18.9367
7601 1.5113 −1.8223 −1.5263
7367 22.3273 24.5474 25.8972
1683 −20.3543 −4.7926 −8.1033
3160 −47.2060 −49.3834 −51.0105
3780 −75.6105 −41.9897 −47.4827
2611 3.5793 31.8743 24.8482
0245 86.5584 80.5038 81.3197
9847 −65.2997 −52.7670 −53.2661

more halogen groups forms a polar covalent bond with the halo-
gen group instead of the pure covalent bonds that exist between
nition temperatures of organic compounds by the structural group
8.05.137

the carbon atoms; this polar covalent bond will change the ability
of the carbon atom to form free radicals. In Table 2, groups 18–21
are introduced to elucidate the effect of the addition of halogen
atoms to paraffins; however, the effect of adding halogen groups
to organic compounds was found to be different for compounds
with nonring and ring structures. It was found that adding halogen
atoms increased the AIT for nonring hydrocarbons, but decreased
the AIT for ring-structure compounds. Thus, the halogen atoms
were divided into nonring attachment groups (groups 22–24) and
ring attachment groups (groups 25–27) in this study. Finally, to
include organic compounds such as 1-hexyne and hexyl acetylene,
group 9 is introduced in this work to explain their structure.

3. Developing the model

The simplest empirical model to predict the AIT of an organic
compound is the multiple linear regression (MLR) model:

AIT = fo +
n∑

i=1

�ifi (1)

dx.doi.org/10.1016/j.jhazmat.2008.05.137
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where n is the number of group types defined in Table 2; vi, the
number from group i in a molecule; fi (i = 1,. . .n), the group contri-
bution for the ith defined group; and f0, the intersect of the fitting
line. For a more accurate estimation, other nonlinear models could
be adopted as the empirical model. In the literature, the nonlinear
form of Eq. (2) has been announced to be the most suitable form
for predicting AITs [15,16].

AIT = a′ + b′

(∑
i

vifi

)
+ c′

(∑
i

vifi

)2

+ d′

(∑
i

vifi

)3

+e′

(∑
i

vifi

)4

(2)

However, such a claim is debatable. First, the parameter b′ in Eq.
(2) is a redundant parameter. It is obvious that the following Eq.
(3) has the same fitting and predictive abilities as Eq. (2), but the
number of unknown parameters in Eq. (3) is one less than that in
Eq. (2). It is well known that solving a nonlinear regression prob-
lem is usually time-consuming and can easily get bogged down at

Fig. 1. Parity plot of Eq. (2) for four different initial gue
 PRESS
s Materials xxx (2008) xxx–xxx
nition temperatures of organic compounds by the structural group
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local solutions; and a redundant parameter will aggravate these
two problems. Second, it is obvious that Eq. (3) can be reasonably
taken as a modified form from the conventional MLR model. So,
the terms corresponding to parameters b, c, and d in Eq. (3) could
be considered as the correcting terms for the MLR model, and the
results of the MLR model could be then taken as the start point
(i.e., all fi’s and a are taken from the MLR, and the others are set to
be zero) to solve the nonlinear regression problem of Eq. (3). For
a given iterative algorithm, a good start point always decreases its
possibility of being bogged at local solutions and enhance its effi-
ciency, thus Eq. (3) is superior to Eq. (2) for building a model in this
respect.

AIT=a +
(∑

i

vifi

)
+b

(∑
i

vifi

)2

+c

(∑
i

vifi

)3

+d

(∑
i

vifi

)4

(3)

To demonstrate the superiority of Eq. (3), data listed in Table A1
are used to build the models of Eqs. (2) and (3), respectively. Then,
data listed in Table A2 are used to compare their predictive capabil-
ity. The SGC groups’ definitions listed in Table 2 and the linearized
algorithm listed in Eq. (8) is employed to calculate the parameters

sses: (a) case 1; (b) case 2; (c) case 3; (d) case 4.

dx.doi.org/10.1016/j.jhazmat.2008.05.137
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in these two equations, respectively. There are four different cases
of initial conditions considered in present study, which includes:
(1) case 1 – initial guesses of parameters a and fi’s are set to be
the values obtained from the results of a MLR model, and all other
parameters are set to be zero; (2) case 2 – initial guesses of param-
eters a and fi’s are set to be the values obtained from the results
of a MLR model, and all other parameters are set to be one; (3)
case 3 – initial guesses of parameters fi’s are set to be the values
obtained from the results of a MLR model, and all other parameters
(including a) are set to be zero; and (4) case 4 – initial guesses of
all parameters are set to be zero.

Figs. 1–2 demonstrate the fitting abilities of the resulting mod-
els of these two equations for these four different cases of initial
conditions, respectively. As shown in Fig. 1, the resulting models
of Eq. (2) are very sensitive to the initial conditions employed, and
it obviously get bogged down at the local solution in both cases
2 and 4. However, as shown in Fig. 2, the resulting models of Eq.
(3) are almost the same in these four cases, which means that a
model of this form is more robust to initial conditions than that
of Eq. (2). Table 3 compares the fitting abilities and the predictive
abilities of the resulting models of these two equations for these

Fig. 2. Parity plot of Eq. (3) for four different initial gue
 PRESS
s Materials xxx (2008) xxx–xxx 5
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Comparision of robustness to initial conditions between Eqs. (2) and (3)

Initial conditions Eq. (2) Eq. (3)

R2 Q2 R2 Q2

Case 1 0.8477 0.5345 0.8477 0.5362
Case 2 0.7367 −0.3191a 0.8469 0.5336
Case 3 0.8478 0.5354 0.8472 0.5346
Case 4 0.0025 0.0018 0.8477 0.5347

a In this case, the predictive error of the seventh compound is found to be up to
1000 K.

four different initial conditions. As shown in Table 3, the result-
ing model of Eq. (2) for case 2 gives a very poor performance in
prediction, although the fitting performance for this case seems
to be of an acceptable value. In this case, it was found that the
fitting error of the N,N-Dimethylbenzenamine in the testing set
is more than 1000 K (the experimental value is 644.26 K, but the
predictive value is −427.7 K), and the predictive error of this com-
pound makes the Q2 to be an unreasonable negative value. This
result shows that when redundant parameters are introduced into

sses: (a) case 1; (b) case 2; (c) case 3; (d) case 4.

dx.doi.org/10.1016/j.jhazmat.2008.05.137
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an empirical model, there is an increased chance for the estimation
process to draw noises and other spurious phenomena from the
training data into the resulting model, which always decreases the
predictive capability of the resulting model.

The sum of squared errors is the usual index to evaluate the
feasibility of a given model. In this study, the quantitative measure
of goodness of fit is given by the explained variation in the training
set (R2), whereas the predictive capability, on the other hand, is
given by the predicted variation in the validation set (Q2). These
two indices are defined as follows.

R2 = 1 −
∑K

i=1(yi − ŷ)2∑K
i=1(yi − ȳ)2

, for the training set

Q 2 = 1 −
∑K

i=1(yi − ŷ)2∑K
i=1(yi − ȳ)2

, for the validation set

where yi is the ith sample measurement; ŷi, the predicted value of
the ith sample; ȳ, the average of all sample measurements. Usually,
the R2 and Q2 vary differently with increasing model complex-
ity (i.e., number of parameters in a model). R2 is inflationary and
approaches unity as the model complexity increases. Hence, it is not
sufficient to only have a high R2 for a practical model. The goodness
of predictive capability Q2, on the other hand, is not inflationary and
will not automatically approach unity with increasing model com-
plexity. Commencing with a very simple model, Q2 will increase
with model complexity. However, at a certain degree of complexity,
Please cite this article in press as: C.-C. Chen, et al., Prediction of autoig
contribution approach, J. Hazard. Mater. (2008), doi:10.1016/j.jhazmat.200

Q2 will reach a plateau and subsequently reduce. Usually, the point
at which Q2 reaches a plateau is the trade-off point between the
fitting and predictive capability. Besides aforementioned method,
a common alternative to determine model complexity is to exam-
ine the hypothesis test for a given parameter in that model. In this
study, both Q2-statistics and hypothesis testing are used to deter-
mine whether the complexity of an empirical model is adequate or
not.

The determination of the least-squares solution of Eq. (3) is a
nonlinear regression problem. There are many different methods
for solving this problem, and the solutions from different meth-
ods may differ slightly. In this study, the linearized algorithm and
asymptotic confidence intervals are adopted [19]. The following
paragraph briefly discusses this method.

Consider the following nonlinear empirical model:

yi = f (xi; �) + εi, i = 1, 2 . . . . . . n

where yi is the AIT measurement of ith sample; n, the number of
compounds in the training set; xi ∈ RK, the number of group i in
a molecule; K, the number of function groups defined in Table 2;
� ∈ RP, the parameter vector (includes fi, a, b, c, and d) in the empir-

Table 4
Parameters for polynomial models of different degrees

Coefficients MLR Degree 2

a 731.4902 771.1828
b – 8.5082E−0
c – –
d – –

Table 5
95% confidence intervals for parameters a, b, c and d in different models

Model degree a− a+ b− b+

2 7.17984E+02 8.24381E+02 6.76307E−04 1.02534E−0
3 7.07108E+02 7.93505E+02 −1.68051E−03 −4.83678E−0
4 7.08928E+02 7.99141E+02 −1.67053E−03 1.57982E−0
 PRESS
s Materials xxx (2008) xxx–xxx

ical model; and P, the number of parameters in the model. εi is the
measurement error and is assumed to be i.i.d. N(0,�2). Let us define

y ≡ [y1, y2, . . . , yn]T (4)

fi(�) ≡ f (xi; �) i = 1, 2, · · ·, n (5)

f (�) ≡ [f1(�), f2(�), . . . , fn(�)]T (6)

F(�) ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂f1(�)
∂�1

∂f1(�)
∂�2

· · · ∂f1(�)
∂�p

∂f2(�)
∂�1

∂f2(�)
∂�2

· · · ∂f2(�)
∂�p

...
...

∂fn(�)
∂�1

∂fn(�)
∂�2

· · · ∂fn(�)
∂�p

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=
[(

∂fi(�)
∂�j

)]
(7)

Let �* be the true value of �, and �̂, which is the convergent
solution of the following iterative Eq. (8), be the estimate of �.

�(a+1) = �(a) + (FT (�(a))F(�(a)))
−1

FT (�(a))[y − f (�(a))] (8)

It has been shown in the literature that an approximate, for large n,
100(1 − ˛)% confidence interval for �r is as follows [19].

�̂r ± t˛/2
n−ps
√

ĉrr (9)

where �r is the rth element of �; tn−p is the t-distribution with
(n − p) degrees of freedom; s is the sample standard deviation; and
[(ĉrs)] = Ĉ−1 with Ĉ = F̂T (�̂)F̂(�̂).
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4. Results and discussion

For a given model, the group contributions (fi) of different
molecular groups and the other parameters in the model were
solved to minimize the squared error for the 400-compound train-
ing set. Different models, including MLR and polynomial models of
degree 2–4, were considered in this study. The parameters in the
MLR model were calculated by the classical least-squares method.
For nonlinear models, Eqs. (8) and (9) were used to the solve model
parameters and estimate their corresponding 95% confidence inter-
vals, respectively. Table 2 summarizes all the group contributions
for the interested models in this work, and the other parameters
(i.e., a, b, c, and d) for the corresponding models are listed in Table 4.
Table 5 lists the 95% confidence intervals for the parameters a, b, c,
and d in all the nonlinear models. The parameters in Tables 2 and 4
were then used to calculate the predicted AITs of the correspond-
ing model for the 83 compounds in the validation set. The fitting
abilities and predictive abilities of these models were then calcu-
lated according to the predicted AITs. The fitting abilities of the
different models for estimating AIT are summarized in Table 6, and

Degree 3 Degree 4

750.3065 754.0344
4 −8.6444E−04 −7.5627E−04

−4.5604E−06 −5.0831E−06
– −2.4496E−09

c− c+ d− d+

3 – – – –
5 −6.15028E−06 −2.97048E−06 – –
4 −7.77587E−06 −2.39041E−06 −9.58518E−09 4.68588E−09
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Table 6
Fitting ability for different types of models

Model R2 Max err (K) Avg err (K) Max err (%) Avg err (%)

MLR 0.8266 178 34 34 5.3
Degree 2 0.8361 163 33 31 5.1
Degree 3 0.8474 169 32 32 4.9
Degree 4 0.8478 168 31 32 4.9
Albahria 0.8464 166 28 31 4.2
Albahri and Georgeb 0.7900 – 58 125 9.2

a,bThese values are taken from the original papers.

Table 7
Predictive capability for different models

Model Q2 Max err (K) Avg err (K) Max err (%) Avg err (%)

MLR 0.4921 184.1 75.2 47.4 11.9
Degree 2 0.5151 189.0 72.3 45.4 11.3
Degree 3 0.5361 179.6 69.8 45.9 11.0
Degree 4 0.5349 178.5 69.7 45.5 11.0

the predicting abilities of the corresponding models are listed in
Table 7.

It is very possible that a model fits well for training data but gives
Please cite this article in press as: C.-C. Chen, et al., Prediction of autoig
contribution approach, J. Hazard. Mater. (2008), doi:10.1016/j.jhazmat.200

poor predictive performance for testing data. Thus, when develop-
ing a suitable model for prediction, there is a need to balance the
fitting ability and predictive capability of the model. The fitting abil-
ity measures the ability to mathematically reproduce the data of the
training set, and the predictive capability gauges the reliability of
the predicted outcomes of other experiments. Usually, this com-
promise is achieved through the model complexity. Both R2 and
Q2 for different models are plotted against their model complexity
in Fig. 3. It was found that the predictive capability (Q2) reached a
maximum for a model with a polynomial of degree 3, and the fit-
ting ability (R2) for a polynomial of degree 4 was only a little better
than that for a polynomial of degree 3. Thus, the nonlinear model
suggested by Albahri, a polynomial model of degree 4, might be an
overfitting model for predicting the AITs of organic compounds.
Moreover, as shown in Table 5, the 95% confidence interval for
parameter d in the polynomial model of degree 4 contains the zero
value. This implies that we cannot reject the hypothesis d = 0 with
95% confidence, and also indicates that the model of degree 4 is an
overfitting model. For a model of degree 3, although the estimate of
c is a very small number (−4.5604 × 10−6), the 95% confidence inter-
val of c does not include the zero value; and the hypothesis c = 0 will

Fig. 4. Parity plot of the MLR model: (a
Fig. 3. Adequacy of model complexity.
nition temperatures of organic compounds by the structural group
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be rejected with 95% confidence in this case. Thus, from the method
of hypothesis testing, it was also concluded that the most adequate
model is a polynomial of degree 3. Figs. 4–7 show the experimen-
tal AITs vs. the predicted values for all the interested models in
both the training and validation sets. It could be found in these fig-
ures that the drawing at lower experimental AIT part become more
and more flat as the model complexity increases. This means that
the compounds with large fitting errors will tend to concentrate
on the compounds with the lower experimental AIT as the model
complexity increases. Usually, the occurring of a specific pattern
of fitting errors is an evidence to indicate that the corresponding
model is possibly overfitting; thus, the empirical model of degree
4 is possibly an overfitting model. It should be noted that this phe-
nomenon that the fitting errors tend to concentrate on a specific
region was also found in Albahri and George’s original work [16].
From all aforementioned facts, it is then concluded by us that a
model of degree 3 is more adequate than a model of degree 4 for
predicting the AIT of an organic compound.

A comparison of the fitting ability between this study and the
other two studies in the literature is also listed in Table 6. In

) training set; (b) validation set.

dx.doi.org/10.1016/j.jhazmat.2008.05.137
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Fig. 5. Parity plot for the polynomial model of degree 2: (a) training set; (b) validation set.

Fig. 6. Parity plot for the polynomial model of degree 3: (a) training set; (b) validation set.

Fig. 7. Parity plot for the polynomial model of degree 4: (a) training set; (b) validation set.

dx.doi.org/10.1016/j.jhazmat.2008.05.137
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Albahri’s work, the R2 of their empirical model (of degree 4) is
0.846 [15]. However, that empirical model was conducted from 137
pure hydrocarbons, and hence, such a model cannot be applied to
the case of organic compounds containing hetero-atoms. Albahri
and George’s work explored 490 organic compounds containing
hetero-atoms and the R2 of the corresponding empirical model
(of degree 4) is 0.790 [16]. In present work, the results are drawn
from 483 organic compounds containing hetero-atoms, and the
R2 of the proposed method is 0.847—which is better than that
of Albahri and George’s work and is comparable with that of the
Albahri’s work for only pure hydrocarbons. Moreover, the aver-
age error and maximum error of the proposed model are 4.9%
and 32%, respectively; and these two values are 9.2% and 125% for
the model proposed by Albahri and George. Since AIT is a safety
related parameter, the improvement in maximum error should be
notified.

As it was shown in Table 6, the R2 of the MLR model in
present work is 0.827, which is also better than that of Albahri
and George’s work; thus, it was deemed by us that much of the
improvement in this work is attributed to the revised group def-
initions instead of the type of empirical model chosen. In fact,
we also attempted to use many other types of empirical mod-
Please cite this article in press as: C.-C. Chen, et al., Prediction of autoig
contribution approach, J. Hazard. Mater. (2008), doi:10.1016/j.jhazmat.200

els to improve the prediction performance, but the improvement
was limited. However, as the database in present study is different
from that in Albahri and George’s work, aforementioned conclu-
sion that much of the improvement in this work is attributed to the
revised group definition still needs more evidences to support it. To
make a more objective comparison, the group definitions and pre-
dictive equation of Albahri and George’s work have been applied
to our database to obtain the corresponding predictive AIT value
for all compounds. Because the predictive equation proposed by
Albahri and George is obtained from their own database, some
pretreatments in our database are needed to avoid this possible
bias. First, the compounds that could not be decomposed accord-
ing to their group definitions are excluded out; and thus, there are
each three compounds dropped from the training set and valida-
tion set, respectively. Second, as Albahri and George announced
that the maximum error is 125% and the average error is 9.2% in
their training set, the compounds of which the absolute predic-
tive error are larger than 150 K by their predicted equation are
also dropped from the database to let the overall performance
of the predicted results meets aforementioned two requirements.
Thus, we delete, according to this criterion, 10 compounds from

Fig. 8. Parity plot for Albahri and George’s model: (a) t
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our training set and 9 compounds from our validation set, respec-
tively. With these pretreatments, the average errors of Albahri and
George’s model for the trimmed training set and the trimmed val-
idation set are 7.20% and 9.40%, respectively; and the maximum
errors are 26.95% and 26.73%, respectively. Fig. 8 shows the fitting
performance of Albahri and George’s model for both the trimmed
training set and the trimmed validation set. It could be found
that the drawings are of two flat parts at the lower experimental
AIT zone and higher experimental AIT zone. As this phenomenon
was also found in their original work, the fitting results for these
two trimmed sets are of similar characteristics with their origi-
nal work [16]. With above efforts, it is then assumed by us that
the effects of the bias of establishing the model parameters from
different database have been moderated. With aforementioned
pretreatment, the fitting performance, i.e., the R2 value, of their
models are 0.7094 and 0.6609 for the trimmed training set and
the trimmed validation set, respectively. It is obvious that the
resulting fitting performance in both trimmed sets is still infe-
rior to that of the MLR case in present study. Thus, our previous
conclusion that much of the improvement in present study is
attributed to the revised group definitions is supported by these
results.
nition temperatures of organic compounds by the structural group
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To assess whether a model is capable of predicting AITs or not,
the number of compounds in the validation set is very important. In
many commercial softwares, it is a common practice that the num-
bers of observations in the validation set should be at least one-fifth
the numbers of observations in the training set to avoid underesti-
mating the predictive error [20]. However, this ratio is only 20/470
in Albahri and George’s work, which is deemed to be too small to
derive a reasonable conclusion about the predictive performance of
their model. To show this point, we take 2-hydroxy-1-ethylaziridine
( ) as an example to explain the case of underestimating the
predictive error for their model. By using their group definitions and
predictive model, the estimated AIT for 2- hydroxy-1-ethylaziridine
is about 1630 K, but the reported experimental value is only 607 K.
Thus, the prediction error is more than 1000 K in this example,
which means that if this compound is included in their validation
set, the predictive capability of their model will drastically decrease.
So, it is obvious that the predictive error is possibly underestimated
in their work.

As shown in Table 7, the Q2, average error and maximum error
for the present work are 0.5361, 11.0% and 45.9%, respectively. A
rule of thumb for developing a practical model is: the difference

rimmed training set; (b) trimmed validation set.

dx.doi.org/10.1016/j.jhazmat.2008.05.137
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between R2 and Q2 must not be too large and preferably not exceed-
ing 0.2–0.3. Moreover, a Q2 > 0.5 is regarded as good and a Q2 > 0.9
as excellent [21]. In this study, the Q2 value for the 83-compound
validation set was 0.5361 and the R2 value for the 400-compound
training set was 0.8474; thus, the proposed method coincides with
this rule of thumb and can be taken as a reasonable model for esti-
mating the AIT of an unavailable or unknown compound in practical
applications.
Please cite this article in press as: C.-C. Chen, et al., Prediction of autoig
contribution approach, J. Hazard. Mater. (2008), doi:10.1016/j.jhazmat.200

5. Conclusions

A predictive model for AITs was proposed based on the SGC
approach. The proposed equation to predict AITs may be expressed
as Eq. (10). This model includes 45 molecular function groups and
is a polynomial of degree 3. This model was deduced from a 400-
compound training set. The fitting ability of the proposed model
is about 0.8474, with an average error of 32 K and an average
error percentage of 4.9%. The predictive capability of the model
was demonstrated on 83 compounds which were not included in
the original training set. The predictive capability of the proposed
model is about 0.5361, with average error 70 K and an average error
percentage of 11.0%

AIT = 750.3065 +
(∑

i

vifi

)
− 8.644 × 10−4 ×

(∑
i

vifi

)2

− 4.5604 × 10−6 ×
(∑

i

vifi

)3

(10)

Table A1
Experimental values and predicted values of the compounds in the training set

Compound name Exp. value

1 Butane 645
2 Pentane 538
3 Hexane 513
4 Heptane 486
5 2-Methylpropane 733.15
6 2-Methylbutane 693.15
7 3-Methylpentane 551.15
8 2,2-Dimethylpropane 723.15
9 2,2-Dimethylbutane 678

10 2,3-Dimethylpentane 610.37
11 2,2,3-Trimethylbutane 685
12 1-Pentene 571
13 1-Heptene 536
14 1-Octene 523
15 1-Decene 508.15
16 1,3-Pentadiene 613
17 2-Methyl-1-pentene 579
18 2,4,4-Trimethyl-1-pentene 693
19 Cyclopentane 593
20 Methylcyclopentane 602.04
21 Ethylcyclohexane 535.37
22 n-Propylcyclohexane 521.15
23 trans-1,2-Dimethylcyclohexane 577.15
24 Dicyclohexyl 518.15
25 Decalin 541
26 Hydrindane 569
27 Cyclopentene 668.15
28 Cyclohexene 583.15
29 Benzene 771
30 Toluene 755
31 Ethylbenzene 705.37
32 n-Propylbenzene 729.15
33 n-Butylbenzene 685.37
34 1,3-Dimethylbenzene 800.93
35 1,4-Diethylbenzene 703.15
36 Biphenyl 813.15
37 Naphthalene 813
 PRESS
s Materials xxx (2008) xxx–xxx

As compared to Albahri and George’s work, the proposed model
exhibits better performance in terms of R2. It was also found that
much of the improvement may be attributed to the modification
of the group definitions and not the type of empirical model cho-
sen. As mentioned earlier, the addition of halogen atoms to nonring
hydrocarbons and ring-structure compounds has different effects
on their AITs. Thus, in this study, 14 new groups were introduced
to discriminate this effect for halogen compounds.
nition temperatures of organic compounds by the structural group
8.05.137

In this work, the average fitting error for the 400-compound
training set was 32 K, and the average prediction error was 70 K for
the 83-compound validation set. Because the average experimental
error in measuring the AIT is deemed to be greater than 30 K in the
literature, the proposed method could offer a reasonable estimate
of the AIT value for the organic compounds in the training set and
could also approximate the AITs of compounds that were unknown
or whose AITs were not readily available to within a reasonable
degree.
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Appendix A

See Tables A1 and A2 .

Reference MLR Degree 3

[11] 643.42 643.16
[11] 622.07 614.17
[11] 600.72 586.71
[11] 579.36 561.42
[3] 667.50 680.46
[3] 646.14 650.46
[3] 624.79 621.19
[3] 697.41 707.33
[4] 676.06 677.22
[3] 627.51 628.30
[11] 678.78 684.64
[11] 608.59 598.09
[11] 565.88 548.06
[4] 544.53 527.50
[3] 501.82 498.46
[11] 571.74 565.84
[11] 594.57 589.28
[3] 627.20 620.88
[11] 608.26 603.74
[3] 606.22 602.61
[3] 560.22 551.89
[3] 538.87 530.74
[3] 579.53 575.08
[3] 477.02 496.27
[11] 526.31 522.96
[11] 641.38 629.21
[3] 698.69 702.65
[3] 674.04 672.68
[4] 768.25 786.27
[11] 761.44 774.02
[3] 740.09 745.98
[3] 718.74 716.63
[3] 697.38 686.60
[3] 754.63 761.36
[3] 711.93 702.89
[3] 836.76 833.13
[11] 800.66 807.52
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Table A1 (Continued )

Compound name Exp. value Reference MLR Degree 3

38 1-Methylnaphthalene 802.04 [3] 793.86 796.18
39 Anthracene 828 [11] 833.08 826.77
40 Ethanol 673 [11] 677.17 687.74
41 1-Propanol 644.26 [3] 655.82 657.66
42 1-Butanol 616 [3] 634.47 628.16
43 2-Butanol 663 [4] 658.54 665.04
44 tert-Butanol 733 [11] 709.81 721.88
45 Cyclohexanol 573.15 [3] 593.97 588.85
46 Benzyl alcohol 709.26 [3] 752.49 759.86
47 1-Hexanol 558 [3] 591.76 573.45
48 Allyl alcohol 643 [11] 642.34 640.51
49 Dimethyl ether 623.15 [3] 631.41 629.99
50 Dibutyl ether 467.59 [3] 503.29 499.77
51 Methyl vinyl ether 560.15 [3] 596.58 586.01
52 Diphenyl ether 891.15 [3] 782.04 774.04
53 Propylene oxide 738.15 [3] 652.84 660.27
54 Propionaldehyde 500 [11] 566.60 560.55
55 Butyraldehyde 503.15 [3] 545.25 538.18
56 Acetophenone 833 [11] 771.76 781.65
57 2-Butanone 677 [11] 675.09 681.59
58 2-Pentanone 725.15 [3] 653.74 651.57
59 Cyclohexanone 693.15 [3] 654.96 662.18
60 Acetic acid 737 [11] 716.28 731.15
61 Butyric acid 718 [11] 673.58 671.24
62 Pentanoic acid 673.15 [3] 652.23 641.39
63 Acrylic acid 711.15 [3] 681.45 683.97
64 Dipropylamine 572.15 [3] 599.96 585.03
65 Diphenylamine 907.04 [3] 836.00 831.82
66 2-Aminoethanol 673 [11] 660.69 663.03
67 1-Chlorobutane 523 [11] 700.92 692.42
68 Acetyl chloride 663.15 [3] 756.97 769.12
69 Chlorobenzene 863 [4] 811.25 853.79
70 1-Bromobutane 538 [4] 636.30 627.99
71 Bromobenzene 838.15 [3] 838.15 837.56
72 Ethyl formate 708 [11] 722.73 733.82
73 Ethyl acetate 700 [3] 700.05 710.09
74 Propyl acetate 708 [11] 678.70 679.99
75 Butyl acetate 653 [11] 657.35 650.00
76 Isobutyl acetate 696 [3] 681.42 687.42
77 Methyl propionate 728 [11] 700.05 710.09
78 Ethyl propionate 718 [11] 678.70 679.99
79 Methyl butyrate 728 [11] 678.70 679.99
80 Methyl benzoate 783 [4] 796.72 805.78
81 Ethyl benzoate 763.15 [3] 775.37 780.24
82 Butyl benzoate 708 [11] 732.66 723.49
83 Ethyl acrylate 655.93 [3] 665.22 662.62
84 2-Methylpentane 579.26 [3] 624.79 621.19
85 2,2,4-Trimethylbutane 680 [11] 654.71 647.27
86 trans-2-Hexene 528 [11] 563.87 555.74
87 trans-2-Pentene 558 [3] 585.22 580.42
88 1,3-Hexadiene 593 [11] 550.39 542.81
89 1,5-Hexadiene 618 [11] 573.75 557.74
90 2-Methylpropene 738.15 [3] 637.27 646.02
91 3-Methyl-1-butene 638.15 [3] 632.66 633.43
92 4-Methyl-1-pentene 577 [11] 611.31 604.88
93 2-Ethyl-1-butene 597 [11] 594.57 589.28
94 2,3-Dimethyl-1-butene 633.15 [3] 618.64 623.97
95 2,3,3-Trimethyl-1-butene 656 [11] 648.56 650.14
96 2,4,4-Trimethyl-2-pentene 581 [3] 603.84 602.22
97 Ethylcyclopentane 533.5 [3] 584.87 575.97
98 Propylcyclopentane 542.15 [3] 563.51 551.77
99 n-Hexylcyclopentane 501 [11] 499.46 500.15

100 Isopropylcyclohexane 556 [4] 562.94 557.60
101 Butylcyclohexane 519.15 [3] 517.52 513.30
102 Isobutylcyclohexane 547 [11] 541.59 535.63
103 sec-Butylcyclohexane 550 [11] 541.59 535.63
104 tert-Butylcyclohexane 615 [11] 592.86 579.68
105 trans-1,3-Dimethylcyclohexane 579 [3] 579.53 575.08
106 trans-1,4-Dimethylcyclohexane 577 [3] 579.53 575.08
107 1,3,5-Trimethylcyclohexane 587 [11] 577.48 574.04
108 4-Isopropyl-1-methylcyclohexane 579 [11] 560.90 556.64
109 Cyclodecane 508 [11] 485.04 500.89
110 Isobutylbenzene 700.93 [3] 721.46 723.95
111 sec-Butylbenzene 690.93 [3] 721.46 723.95
112 tert-Butylbenzene 723.15 [3] 772.73 777.77

dx.doi.org/10.1016/j.jhazmat.2008.05.137


Please cite this article in press as: C.-C. Chen, et al., Prediction of autoignition temperatures of organic compounds by the structural group
contribution approach, J. Hazard. Mater. (2008), doi:10.1016/j.jhazmat.2008.05.137

ARTICLE IN PRESSG Model
HAZMAT-8358; No. of Pages 17

12 C.-C. Chen et al. / Journal of Hazardous Materials xxx (2008) xxx–xxx

Table A1 (Continued )

Compound name Exp. value Reference MLR Degree 3

113 1,2-Dimethylbenzene 737.04 [3] 754.63 761.36
114 1,4-Dimethylbenzene 802.04 [3] 754.63 761.36
115 1,2,3-Trimethylbenezene 743.15 [3] 747.83 748.34
116 1,2,4-Trimethylbenezene 788.15 [3] 747.83 748.34
117 1-Methyl-2-ethylbenzene 721 [11] 733.28 732.64
118 1-Methyl-3-ethylbenzene 753.15 [3] 733.28 732.64
119 1-Methyl-4-ethylbenzene 748.15 [3] 733.28 732.64
120 1,2-Diethylbenzene 677 [11] 711.93 702.89
121 1,3-Diethylbenzene 723.15 [3] 711.93 702.89
122 1-Methyl-3,5-diethylbenzene 734 [11] 705.12 689.07
123 2-Ethylbiphenyl 722 [11] 808.60 799.87
124 2-Propylbiphenyl 725 [11] 787.24 773.77
125 2-Butylbiphenyl 706 [11] 765.89 745.72
126 Diphenylmethane 759 [11] 815.40 811.02
127 1-Ethylnaphthalene 754 [11] 772.50 769.76
128 Tetralin 657.04 [3] 618.28 611.97
129 Methanol 728 [4] 698.53 717.75
130 3-Pentanol 638 [11] 637.19 635.34
131 2-Methyl-1-butanol 658.15 [3] 637.19 635.34
132 2-Propanol 672.04 [3] 679.90 695.16
133 2-Methyl-1-propanol 678 [11] 658.54 665.04
134 3-Methyl-1-butanol 623.15 [3] 637.19 635.34
135 2-Pentanol 616.48 [3] 637.19 635.34
136 2-Methyl-2-butanol 708 [11] 688.46 691.92
137 2,2-Dimethyl-1-propanol 693 [11] 688.46 691.92
138 4-Methyl-2-pentanol 613 [11] 639.91 642.58
139 1-Heptanol 555 [3] 570.41 549.52
140 4-Heptanol 568 [11] 594.48 579.75
141 2-Octanol 538 [11] 573.13 555.15
142 2-Ethyl-1-hexanol 560.93 [3] 573.13 555.15
143 1-Nonanol 533 [11] 527.70 511.71
144 1-Decanol 523 [11] 506.35 499.12
145 Ethylene glycol 673.15 [3] 668.22 672.30
146 1,2-Propanediol 694.26 [3] 670.94 679.72
147 Glycerol 673 [11] 661.99 664.30
148 2-Ethyl-1,3-hexanediol 633 [11] 588.25 572.95
149 2,2-Dimethyl-1,3-propanediol 672 [3] 679.50 676.48
150 3,5-Dimethylphenol 828 [11] 813.55 867.67
151 2,4-Dimethylphenol 872 [3] 813.55 867.67
152 2,4-Dimethyl-3-pentanol 668 [11] 642.64 649.88
153 Methoxybenzene 748 [4] 706.72 703.18
154 Dipentyl ether 444 [4] 460.59 489.67
155 Butyl vinyl ether 528 [11] 532.52 519.46
156 Ethylene oxide 702.04 [3] 654.89 661.48
157 1,2-Epoxyethylbenzene 811 [11] 728.16 733.63
158 Isobutyraldehyde 534 [11] 569.32 566.52
159 2-Propenal 573 [11] 553.12 547.25
160 Crotonaldehyde 553 [11] 508.40 515.34
161 2-Ethylcrotonaldehyde 523 [11] 473.03 498.22
162 3-Pentanone 725.37 [3] 653.74 651.57
163 Propionic acid 713 [11] 694.93 701.37
164 Isobutyric acid 733 [11] 697.65 708.76
165 Isopentanoic acid 689.15 [3] 676.30 678.66
166 Hexanoic acid 653.15 [3] 630.87 612.48
167 2-Methylpentanoic acid 651 [11] 654.95 648.68
168 Heptanoic acid 571 [3] 609.52 585.14
169 Decanoic acid 570 [3] 545.46 518.90
170 Dodecanoic acid 503 [11] 502.76 494.32
171 Tetradecanoic acid 508 [11] 460.05 491.37
172 Hexadecanoic acid 513 [11] 417.35 515.16
173 o-Phthalic acid 863 [11] 814.95 810.35
174 2,2-Dimethylpropionic acid 723 [11] 727.57 735.22
175 2-Ethylbutyric acid 663 [11] 654.95 648.68
176 2-Aminobiphenyl 725 [11] 834.82 827.27
177 1,2-Propanediamine 689 [11] 655.89 661.17
178 DL-1-Amino-2-propanol 647.04 [3] 663.42 670.43
179 Diisopropanolamine 647 [11] 630.20 625.75
180 Triisopropanolamine 593 [11] 579.52 567.12
181 2-Diethylaminoethanol 593 [11] 589.27 574.26
182 Benzyl chloride 858.15 [3] 818.94 815.54
183 1,1,1-Trichloroethane 810.15 [3] 799.00 801.62
184 Trichloroethylene 693 [11] 774.15 772.52
185 Bis(2-ethoxyethyl)ether 478 [11] 393.86 521.09
186 n-Hexyl Cellosolve 553 [11] 494.34 495.07
187 Methyl formate 729.26 [3] 744.09 762.48
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188 Propyl formate 708 [11] 701.38 704.10
189 n-Butyl formate 595.37 [3] 680.03 673.98
190 lsopropyl formate 713 [11] 725.46 741.00
191 Methyl acetate 748 [11] 721.41 739.65
192 lsopropyl acetate 698 [11] 702.78 717.44
193 Pentyl acetate 633.15 [3] 636.00 620.75
194 lsopentyl acetate 653 [11] 660.07 657.35
195 Hexyl acetate 528 [11] 614.64 592.88
196 tert-Butyl acetate 708 [11] 732.69 743.67
197 sec-Butyl acetate 683 [11] 681.42 687.42
198 n-Decyl acetate 488 [11] 529.23 508.03
199 Vinyl acetate 698 [11] 686.57 692.73
200 Allyl acetate 647.04 [3] 665.22 662.62
201 Phenyl acetate 858 [11] 796.72 805.78
202 n-Propyl propionate 703 [11] 657.35 650.00
203 Isopropyl propionate 698 [11] 681.42 687.42
204 Butyl propionate 658 [11] 636.00 620.75
205 Isobutyl propionate 708 [11] 660.07 657.35
206 Ethyl butyrate 713 [11] 657.35 650.00
207 Propyl butyrate 693 [11] 636.00 620.75
208 1-Hexyne 536 [4] 517.17 515.16
209 3-Hexyn-2,5-diol 553 [4] 562.42 560.40
210 Ethyne 578.15 [3] 587.57 584.98
211 1,2,4-Triethenyl-Cyclohexane 543 [4] 472.98 493.21
212 4-Fluorobenzyl chloride 863 [4] 863.00 861.47
213 1,1-Difluoro-1-chloroethane 905 [3] 905.00 880.03
214 Fluoroethene 658.15 [3] 631.81 632.80
215 Amyl nitrite 478 [4] 576.41 560.35
216 Tetrahydropyrrole 618 [4] 655.65 657.45
217 1-Octanamine 538 [4] 541.53 523.05
218 N-Ethyl-N,N-diisopropylamine 513 [4] 603.66 600.89
219 2-Amino-2-ethylhexane 538 [4] 565.61 548.13
220 N-Butyl-1-butanamine 533 [4] 557.25 537.62
221 N,N-Dimethylacetamide 627.15 [3] 672.59 682.56
222 2-Butoxime 588 [4] 588.00 588.66
223 2-Hydroxy-1-ethylaziridine 607 [4] 586.90 575.59
224 1-Benzazine 753.15 [3] 811.82 814.86
225 Nitrocarbol 652.15 [3] 661.82 671.68
226 Aminomethane 703.15 [3] 691.00 708.54
227 Ethylamine 657 [3] 669.65 678.44
228 N,N-Dimethylamine 673.15 [3] 685.37 701.25
229 Piperazidine 728.15 [3] 678.38 683.26
230 Azabenzene 823 [4] 867.59 855.42
231 Tetrafluorethene 473.15 [3] 500.61 520.06
232 Imidole 823 [4] 836.50 838.93
233 Triacetaldehyde 510.93 [3] 569.49 573.94
234 3-Picoline 810 [3] 775.89 786.84
235 Butane nitrile 761 [4] 748.13 750.73
236 Cyanoacetic ester 733 [4] 783.41 784.63
237 2-Picoline 810.93 [3] 775.89 786.84
238 1,1-Dimethylcyclohexane 577 [3] 547.57 544.64
239 2,3,3-Trimethyl-1-Pentene 504 [4] 627.20 620.88
240 Isoprene 493.15 [3] 602.44 600.74
241 �-Methylstyrene 847.59 [3] 712.59 719.51
242 Butyl butyrate 623 [11] 614.64 592.88
243 Propylamine 591 [3] 648.30 648.47
244 �-Pinene 528.15 [3] 562.92 560.17
245 trans-2-Butene 597.04 [3] 606.58 607.41
246 1-Dodecanol 548.15 [3] 463.65 489.73
247 1,3-Butanediol 667.04 [3] 649.59 649.73
248 Isobutyl acrylate 613.15 [3] 642.54 638.83
249 Dimethyl terephthalate 843.15 [3] 825.19 823.65
250 1,7-Octadiene 493 [4] 531.05 517.32
251 1,3-Diisopropylbenzene 722 [4] 717.37 717.63
252 Benzoyl chloride 873 [4] 832.29 829.41
253 1,4-Dioxane 453.15 [3] 578.29 577.08
254 2-Ethylhexanal 463.15 [3] 483.91 496.49
255 Methylhexanone 728 [4] 635.11 629.39
256 2-(2-Methoxyethoxy)ethanol 488 [4] 503.68 500.18
257 2-Methoxyethyl ether 463 [4] 436.57 493.03
258 1,2-Dimethoxyethane, 473 [4] 533.99 521.67
259 Ethyl vinyl ether 451 [4] 575.22 560.78
260 2-(2-Ethoxyethoxy) ethanol 477.15 [3] 482.33 492.09
261 Pentanal 495.15 [3] 523.90 519.29
262 2,2′-Dihydroxyethyl ether 502.04 [3] 570.80 550.39
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263 1,1-Diethoxyethane 503.15 [3] 515.36 509.67
264 2-Methyl-2-propenal 507.15 [3] 539.10 540.20
265 2-Ethoxyethanol 508.15 [3] 579.75 562.35
266 1-Nonene 510 [3] 523.18 510.75
267 Methylal 510.35 [3] 555.34 541.08
268 2-Butoxyethanol 511.15 [3] 537.05 520.58
269 Butylcyclopentane 523.15 [3] 542.16 530.64
270 trans-Decahydronaphthalene 528 [4] 526.31 522.96
271 beta-Pinene 528 [3] 522.65 525.46
272 1-Hendecanol 550 [3] 485.00 491.58
273 1-Nonanol 550 [3] 527.70 511.71
274 Methyl acetylacetate 623 [4] 710.37 718.56
275 Propanoic acid anhydride 558 [3] 609.33 589.86
276 2-Methoxyethanol 558.15 [3] 601.10 587.73
277 2-Pentene 561 [3] 585.22 580.42
278 cis-2-Methylcyclohexanol 569.15 [3] 591.93 587.77
279 cis-4-Methylcyclohexanol 570.15 [3] 591.93 587.77
280 cis-1,4-Dimethylcyclohexane 577 [3] 579.53 575.08
281 cis-1,2-Dimethylcyclohexane 577.15 [3] 579.53 575.08
282 2-Methylnitrobenzene 693 [4] 730.33 731.32
283 2,4-Dihydroxy-2-methylpentane 698 [4] 682.23 683.91
284 cis-1,3-Dimethylcyclohexane 579 [3] 579.53 575.08
285 1-Butanamine 585 [3] 626.94 619.27
286 2-Furancarboxaldehyde 588.71 [3] 596.58 589.39
287 Hexahydro-1H-azepine 603.15 [3] 606.36 599.98
288 Acetylene tetrabromide 608.15 [3] 632.51 637.16
289 2,4-Pentanedione 613.15 [3] 638.67 639.32
290 Propyl ac rylate 615 [3] 643.87 632.98
291 1-Methyl-2-pyrrolidinone 619.15 [3] 639.25 646.13
292 1-Methoxy-2-propyl acetate 627.15 [3] 626.71 614.97
293 1,4-Butanediol 630 [3] 625.51 613.48
294 2-(2-Ethoxyethoxy)ethyl acetate 583 [4] 505.21 497.60
295 Nitroethane 633.15 [3] 640.47 641.83
296 2-Methyt-1-butene 638 [3] 615.92 616.92
297 2-Aminoethylethanolamine 641 [3] 617.23 603.06
298 Allylamine 647.04 [3] 634.81 631.47
299 1,3-Propylene glycol 651 [3] 646.87 642.43
300 2-Ethoxyethyl acetate 652.59 [3] 602.63 580.99
301 Ethylenediamine 658.15 [3] 653.17 653.80
302 1-Methyl-3-nitrobenzene 713 [4] 730.33 731.32
303 Acetic acid anhydride 603 [4] 652.04 646.66
304 2-Furanmethanol 664.15 [3] 685.80 691.87
305 2-Heptanone 666.15 [3] 611.03 594.31
306 Crotonic acid 669.26 [3] 636.73 634.34
307 Ethyl 2-hydroxypropanoate 673.15 [3] 693.82 702.11
308 1,3,5-Trioxacyclohexane 683 [4] 575.63 577.05
309 Hexanedioic acid 678 [4] 661.03 639.64
310 Ethylene chlorohydrin 698.15 [3] 734.68 736.73
311 Cyclobutane 700 [3] 632.91 632.07
312 Tartaric acid 700.93 [3] 733.98 743.06
313 3-Isopropyltoluene 709 [3] 736.00 739.83
314 3-Methyl-2-butanol 710 [3] 661.27 672.44
315 1,2-Epoxybutane 643 [4] 631.49 630.69
316 N,N-Dimethylformamide 683 [4] 564.10 561.31
317 N-Phenylacetoacetamide 725.15 [3] 759.96 760.32
318 Methyl formate 729.26 [3] 744.09 762.48
319 1,1-Dichloroethane 731.15 [3] 761.14 770.60
320 trans-1,2-dichloroethylene 733 [3] 727.64 725.05
321 1,1,2-Trichloroethane 733.15 [3] 818.65 812.62
322 Acetonitrile 797 [4] 790.83 804.18
323 Vinyl chloride 745 [3] 711.83 715.42
324 Ethylphenylamine 752.15 [3] 739.33 744.14
325 Acrylonitrile 754.26 [3] 756.00 762.67
326 3-Aminotoluene 755.15 [3] 759.51 766.35
327 4-Aminotoluene 755.15 [3] 759.51 766.35
328 Nitrobenzol 753 [4] 737.14 744.69
329 1-Bromopropane 763.15 [3] 657.66 657.49
330 3-Hydroxypropionitrile 767.59 [3] 760.53 764.49
331 1,4-Benzenedicarboxylic acid 769 [3] 814.95 810.35
332 Ethyl bromide 784.26 [3] 679.01 687.56
333 o-Nitroaniline 794.15 [3] 735.20 736.57
334 N-Phenylacetamide 803.15 [3] 771.00 779.95
335 4-Picoline 810 [3] 775.89 786.84
336 Hexanedinitrile 823.15 [3] 810.13 794.59
337 Dichlorofluoromethane 825.15 [3] 741.66 748.85
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338 1,2-Dichloropropane 830 [3] 758.11 761.07
339 Benzoic acid 805 [4] 791.60 798.61
340 1,3,5-Trichlorobenzene, 850 [3] 897.25 845.55
341 p-Nitroaniline 773 [4] 735.20 736.57
342 Phthalic anhydride 857.04 [3] 866.08 862.51
343 Hexachlorobutadiene 883.15 [3] 834.14 816.57
344 Methyl chloride 905 [3] 890.00 859.46
345 1,4-Dichlorobenzene 920 [3] 854.25 880.02
346 1,2-Dichlorobenzene 913 [4] 854.25 880.02
347 2-Methylnaphthalene 802 [3] 793.86 796.18
348 cis-1,2-Dichloroethylene 733 [3] 727.64 725.05
349 Ethylene 723.15 [3] 696.01 705.72
350 Ethyl chloride 792 [3] 743.63 751.52
351 Ethane 745 [3] 686.13 703.16
352 Acetone 738 [4] 696.44 711.67
353 Propane 723 [3] 664.77 673.03
354 Chloroprene 593.15 [3] 662.97 658.21
355 cis-2-Butene 598.15 [3] 606.58 607.41
356 Diethylamine 585.15 [3] 642.66 641.28
357 Cyclopentadiene 913.15 [3] 789.12 797.29
358 2-Methyl-2-butene 563 [3] 592.56 598.40
359 p-Hydroquinone 788.7 [3] 886.08 826.80
360 2-Methyl-1,3-butadiene 493 [3] 557.72 558.01
361 2-Hexanone 697.04 [3] 632.38 622.27
362 m-Cresol 832.04 [3] 820.36 872.41
363 o-Cresol 872.04 [3] 820.36 872.41
364 2,4-Dimethylpentane 610 [3] 627.51 628.30
365 Isopropyl butyrate 708 [3] 660.07 657.35
366 3-Methylhexane 553.15 [3] 603.44 593.30
367 2,6-Xylenol 872.04 [3] 813.55 867.67
368 Vinylcyclohexene 543 [3] 547.51 543.44
369 3,4,4-Trimethyl-2-pentene 598 [3] 603.84 602.22
370 Isobutyl isobutyrate 705.15 [3] 662.79 664.73
371 Benzyl acetate 734 [3] 775.37 780.24
372 Glyceryl triacetate 706 [3] 730.63 731.12
373 Dicyclopentadiene 783.15 [3] 748.43 744.65
374 Diethyl phthalate 730.15 [3] 782.49 774.10
375 Phenyl benzoate 833 [3] 872.03 855.43
376 2-(2-Butoxyethoxy)ethanol 477.59 [3] 439.62 493.46
377 Diglycolic acid 503 [3] 649.02 626.52
378 1-Hendecene 510 [3] 480.47 491.28
379 cis-Decahydronaphthalene 523.15 [3] 526.31 522.96
380 Tetrahydro-2-furancarbinol 555.37 [3] 594.60 588.67
381 trans-2-Methylcyclohexanol 569.15 [3] 591.93 587.77
382 Morpholine 583.15 [3] 628.34 628.07
383 3,3-Dimethylpentane 610 [3] 654.71 647.27
384 4-Methyl-3-penten-2-one 617.59 [3] 602.87 606.24
385 Vinyl ether 633.15 [3] 561.74 547.47
386 Ethanamine 657 [3] 669.65 678.44
387 4-Hydroxynitrobenzene 729 [4] 730.33 731.32
388 Isocrotonic acid 669 [3] 636.73 634.34
389 Isopropylamine 675.15 [3] 672.37 685.86
390 2-Methoxy-2-methylpropane 708 [4] 642.69 634.03
391 2-Propenoic acid 688 [4] 686.57 692.73
392 2-Aminotoluene 755.15 [3] 759.51 766.35
393 Ethylene diacetate 755.15 [3] 713.98 716.99
394 Allyl chloride 663 [4] 708.80 705.13
395 1,3-Benzenedicarboxylic acid 769 [3] 814.95 810.35
396 Methyl bromide 810.37 [3] 825.37 818.85
397 1,2-Dimethyl phthalate 829 [3] 825.19 823.65
398 1,2,4-Trichlorobenzol 844.26 [3] 897.25 845.55
399 m-Nitroaniline 794 [4] 735.20 736.57
400 Dichloromethane 878 [4] 804.16 804.54

Table A2
Experimental values and predicted values of the compounds in the validation set

No. Compound name Exp. value Reference MLR Degree 3

1 1-Hexene 538 [4] 587.24 571.80
2 1-Hexadecene 513.15 [3] 373.71 554.21
3 2,3-Dimethyl-2-butene 673.7 [3] 578.54 589.59
4 Cyclohexane 533.15 [3] 583.62 577.15
5 Methylcyclohexane 558.15 [3] 581.57 576.11
6 Isopropylbenzene 697.04 [3] 742.81 753.03
7 1,3,5-Trimethylbenzene 823.15 [3] 747.83 748.34
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8 1-Pentanol 573.15 [3] 613.12 599.87
9 1-Octanol 555 [3] 549.06 528.73

10 Phenol 878 [11] 827.16 876.07
11 Diisopropylamine 588.71 [3] 648.11 655.90
12 1,2-Dichloroethane 711 [11] 779.78 769.54
13 Isobutyl formate 593.15 [3] 704.10 711.48
14 2,3-Dimethylbutane 669 [11] 648.87 657.81
15 1,3-Cyclohexadiene 633 [11] 764.47 771.11
16 2-Methylbiphenyl 775 [11] 829.95 823.38
17 Dipropyl ether 488 [4] 546.00 529.93
18 Dihexyl ether 458.15 [3] 417.88 504.76
19 Octanoic acid 570 [3] 588.17 560.00
20 Hexylacetylene 498 [4] 474.46 492.79
21 Isopentyl nitrite 481 [4] 600.49 592.09
22 Cyclopropane 770.93 [3] 657.55 661.53
23 1-Propyne-3-ol 388.15 [3] 572.27 566.27
24 Dibutyl sebacate 638.15 [3] 457.75 494.43
25 Ethoxy ethane 433.15 [3] 588.71 575.05
26 1-Dodecene 528.15 [3] 555.54 516.29
27 1-Chloropentane 533.15 [3] 679.57 662.31
28 Ethyl acetylacetate 568.15 [3] 689.01 688.55
29 trans-4-Methylcyclohexanol 570.15 [3] 591.93 587.77
30 Ethyleneimine 593.15 [3] 704.94 717.22
31 Triethylene glycol 644 [3] 473.37 490.09
32 2-Isopropyltoluene 650 [3] 736.00 739.83
33 2-Methyl-1-propanamine 651.15 [3] 651.02 655.80
34 1-Nitropropane 694.15 [3] 619.12 612.90
35 3,5,5-Trimethyl-2-cyclohexane-1-one 733.15 [3] 617.64 626.44
36 Acetaldehyde 758.15 [3] 587.95 585.74
37 Phenylacetylene 763 [3] 656.54 647.94
38 1-Chloropropane 793.15 [3] 722.28 722.37
39 Vinylidene chloride 843 [3] 758.34 763.58
40 cis-1-Propenylbenzene 848 [3] 681.89 679.35
41 2,3-Dimethylphenol 872 [3] 813.55 867.67
42 3,4-Dimethylphenol 872.04 [3] 813.55 867.67
43 Formic acid 874.26 [3] 738.97 754.30
44 Aniline 813 [2] 766.32 778.86
45 Propylene 728.15 [3] 651.29 655.71
46 Maleic anhydride 749.82 [3] 838.71 853.23
47 1,3-Butadiene 702.04 [3] 616.46 609.80
48 1-Butene 657.04 [3] 629.94 626.27
49 1,5-Pentanediol 608.15 [3] 604.16 586.06
50 cis-2-Hexene 526 [3] 563.87 555.74
51 Ethylcyclobutane 483 [3] 609.51 602.46
52 p-Cresol 832.04 [3] 820.36 872.41
53 2-Methylhexane 566 [4] 603.44 593.30
54 n-Butyl acrylate 565.93 [3] 622.51 604.45
55 Styrene 763.15 [3] 726.61 729.15
56 Isopentyl propionate 698 [3] 638.72 627.85
57 p-Cymene 709.26 [3] 736.00 739.83
58 2-Ethylhexyl acrylate 530.93 [3] 561.18 536.87
59 1,1-Diphenylethane 713.15 [3] 818.13 816.76
60 Dibutyl phthalate 675.15 [3] 697.07 656.62
61 Ethyl methyl ether 463.15 [3] 610.06 601.61
62 Peroxyacetic acid 473.15 [3] 654.12 652.72
63 Cyclohexenylethylene 543 [3] 637.17 624.75
64 Butanoic acid anhydride 552.59 [3] 566.63 541.44
65 Cyclohexanamine 566.15 [3] 586.45 580.73
66 Tetraethylenepentamine 594 [4] 522.77 507.17
67 Nonanoic acid 589 [3] 566.82 537.71
68 Tetrahydrofuran 594.26 [3] 605.60 603.70
69 Diethylenetriamine 631 [3] 609.70 594.61
70 N,N-Dimethylbenzenamine 644.26 [3] 737.59 746.91
71 2-Butanamine 651 [3] 651.02 655.80
72 1,2,3,4-Tetramethylbenzene 700 [3] 741.02 735.04
73 2-Nitropropane 698 [4] 643.19 649.12
74 Diisopropyl ether 678 [4] 594.15 587.86
75 2-Hydroxybenzoic acid methyl ester 728 [3] 855.64 879.58
76 4-Methyl-2-pentanone 721 [4] 656.46 658.93
77 Propionitrile 785 [3] 769.48 778.49
78 2-Hydroxybenzoic acid 818.15 [3] 850.51 878.66
79 trans-1-Methylstyrene 848 [3] 681.89 679.35
80 2-Chloropropane 863 [4] 700.61 713.28
81 2,5-Dimethylphenol 872 [3] 813.55 867.67
82 4-Hydroxy-4-methyl-2-pentanone 876.48 [3] 698.77 700.47
83 1,3-Dichlorobenzene 920 [3] 854.25 880.02
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