Poor potential of proliferation and differentiation in bone

marrow mesenchymal stem cells derived from children

with severe aplastic anemia
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Background

|diopathic severe aplastic anemia (SAA), characterized by failure
of hematopoiesis, is rare and potentialy life-threatening to children.
However, the pathogenesis has not been completely understood, and
insufficiency in the hematopoietic microenvironment can be an
important factor. Mesenchymal stem cells (MSCs) play an important
role in maintaining bone marrow microenvironment. Therefore, we
aimed at the intrinsic defects of bone marrow M SCs derived from SAA

children.

Materialsand Methods

Bone marrow MSCs were obtained from 5 SAA children and 5
controls. The morphology, immunophenotyping, proliferative capacity
and differentiation potential of MSCs from SAA children were

determined and compared with those of M SCs from controls.

Results
MSCs of SAA and control group shared a similar spindle-shaped

morphology in vitro. Both revealed a consistent immunophenotypic



profile which was negative for CD45, CD14 and CD34, and positive
for CD105, CD73, and CD44. However, SAA MSCs had sSlower
expansion rate and smaller cumulative population doubling from

passage 4 to 6 (1.83 * 1.21 vs 3.36 £ 0.87; p = 0.046), indicating

lower proliferative capacity. Besides, only 3 of 5 cultures of SAA group
retained the ability to continue expansion till 80%-90% confluent cell
layer beyond passage 6, suggesting earlier senescence of SAA MSCs.
After osteogenic induction, SAA MSCs showed lower akaline

phosphatase activity (1.46 + 0.04 vs 2.27 = 0.32; p = 0.013), less

intense von Kossa staining and lower gene expression of core binding

factor ol (0.0015 + 0.0005 vs 0.0056 + 0.0017;, p = 0.013).

Following adipogenic induction, SAA MSCs showed less intense Qil

red O staining (0.86 £ 0.22 vs 1.73 + 0.42; p = 0.013) and lower
lipoproteinlipase expression (0.0105 = 0.0074 vs 0.0527 + 0.0254; p

= 0.013). The results of real time-PCR analysis for the assessment of
lineage-specific genes were consistent with the findings of
histochemical stains, and both indicated that SAA MSCs had poor

osteogenic and adipogenic potential.

Conclusions



In this study, we demonstrated that bone marrow MSCs from
children with SAA had poor potential of proliferation and
differentiation. These alterations in MSCs may contribute to the failure
of hematopoiesis, and lead to the development of the disease. Further
studies are needed to elucidate the relationship between MSCs and

SAA.
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Childhood acquired aplastic anemia, characterized by failure of
hematopoiesis, is rare and potentially life-threatening with an annual
incidence of 1-6 per million [1-3]. Severe aplastic anemia (SAA) is
defined as profound bone marrow (BM) hypocellularity and marked
peripheral blood pancytopenia. Despite of many putative etiologies, a
specific cause cannot be identified in most children, and is termed
“idiopathic SAA”. Significant advances have been made in the
management of the disease, including allogeneic stem cell
transplantation and immunosuppressive therapy [1, 3, 4]. However, the
mechanism by which idiopathic SAA develops has not been completely
elucidated. Although many studies demonstrated the association of
immune-mediated pathogenesis, up to 30% of patients do not have
detectable evidence for an underlying immune basis and not respond to
Immunosuppressive therapy [1]. Therefore, other mechanisms do exist.

Mesenchymal stem cells (MSCs), first described by Friedenstein
et al. [5], have the capacity of self-renewal and differentiation into
mesenchyme-lineage cells. BM M SCs can interact with hematopoietic

stem cells (HSCs) and secret cytokines and regulatory molecules [6-11].



They play a crucia role in providing a specialized microenvironment
for HSC survival and differentiation [6, 7, 9-11]. Therefore, MSC
dysfunction may result in the impairment of hematopoiesis, and lead to

the development of SAA.
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However, data focusing on the role of MSCs in the
pathophysiology of SAA are very limited [12-14]. Till now, no
information  about the  characteristics  of morphology,
immunophenotyping, proliferative capacity and differentiation
potential of SAA MSCs has been reported. In order to clarify the
pathophysiology of SAA and to identify the characteristic changes of
SAA MSCs, we compared these basic properties of BM MSCs derived

from SAA children and controls.
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BM cells were obtained from iliac crest aspirates. Idiopathic SAA
was defined as pancytopenia and hypocellular BM after excluding any
other underlying diseases. To diagnose SAA, BM cdllularity of less
than 25% and at least two of the following criteria must be fulfilled:
absolute neutrophil count less than 0.5 x 107/L, platelet count less than
20 x 10%L, and reticulocyte less than 1% [1, 3, 15]. Control subjects
were patients who received BM examination for diseases other than
hematological diseases with pathological proof of norma BM. All
patients were previously untreated and aged less than 18 years old. The
institutional review board of Tungs Taichung MetroHarbor Hospital

approved this protocol, and written informed consents were obtained

from the parents or legal guardians of the patients.
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2.2.1 Cdll culture

Mononuclear cells were isolated from BM aspirates by
Ficoll-Pague density centrifugation (1.077 g/ml; Amersham
Biosciences, Uppsala, Sweden) and then seeded in low-glucose
Dulbecco’s modified Eagle medium (DMEM; Gibco, Gaithersburg,
MD) supplemented with 10% fetal bovine serum (FBS; Gibco) and 1%
Antibiotic-Antimycotic (Gibco). Cells were incubated at 37°C with 5%
CO, in a humidified atmosphere. After 48 hours, medium with
suspension of nonadherent cells was discarded and fresh medium was
added. Thereafter medium was replaced twice a week. When reaching
80%-90% confluence, cells were detached with 0.25% trypsin-EDTA
(Gibco) and replated at a concentration of 8.5 x 10%cm® in 10-cm

dishes.



2.2.2 Immunophenotypic analysis

Cultured MSCs (passage 4) were detached, washed, and
resuspended in phosphate-buffered saline (Gibco). After fixing and
blocking, the cells were immunolabeled with the following mouse
anti-human antibodies. fluorescein isothiocyanate-conjugated CD45
(FITC-CD45; BD Biosciences, San Jose, CA),
phycoerythrin-conjugated CD14 (PE-CD14; BD Biosciences),
FITC-CD34 (BD Biosciences), FITC-CD105 (Serotec, Oxford, UK),
PE-CD73 (BD Pharmigen, San Diego, CA) and FITC-CD44 (BD
Pharmigen). The nonspecific mouse IgG (BD Biosciences) served as
isotype control. Data were analyzed by flow cytometry (FACSCalibur;

BD Biosciences) with CellQuest software.



2.2.3 Proliferative capacity

Yield of cells at each passage was enumerated using Trypan blue
(Gibco) to exclude dead cells. The population doubling (PD) of
cultured MSCs was calculated according to the equation: PD = log,
(the number of viable cells at harvest / the number of seeded cells). The

cumulative PD was the sum of PD from passage 4 to 6.



2.2.4 Osteogenic and adipogenic potential

To evaluate differentiation potential, cultured M SCs (third passage,
at 80%-90% confluence) were subjected to osteogenic and adipogenic
differentiation in vitro. Cells were detached from culture dishes and
replated in 60-mm dishes for further studies.

To promote osteogenic differentiation, cells were incubated in
DMEM supplemented with 10% FBS, 10 mM B-glycerophosphate
(Sigma, St Louis, MO), 0.1 uM dexamethasone (Sigma) and 0.2 mM
ascorbic acid (Sigma) for 3 weeks. On day 21, cultures were stained for
akaline phosphatase (ALP; Sigma) activity and mineralized deposits
were detected by von Kossa stain (Cedarlane, Ontario, Canada). To
quantify ALP activity, 2 ml of 0.05 N NaOH in ethanol was added to
each dish after ALP activity stain and the extraction was measured by
spectrophotometry (Ultrospec 1100 pro; Amersham Biosciences) at 550
nm.

For induction of adipogenic differentiation, cells were grown in
DMEM supplemented with 10% FBS, 1 uM dexamethasone, 0.5 mM
3-isobutyl-1-methylxanthine (Sigma), 0.1 mM indomethacin (Sigma)
and 10 ug/ml insulin (Novo Nordisk A/S, Bagsveard, Denmark) for 2
weeks. On day 14, adipogenic differentiation was demonstrated by

intracellular accumulation of lipid droplets stainable with oil red O



(Sigma). The dye content was eluted by ethanol and quantified
spectrophotometrically.

Differentiation was verified further by real-time polymerase chain
reaction (Q-PCR) for the assessment of lineage-specific genes as core
binding factor ol (Cbfal) for osteocytes and lipoprotein lipase for
adipocytes. MSCs cultured in osteogenic and adipogenic induction
medium were harvested on day 21 and 14, respectively. Total RNA was
extracted with Trizol reagent (Invitrogen, Carlsbad, CA) following the
manufacturer’s instruction. Concentration of the RNA samples was
estimated spectrophotometrically at OD 260/280, and cDNA was
synthesized using MMLV reverse transcriptase (Epicentre
Biotechnologies, Madison, WI) in the presence of oligo-dT primer
(Promega, Madison, WI). The sequences of PCR primers were as
follows: Cbfal [16], sense 5 -CATGGCGGGTAACGATGAA-3 and
antisense 5'-CGGCCCACAAATCTCAGATC-3'; lipoprotein lipase
[17], sense 5'-ATGGAGAGCAAAGCCCTGCTC-3 and antisense
5-TACAGGGCGGCCACAAGTTTT-3'. The expression of [B-actin
(sense 5-TGTGGATCAGCAAGCAGGAGTA-3 and antisense
5-CAAGAAAGGGTGTAACGCAACTAAG-3) was used as an
internal control to normalized specific gene expression in each sample

[16]. Q-PCR was performed using cDNA samples with SYBR Green



PCR master mix (Applied Biosystems, Foster City, CA) and carried out

in the ABI 7300 Real-Time PCR system (Applied Biosystems).

10



2.3 it
Data analysis was performed using SPSS 14.0 for Windows.
Results are presented as mean = standard deviation and 95%

confidence interval. Kolmogorov-Smirnov Z test was used for
comparison of the two groups. Statistical value of p < 0.05 was

considered significant.

11
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3.1 Morphology and immunophenotypic profile

A total of 10 children, 5 SAA patients and 5 controls, were
enrolled in the study. The average age was 11.9 and 11.6 years old,
respectively. In vitro, MSCs of SAA and control group shared a similar
spindle-shaped morphology (Fig. 1A). Both revealed a consistent
immunophenotypic profile which was negative for CD45, CD14 and
CD34, and positive for CD105, CD73, and CD44 (Fig. 1B). No
significant difference was noted in the expression of any single surface

marker between the two groups.

12



3.2 Proliferative capacity

To prevent hematopoietic cell contamination, which might be
present in earlier passages, or the presence of senescent or
differentiating MSCs in later passages, we used cells from passage 4 to
6 for the study of growth kinetics. SAA group had slower expansion
rate than control group, shown as average PD of each passage (Fig. 2A).
Two of five cultures of SAA group stopped proliferating at passage 5
and 6, respectively; whereas all cultures of control group continued to
grow well. Lower proliferation potential of SAA MSCs was aso

demonstrated by smaller cumulative PD (1.83 + 1.21 vs 3.36 = 0.87;

p = 0.046) (Fig. 2B).

13



3.3 Differentiation potential

When exposed to osteogenic induction medium, MSCs from SAA
children had less robust osteogenic differentiation than MSCs from
controls as shown by lower ALP activity (Fig. 3A). Greater extent of
mineralization in control group was also demonstrated by more intense
von Kossa stain (Fig. 3B). Under adipogenic condition, SAA MSCs
gave rise to less lipid-containing cells. The intracytoplasmic vacuoles
of neutral fat can be identified by Oil red O stain (Fig. 3C). The
droplets of fat were more and larger within a single adipocyte in control
group. Quantitation of dye content of ALP activity stain in the

osteogenic cultures (1.46 + 0.04 vs 2.27 + 0.32; p = 0.013) and Oil
red O stain in the adipogenic cultures (0.86 £ 0.22 vs 1.73 £ 0.42; p

= 0.013) confirmed the histochemical observations (Fig. 4).

Results of Q-PCR analysis presented in Figure 5 show the
assessment of lineage-specific genes of osteogenesis and adipogenesis.
After osteogenic induction, MSCs of SAA group expressed lower level
of Cbfal than MSCs of control group (0.0015 + 0.0005 vs 0.0056 +
0.0017; p = 0.013). Following adipogenic induction, SAA MSCs

showed lower lipoproteinlipase expression (0.0105 = 0.0074 vs

0.0527 + 0.0254; p = 0.013). The results of Q-PCR analysis were

14



consistent with histochemical findings, and both strongly suggested
that BM MSCs from SAA children had poor osteogenic and adipogenic

potential.

15
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M SCs can be characterized by a panel of surface markers, by their
in vitro growth pattern and subsequent expansion and by their
multilineage differentiation potential [10, 11, 18]. Many studies used
these basic properties as indicators to identify MSCs from origins other
than BM [8, 16, 17, 19-27]. We aimed at these properties of BM MSCs
from SAA children and found that SAA MSCs had poor potential of
proliferation and differentiation. The alterations in the characteristics of
MSCs may contribute to failure of hematopoiesis and lead to the
development of the disease.

Although the morphology and surface marker expression of
cultured MSCs did not change, SAA MSCs had slower expansion rate
and smaller cumulative PD, indicating lower proliferation potentia
than normal MSCs. Besides, only 3 of 5 cultures of SAA group
retained the ability to continue expansion till 80%-90% confluent cell
layer beyond passage 6, suggesting earlier senescence of SAA MSCs.
We can not answer the aging mechanisms here. However the
heterogeneity in pathogenesis of the disease seems to explain the

variations in MSC expansion potential.

16



The significant decrease in osteogenic and adipogenic potential of
SAA MSCs was demonstrated in our study. Even the 3 cultures which
can proliferate beyond passage 6 showed lower expression of
lineage-specific genes after differentiation under permissive conditions.
The results of histochemical stains supported the gene expression study.
These findings provided strong evidence that defects in BM MSCs of

SAA children do exist.

17
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The immune-mediated HSC destruction for the pathogenesis of
idiopathic SAA has been widely accepted and many studies have
devoted to the role of T cells in this disease [1, 4, 28-30]. Dubey et al.
found elevated levels of interferon-gamma and tumor necrosis

factor-alpha (TNF- ) in BM plasma of SAA patients [28], and these

cytokines can induce apoptosis of CD34+ BM cells [31]. Hara et al.

demonstrated excessive production of TNF-o by BM T cells and
higher sensitivity of HSCs to TNF-«a in patients with SAA [30].

However, up to 30% of patients have no immune-associated evidence
and respond poorly to immunosuppressive therapy [1]. Pathogenesis of
SAA remains to be Determined.

Primary HSC deficiency, including decrease in number and
dysfunction, has al'so been proposed to account for the development of
SAA [32-35]. In vitro long-term BM culture provided evidence for
primary HSC dysfunction in the regenerative capacity and in the
response to various cytokine stimuli [32, 33]. Abnormal telomere
shortening of HSCs was found in some patients with SAA [34].
However allogeneic HSC transplantation cannot cure all patients,

suggesting that other mechanisms exist.

18



Another important concept proposed in the context of SAA is
related to the deficiency or dysfunction of BM microenvironment.
MSCs ae an essentidl component of the hematopoietic
microenvironment which is appropriate for HSCsto survive, proliferate
and differentiate [6, 7, 9-11]. MSCs provide an appropriate scaffold and
a complex network of cytokines, adhesion molecules, and extracellular
matrix proteins that are crucial for hematopoiesis [6-11]. Many studies
have reported the promotive effect of MSCs for HSC expansion in vitro
[7, 36-39]. In 2000, Koc et al. found rapid hematopoietic recovery after
coinfusion of autologous MSCs at the time of HSC transplantation [40].
Accordingly, Lazarus et al. presented a multicenter trial of 46 patients
receiving allogeneic HSCs and M SCs from HLA-identical siblings, and
found prompt hematopoietic recovery in most patients, suggesting that
the beneficial effect of MSCs on engraftment may relate to their
supportive role in the hematopoiesis [41].

Only severa studies have been conducted on the relationship
between MSCs and SAA [12-14]. Bacigulupo et al. found that BM
MSCs of SAA patients were deficient in their ability to suppress T cell
proliferation and cytokine release, suggesting the lack of MSC
immunoprotection in SAA BM [12]. Wu et al. investigated GATA gene

expression of MSCs from chronic aplastic anemia patients, and

19



proposed that aberrant expression of these genes in BM MSCs may
influence the BM microenvironment and lead to abnormal
hematopoietic regulation [13]. In current study, we observed poor
potential of proliferation and differentiation in BM M SCs derived from
SAA children. The above studies provide strong evidence for MSC
defectsin SAA BM.

Severad investigations have found that M SCs can not be acquired
efficiently from umbilical cord blood of full-term infants, suggesting
that MSCs are sparse or absent in cord blood [19-21]. Rubinstein et al.
reported 562 recipients of cord blood HSC transplantation and found
successful engraftment reduced significantly among SAA patients [42].
This can be explained, at least in part, by the insufficiency of BM
hematopoietic microenvironment in SAA patients resulting from MSC
defects and the few amount of MSCs provided by cord blood during
transplantation. Therefore, cotransplant of MSCs and HSCs could be a

potential strategy to treat SAA patients.

20
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Our study was of course limited by the small number of patients

and the diseases of controls.

21
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According to our results, BM MSCs derived from children with
SAA had poor potential of proliferation and differentiation and these
aterations may be important in the pathogenesis of the disease. Our
findings should be wuseful in further understanding of the
pathophysiology of SAA and consequently lead to the development of
novel treatment modalities. Further studies are needed to elucidate the

relationship between MSCs and SAA.
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Figure 1. MSCs of controls and SAA children shared a similar
spindle-shaped morphology (A, x100 magnification) and a consistent
immunophenotypic profile which was negative for CD45, CD14 and
CD34, and positive for CD105, CD73, and CD44 (B). Black and dotted
lines indicate cultured cells from controls and SAA children stained
with antibodies, respectively. The respective isotype controls are shown

asgrey lines.
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Figure 2. Proliferative capacity. (A) Average PD of passage 4 to 6 of
control and SAA group. (B) Comparison of cumulative PD, shown as

mean and 95% confidence interval. Each circle represents a subject

studied.
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Figure 3. Differentiation potential. Osteogenic differentiation was
demonstrated by ALP activity (A) and von Kossa stain (B) after 3-week
induction. Adipogenic differentiation was demonstrated by Oil red O

stain (C) after 2-week induction. Magnification of micrographs. x100.
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Figure 4. Comparison of osteogenic and adipogenic potential by

quantification of ALP activity (A) and Oil

spectrophotometrically,

red O (B) stan

respectively. Mean and 95% confidence

interval areillustrated. Each circle represents a subject studied.

ALP activity

25=

0=

Absorbance (OD550)

T
Cortrol

Saa

Absorbance (OD550)

25

0=

05=

Qil red O

T
Cortrol

T
Saa



Figure 5. Comparison of differentiation potential by lineage-specific
gene expression, Cbfal for osteogenesis (A) and lipoproteinlipase for
adipogenesis (B). Mean and 95% confidence interval are illustrated.

Each circle represents a subject studied.
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